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Abstract: This contribution outlines the suite of advanced multiscalar techniques in the 24 

toolkit of the modern Proterozoic palaeobiologist. These include non-intrusive and non-25 

destructive optical, laser and X-ray based techniques, plus more destructive ion beam and 26 

electron beam based methods. Together, these provide morphological, mineralogical and 27 

biochemical data at flexible spatial scales from that of an individual atom up to that of the 28 

largest of Proterozoic microfossils. Here we provide a description of each technique, 29 

followed by a case study from the exceptionally preserved Torridonian biota of Northwest 30 

Scotland. This microfossil assemblage was first recognized over a century ago, but its great 31 



diversity and evolutionary importance has only recently come to light, due in no small part to 32 

the research efforts of Martin Brasier. 33 
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INTRODUCTION 43 

Modern palaeobiology primarily exists to discover, describe, and decode the ancient 44 

biosphere, and understand the course of global evolutionary change. Stemming from its roots 45 

in Victorian natural history, palaeobiology has made good use of technological advances to 46 

shed light on new discoveries (see Sutton et al. 2014, Wacey, 2014 and references therein), 47 

and to reveal previously unimagined details in historical material (Brasier et al. 2015). As 48 

with any modern field of science, palaeobiological research must continually look forwards 49 

to the next potential discovery, utilizing all available tools and techniques.  50 

 51 

Historically, major discoveries have predominantly dated from the Phanerozoic, owing to the 52 

relatively well-preserved and easily recovered fossils of the macroscopic organisms alive 53 

during this time. In the search for life’s origins and early record, attention has inevitably 54 

turned to the more poorly understood Proterozoic and Archaean fossil records. The 55 

evolutionary history of these expanses of time is much less well established, as a result of the 56 



shortage of exposed rock of appropriate age, relative paucity of fossil material, and 57 

limitations in extracting relevant information. Fossils from these times are typically 58 

microscopic, enigmatic, and poorly preserved, although a number of exceptionally preserved 59 

deposits have come to characterize the Proterozoic fossil record (e.g. Torridonian biota, 60 

Strother et al. 2011; Doushantuo biota, Yin & Li 1978). In both ‘traditional’ and 61 

‘exceptional’ preservation cases, our understanding remains limited by the observational and 62 

analytical techniques used to characterize these important specimens.  63 

 64 

The approaches traditionally used to study early fossil material are essentially borrowed and 65 

adapted from methods used in the study of Palaeozoic fossils, and are best suited to hard-66 

bodied macroscopic fossils or compressed organic material extracted by acid maceration. 67 

However, as our understanding of Precambrian environments is fundamentally improving, it 68 

has become clear that entirely different preservational styles are possible, some of which 69 

require novel analytical approaches. Although many Proterozoic carbonaceous fossils can 70 

still be found compressed within shales (Javaux et al. 2004; Agic et al. 2015), and extracted 71 

for study by palynological acid maceration techniques, microfossil material can be hosted in 72 

a variety of other media, including chert (e.g. Barghoorn & Tyler 1965), pyrite (e.g. 73 

Rasmussen 2000), authigenic aluminosilicates (e.g. Wacey et al. 2014), and cryptocrystalline 74 

phosphate (e.g. Strother et al. 2011). These alternative preservational styles originate from 75 

the biogeochemical conditions that prevailed in specific environments or across specific 76 

periods of time, and are able to exceptionally preserve microfossils of a wide range of 77 

affinities in their original spatial context, often in three dimensions, and reflecting a broad 78 

spectrum of taphonomic decay. In these cellular lagerstätte, challenges are posed by the small 79 

scale, enigmatic nature, and relative scarcity of Proterozoic fossils, as well as by their 80 

complex taphonomic and metamorphic histories. Thus, a thorough understanding of 81 



Proterozoic and Archaean life necessarily calls for state-of-the-art high-spatial-resolution, 82 

and holistic imaging and analysis techniques. 83 

 84 

An increasing number of researchers are now making use of such techniques to study both 85 

Proterozoic and Archaean material, revealing unprecedented levels of detail and allowing the 86 

reconstruction of the complex Precambrian biosphere. It is still common, however, for these 87 

different approaches to be attempted separately, often by different individual research groups, 88 

which can partially preclude the synthesis of information and an overall understanding of 89 

local, regional, or even global palaeoecologies. Here we present a holistic methodology for 90 

studying Proterozoic fossil deposits, with a consideration of their unique preservational styles 91 

and histories. A set of complementary microanalysis techniques have already been presented 92 

with respect to Archaean material (Wacey 2014). However, with the expansion of the 93 

biosphere (Knoll 1994), the evolution of Eukaryotic cells (Knoll et al. 2006), and the advent 94 

of various metabolic pathways and trophic tiering (Knoll 2015), the Proterozoic fossil record 95 

is more complex and - owing to its younger age (approximately 2500–540 Ma) - arguably 96 

better preserved. Thus, a greater potential wealth of information might be gleaned from such 97 

deposits, necessitating their study on a variety of spatial scales, as well as assessing both 98 

morphology and chemistry.  99 

 100 

The following sections detail, in a logical order for practical investigation, multiple 101 

approaches for examining a Proterozoic microfossil assemblage, including: ‘traditional’ field 102 

study and optical microscopy; X-ray based techniques including X-ray tomography and X-103 

ray spectroscopy; laser-based techniques including Raman spectroscopy and confocal laser 104 

scanning microscopy; infrared spectroscopy; electron based techniques including scanning 105 

electron microscopy and transmission electron microscopy; and ion based techniques 106 



including focused ion beam milling and secondary ion mass spectrometry. The combination 107 

of several of these techniques when investigating a single fossil deposit provides the best 108 

opportunity to fully reveal the palaeocology of the Proterozoic biosphere. An example of 109 

their application to the microfossiliferous rocks of the 1200-1000 Ma Torridonian 110 

Supergroup of northwest Scotland is subsequently presented as a demonstrative case study.  111 

 112 

STANDARD PALAEOBIOLOGICAL TECHNIQUES 113 

Field Study and Optical Microscopy 114 

A critical starting point for any palaeobiological investigation remains a comprehensive field 115 

study and the preparation of candidate material for optical microscopy. As a preliminary 116 

investigation, this can provide important palaeoenvironmental context, and enable the 117 

quantification of the richness, morphology, and spatial distribution of fossils, plus the 118 

depositional setting and taphonomic history of the fossil deposit. 119 

 120 

Initially, a detailed sedimentological and stratigraphic study should be made of the 121 

fossiliferous rocks, and those associated with them, to permit accurate palaeoenvironmental, 122 

metamorphic, and tectonic interpretation. Such a study will provide regional, local, and fine 123 

scale information pertaining to the location, type, and energy of the environment of 124 

deposition, as well as any subsequent chemical or structural changes that may have taken 125 

place since lithification. Fine scale field observations will also permit the identification of 126 

candidate fossiliferous material. This may be related to specific preservational mineralogies, 127 

such as cherts (e.g. ~1900 Ma Gunflint Formation; Barghoorn & Tyler 1965) or phosphates 128 

(e.g. ~600 Ma Doushantuo Formation; She et al. 2013), or be found in association with 129 

macroscopic fossil structures including siliceous and phosphatic stromatolites (e.g. ~1900 Ma 130 

Belcher Supergroup; Hofmann 1976) and microbially induced sedimentary structures (e.g. 131 



~1000 Ma Diabaig Formation; Callow et al. 2011). Collection and documentation of 132 

candidate material should be methodical, and include GPS localities, orientation data and 133 

specific relationships to larger-scale structures. 134 

 135 

From the collected samples, polished, uncovered (which are more useful than covered for 136 

subsequent techniques) petrographic thin sections can be prepared for analysis using optical 137 

microscopy. Ideally, thin sections should be prepared both perpendicular and parallel to the 138 

bedding direction in order to capture the full spatial distribution of microscopic fossils. While 139 

sections 30 μm thick are required for mineral identification using cross-polarized light, the 140 

detection of fossil material may be facilitated by the use of sections up to ~150 μm-thick, 141 

provided the encasing medium is sufficiently light-coloured and free of dark impurities. This 142 

increases the chances of capturing entire cellular material and in-situ relationships between 143 

different fossil taxa. 144 

 145 

The primary purpose of optical microscopy is to locate and identify fossil material, and to 146 

document its spatial distribution and relationship with non-biological minerals. For the 147 

majority of Proterozoic carbonaceous fossil deposits, examination and imaging at all 148 

magnifications up to 1000x is needed to provide a complete context. This can allow the 149 

observation of fine structural details up to ~0.2 μm across, but note at highest resolution oil 150 

immersion is required to increase clarity, which may be detrimental to some subsequent 151 

techniques. The position of fossil material can be identified and recorded for future reference 152 

using standard graticules, When fossil material is preserved with some degree of three-153 

dimensionality, focusing through the thickness of the slide can reveal its shape, organization, 154 

and extent. A range of different photomicrography suites are now available for capturing 155 

images of such samples (e.g., Synchroscopy Auto-Montage as demonstrated by Brasier et al. 156 



2005). Many packages contain algorithms for stacking focused images from different depths 157 

within a section to produce a single, focused image, or for stitching together images of 158 

adjacent fields of view to produce a high-resolution ‘map’ of a thin section.  159 

 160 

Using a variety of optical micrographic tools, preliminary identification and quantification of 161 

fossil material may be carried out, larger-scale spatial relationships determined, and candidate 162 

fossils selected for further analysis. This work is vital for the initial study of a fossil deposit 163 

but the intrinsic limitations of this approach preclude its use for further, finer-scale analyses. 164 

Furthermore, certain media may be unsuitable for investigation by optical microscopy. Dark 165 

coloured material, or enclosing media with many impurities, for example, may mask fossil 166 

details and reduce their visibility, especially through thick sections. Larger microfossils may 167 

be cross cut by the sectioning process, limiting interpretation. Another limitation is that the 168 

identification of chemical constituents of samples is limited to that which can be determined 169 

by standard petrographic methods, and may not be sufficient for fine-grained or finely-170 

crystalline material. Since carbonaceous fossils are frequently dark-coloured, optical analyses 171 

will also only be able to resolve their surface shape and structure, with the fossils themselves 172 

masking any underlying ultrastructure or interior features. Thus, for a better understanding of 173 

both fossil material and its preservational medium, more versatile high-spatial-resolution 174 

techniques are required.  175 

 176 

Non-destructive moderate to high spatial resolution techniques 177 

Non-destructive techniques are here classified as those which can be applied to a standard 178 

geological thin section, rock chip or rock hand sample with minimal further sample 179 

preparation and do not consume or alter the specimen of interest during the analysis. Hence, 180 



they can be applied to both type specimens (including holotypes on loan from museums) and 181 

can be utilized as a precursor to more destructive techniques on newly discovered material. 182 

 183 

X-ray Computed Tomography (X-ray CT) 184 

X-ray CT maps the X-ray attenuation within a rotating sample. Data is captured as a series of 185 

projections that can then be reconstructed as two-dimensional slices and then three-186 

dimensional visualisations (see Kak & Slaney 2001; Cnudde & Boone 2013 for overviews). 187 

X-ray attenuation is dictated by factors such as elemental composition and density, hence X-188 

ray CT can often detect variations in the style of fossil preservation and mineralization, as 189 

well as building up 3D models of entire specimens (Conroy & Vannier 1984; Haubitz et al. 190 

1988; Sutton et al. 2001). The high resolution form of X-ray CT used for fossils is known as 191 

X-ray microtomography (μCT), which has been utilized in palaeobiology for almost two 192 

decades (Rowe et al. 2001; Sutton 2008). It is now routinely applied to Phanerozoic 193 

vertebrate and invertebrate fossils, ranging for example from echinoderms (Rahman and 194 

Zamora, 2009) to dinosaurs (Brasier et al. 2016, this volume), and from plants (Spencer et al. 195 

2013) to arthropods (Garwood & Sutton 2010). The study of microfossils using CT has 196 

become viable in recent years, with the use of synchrotron-based systems where more 197 

intense, monochromatic X-rays, can allow improved contrast and greater spatial resolution 198 

(Donoghue et al. 2006; Huldtgren et al. 2011). Recent years have also seen improvements in 199 

the spatial resolution of lab-based ‘micro-CT’ and ‘nano-CT’ systems where sub-μm 200 

resolutions are now possible (Hagadorn et al. 2006; Schiffbauer et al. 2012; Sutton et al. 201 

2014). 202 

 203 

Despite these technological advances, configuring the correct instrumental parameters for 204 

μCT scanning a given microfossil specimen is challenging, and some specimens will not be 205 



suited to μCT due to lack of X-ray attenuation contrast between specimen and matrix and/or 206 

presence of X-ray opaque minerals. In general, μCT is applied to small rock chips. It is not 207 

suited to geological thin sections because of their highly anisotopic nature, although thin 208 

sections can be cut down to a more isotropic shape if permitted by the owner, or fossils 209 

liberated using a micro-corer.  Elsewhere in this volume, Hickman-Lewis et al. (2016) 210 

provide several case studies of the μCT scanning of Precambrian microfossil bearing rocks 211 

using two lab-based CT scanners with spatial resolutions (minimum voxel sizes) of about 212 

5μm and 0.5μm respectively. They show that μCT can be a valuable tool to decode the 3D 213 

petrographic context of such biological material, for example, by highlighting potential 214 

organic grains and laminations, fractures within the matrix, assemblages of detrital heavy 215 

minerals, and replacement of silica by carbonate rhombs (which are known to reduce the 216 

quality of microfossil preservation). Detecting individual microfossils using lab-based CT 217 

remains challenging unless the preservation window is particularly favourable (e.g. pyritised 218 

microfossils in a silica matrix, see Hickman-Lewis et al. 2016, this volume). The use of a 219 

synchrotron-based CT (or lab-based nano-CT) system can improve matters by providing 220 

more intense X-rays and improved spatial resolution, but this requires more specialist sample 221 

preparation (e.g., micro-coring) to obtain sub-mm pieces of fossiliferous rock, meaning that it 222 

can no longer realistically be classified as a non-destructive technique, and could seldom be 223 

applied to holotype material. 224 

 225 

X-ray Spectroscopy 226 

A logical extension to examining the morphology of microfossils using X-ray 227 

microtomography is to investigate their chemistry using X-ray spectroscopy. A range of X-228 

ray techniques are available to characterize fossiliferous rocks, mostly performed on a 229 

synchrotron beamline (see Templeton & Knowles 2009; Fenter et al. 2002 for overviews), 230 



and utilising both hard X-rays (more penetrating with wavelengths of 1-20 angstroms and 231 

photon energies over about 5-10 keV) and soft X-rays (less penetrating with wavelengths of 232 

20-200 angstroms and photon energies below about 5 keV). X-ray fluorescence (XRF) 233 

mapping provides semi-quantitative element-specific maps over flexible spatial scales (μm to 234 

mm; e.g. Edwards et al. 2014). Near edge X-ray absorption fine structure (NEXAFS) and X-235 

ray absorption near edge structure (XANES) are spectroscopic techniques, using soft (low 236 

energy) and hard (high energy) X-rays respectively, that excite core electrons in an element 237 

(Templeton & Knowles 2009). The resulting spectra provide information on both the 238 

coordination chemistry and valence of the element of interest. Scanning Transmission X-ray 239 

microscopy (STXM) uses soft X-rays to obtain both spectral data and images of this spectral 240 

data (e.g., maps of the spatial distribution of specific elements, valence states, or functional 241 

groups) at the nm-scale, created by rastering samples through an X-ray beam at stepwise-242 

increasing incident X-ray energies to cover the absorption edges of the elements of interest 243 

(e.g., Lawrence et al. 2003). Although these types of analyses do not destroy the specimen, 244 

specialist sample preparation (e.g., micro-cored rock chips; doubly polished thin sections no 245 

more than about 100 μm thick) means that permission for holotype specimens to be analysed 246 

in this way is unlikely to be granted. Beam damage can also affect subsequent chemical 247 

analyses. 248 

 249 

In terms of Proterozoic microfossils, much of the interest in X-ray spectroscopy surrounds 250 

the chemical bonding of carbon. The energy resolution of NEXAFS/XANES is excellent 251 

(~0.1eV) so closely spaced peaks can be resolved. Hence, carbon bound, for example, in 252 

aromatic groups, aliphatic groups, ketones, peptides, carbonyls, carboxyls and carbonate can 253 

all be distinguished from one another (Bernard et al. 2007).  Such spectra may help 254 

characterise cellular versus extracellular organic components, while interfering signals from 255 



carbonate minerals can be subtracted. De Gregorio et al. (2009) applied this methodology to 256 

powders of organic material from the 1878 Ma Gunflint Formation, showing that 257 

polyaromatic carbon, carboxyl and phenol groups had all been preserved in this ancient 258 

kerogen. Similarly, the bonding characteristics of other elements common in organic material 259 

(e.g., S, N, P, O) may help to determine whether they are present as organic or inorganic 260 

forms in ancient fossiliferous rocks. For example, Lemelle et al. (2008) used XRF to quantify 261 

the amounts of sulfur within the cell walls of coccoid microfossils from the ~750 Ma Draken 262 

Formation, Svalbard, before using XANES to determine sulfur speciation. They showed that 263 

the sulfur was a reduced organic form most likely belonging to a thiophene-like compound. 264 

 265 

Confocal Laser Scanning Microscopy (CLSM) 266 

CLSM provides high-spatial-resolution morphological data (<100 nm is possible) permitting 267 

the visualisation of microfossils in three dimensions (see Sutton et al. 2014; Halbhuber & 268 

Konig 2003 for overviews). Under ideal conditions data collection from standard polished or 269 

unpolished geological thin sections is rapid and CLSM is able to resolve tiny morphological 270 

features that may be unclear or hidden when viewed under light microscopy, as well as 271 

giving a true 3D perspective to the distribution of microfossils (Schopf et al. 2006; Cavalazzi 272 

et al. 2011). However, natural samples are rarely ideal for the application of this technique. 273 

CLSM relies on the fact that organic material auto-fluoresces when excited by a laser of a 274 

specific wavelength. The system can accurately focus and scan at different depths within a 275 

microfossil specimen, and exclude the fluorescence from outside the plane of focus; 3D 276 

images are then built up combining data acquired from successive planes of focus (see Amos 277 

& White 2003). Hence, anything that interferes with the transmission or detection of this 278 

signal severely degrades the quality of the final images obtained. For example, specimens 279 

situated a long way below the surface of a thin section, or having thick opaque walls will not 280 



provide sharp CLSM images. Similarly a specimen surrounded by plentiful fluorescing 281 

organic detritus, or embedded in a mineral that internally reflects the fluorescence signal, 282 

may be problematic. The maturity of the organic material also affects the quality of the data, 283 

with the auto-fluorescence signal dissipating as the organic material becomes more 284 

geochemically mature and loses more of its heteroatoms (i.e. evolves towards the structure of 285 

graphite).  Hence, CLSM is of greatest use when applied to thin-walled organic microfossils, 286 

preserved in silica (and to a lesser extent phosphate), housed in rocks of low-metamorphic 287 

grade. In these cases significant insights into the three-dimensional morphology and 288 

taphonomic preservation of Proterozoic microfossils may be obtained. For example in the 289 

Neoproterozoic Buxa Formation, CLSM was able to demonstrate the three dimensional 290 

organisation of groups of filamentous microfossils (Schopf et al. 2008). In the 850 Ma Bitter 291 

Springs Formation and the 650 Ma Chichkan Formation notches, tears, grooves and surface 292 

ornamentation were all detected in microfossils using CLSM (Schopf et al. 2006), while in 293 

the ~580 Ma Doushantuo Formation CLSM revealed parts of fibrous tissues and cell walls 294 

within fossil alga that were not visible by other means (Chi et al. 2006). 295 

 296 

Laser Raman Microspectroscopy and Imagery 297 

Raman is a versatile, non-intrusive and non-destructive in situ technique. It can be used to 298 

identify the mineralogy of microfossils and their host rocks, and is particularly sensitive to 299 

the molecular structure and geochemical maturity of carbonaceous phases such as kerogen - 300 

the prime constituent of organic walled microfossils (see Beyssac et al. 2002 and Fries & 301 

Steele 2011 for details). In addition, when utilized in confocal imaging mode, Raman can 302 

provide 2D and 3D chemical and structural maps of microfossils at moderate spatial 303 

resolution (potentially < 1 μm). Raman can be applied to rock chips and standard uncovered 304 

geological thin sections. Data is acquired via laser excitation of the chemical bonds within the 305 



sample. This excitation produces characteristic spectra depending on the minerals and 306 

compounds present, and maps can be constructed of the spatial distribution of various 307 

spectral parameters, including the intensity of a given peak (also sometime referred to as a 308 

band), or ratios of two given peaks.  309 

 310 

For the field of Proterozoic palaeobiology, the peaks of interest are often associated with 311 

carbon. In perfectly crystalline graphite a single first order peak occurs at 1582 cm-1, 312 

attributed to stretching of the C-C bonds in basal graphite planes (known as the ‘G’ or 313 

‘graphite’ peak) (Jehlicka et al. 2003). Second order peaks occur at ~2695 cm-1 and 2735 cm-314 

1. Imperfectly crystallised graphitic carbons including kerogens have additional peaks at 315 

~1355 cm-1 (known as the ‘D1’ or ‘disordered’ peak) and ~1620 cm-1 (‘D2’; occurring as a 316 

shoulder to the ‘G’ peak), and a single broad second order peak around 2700 cm-1. The 317 

specific position, width and relative intensities of these peaks vary somewhat depending on 318 

the degree of ordering of the carbon, and these parameters have been characterised in carbon 319 

of varying metamorphic grade in an attempt to use Raman as an indicator of the antiquity of 320 

carbon in ancient rocks (Tice et al. 2004). This is by no means an exact science, since the 321 

starting composition of organic material in different metamorphic terrains, both 322 

geographically and temporally, may differ. Putative carbonaceous microfossils should, 323 

however, exhibit very similar Raman spectral features as other carbonaceous material in the 324 

same rock specimen because both should have undergone the same maturation processes. 325 

Raman spectra cannot be used to unequivocally determine the biogenicity of an ancient 326 

carbonaceous object because similar spectra to those of biogenic kerogens are seen in 327 

laboratory synthesised abiological disordered carbonaceous material (Pasteris & Wopenka 328 

2003). However, the co-occurrence of kerogenous composition with features that optically 329 



resemble cellular material provides promising preliminary data regarding biogenicity that can 330 

be further tested using higher spatial resolution techniques (see below). 331 

 332 

As with CLSM, the highest quality data is obtained from specimens close to the surface of a 333 

thin section, and it has been suggested that for viable 3D maps of kerogen to be produced, the 334 

entire specimen of interest should be no more than 6-8 μm below the surface (Marshall & 335 

Olcott Marshall 2013). The best data will come from specimens lying under translucent 336 

minerals such as quartz, ~1-5 μm below the surface of a thin section; microfossils associated 337 

with phases that fluoresce strongly under the laser excitation beam may not provide usable 338 

spectra. Care must also be taken not to confuse the carbon signature of interest with that 339 

produced by: (i) the polymer used to attach the thin section to the glass slide; (ii) any coating 340 

that may have been applied to the section during previous analyses; (iii) overlapping peaks in 341 

the vicinity of carbon peaks – of particular note here is the 1320 cm-1 peak of hematite 342 

(Marshall et al. 2011). The carbon spectrum can also be artificially modified by using too 343 

high a laser power, or by analyzing right at the surface of a thin section that has been polished 344 

(Fries & Steele 2011). Both of these should always be avoided. Raman can also be used to 345 

elucidate some structural information from the minerals that host putative microfossils. 346 

Several minerals produce Raman spectral peaks that vary in intensity depending on their 347 

crystallographic orientation relative to the incoming laser. This feature can be used, for 348 

example, to image the distribution of quartz crystallographic axes to see whether putative 349 

microfossil material occurs between grain boundaries, is enclosed by entire grains, or occurs 350 

in cracks (Fries & Steele 2011). 351 

 352 

Examples of Raman applied to Proterozoic microfossils include a study by Fries and Steele 353 

(2011) who mapped the carbon D/carbon G peak intensity ratio (an indicator of graphite 354 



domain size) to show micron-sized variation in the structure of kerogen within and around 355 

examples of Huroniospora from the 1878 Ma Gunflint Formation. This potentially reflects 356 

initial heterogeneities in the biological material. Also within the Gunflint Formation, Wacey 357 

et al. (2013) used Raman to demonstrate that Gunflintia microfossils were dominantly 358 

carbonaceous in composition, but were preserved as pyrite in microenvironments where 359 

anoxia had permitted pyrite formation via the metabolic activity of sulfate reducing bacteria. 360 

Raman has been used extensively by Schopf and colleagues to characterize Proterozoic 361 

microfossils (Schopf et al. 2005, 2008; Schopf & Kudryavtsev 2005, 2009), culminating in 362 

the Raman Index of Preservation (RIP). This correlates the geochemical maturity of the 363 

kerogen, the fidelity of microfossil preservation, H/C and N/C ratios of organic material, and 364 

the metamorphic grade of the rocks, and includes examples from 22 chert units ranging in 365 

age from 400 Ma to 2100 Ma (Schopf et al. 2005). 366 

 367 

Micro-Fourier Transform Infrared Spectroscopy (micro-FTIR) 368 

Micro-FTIR is a vibrational spectroscopy technique that provides complementary 369 

information to that obtained from organic material using Raman. In particular, it provides 370 

data pertaining to the functional groups attached to carbon chains and their bonding 371 

environment within organic material (Mayo et al. 2004; Dutta et al. 2013; Chen et al. 2015). 372 

Different peaks in an IR spectrum arise due to different vibrational behaviour in the bonds of 373 

groups such as CH2, CH3, C-N, C=O and others. FTIR can be applied non-destructively but 374 

requires doubly polished thin sections, and the main drawback is currently the limited spatial 375 

resolution obtainable, with recent studies reporting only a ~15 μm2 spot size in transmission 376 

mode (Qu et al. 2015). This is sufficient to characterize larger Proterozoic acritarchs in 377 

palynological extracts (Arouri et al. 1999; Marshall et al. 2005) and groups of smaller 378 

filamentous and coccoid microfossils (Igisu et al. 2009), but is insufficient to determine the 379 



difference between, for example, wall chemistry and internal chemistry of most Proterozoic 380 

organisms. The spatial resolution problem may be circumvented somewhat by using micro-381 

FTIR attached to a synchrotron beamline, where spot sizes of < 5μm have been achieved for 382 

some parts of the spectra (Bambery 2016). However, this may require more specialist, often 383 

extremely difficult, sample preparation (e.g. <20 μm thickness, unglued slice). 384 

 385 

Of particular interest are data from extant microorganisms suggesting that FTIR may provide 386 

‘domain specific’ information, whereby specific components (e.g., lipids) of different 387 

domains of life (i.e., prokaryote, eukaryote, and archaea) may possess characteristic ratios of 388 

CH2 and CH3 groups in their IR spectra (Igisu et al. 2009, 2012). This has led to FTIR being 389 

used in Proterozoic assemblages in an attempt to decode the phylogenetic affinity of 390 

microfossils (Igisu et al. 2009, 2014). The study of Igisu et al. (2009) analysed microfossils 391 

in their mineral matrix and thus concentrated on the CHx (2500-3100 cm-1) region of the 392 

spectrum. This type of research is very much in its infancy and a better understanding, both 393 

of the changes in CH2/CH3 during postmortem alteration processes, and of the spectral 394 

parameters of differentiated cells in multicellular organisms, is required in order for these 395 

data to become a robust domain level signature. Insufficient data currently exist for 396 

comparisons of organic material from different terranes and of different metamorphic grades 397 

using this technique. Nevertheless, FTIR analyses from the 850 Ma Bitter Springs Formation, 398 

Australia, and 1878 Ma Gunflint Formation, Canada, suggest that organisms in these fossil 399 

assemblages belong to Bacteria rather than Archaea or Eukarya (Igisu et al. 2009). Likewise, 400 

combined FTIR and Raman data from the 1485 Ma Wumishan Formation, China (Qu et al. 401 

2015), suggests that the organic material here is derived from prokaryote cyanobacteria, and 402 

is characterised by a rather homogenous and low CH3/CH2. Finally, FTIR data from 403 

acritarchs from the ~575 Ma Tanana Formation, Australia, suggest that Tanarium are likely 404 



eukaryotic micro-algae but Leiosphaeridia may be Bacteria (Igisu et al. 2009, based on data 405 

presented in Marshall et al. 2005). 406 

 407 

Destructive high spatial resolution techniques 408 

Focused Ion Beam Milling and Scanning Electron Microscopy (FIB-SEM) 409 

SEM has traditionally been of limited use in characterizing Proterozoic microfossils in 410 

geological thin sections since the majority of microfossils are embedded within the thin 411 

section, and below the reach of this surface-based technique. SEM has, however, provided 412 

high spatial resolution morphological data from the surfaces of individual microfossils in acid 413 

etched rocks, or those extracted from their host rock using acid maceration. This has 414 

revealed, for example, delicate wall ultrastructure that could not be resolved under the light 415 

microscope (Javaux et al. 2004; Moczydlowska & Willman 2009; Agic et al. 2015).  416 

 417 

Recently, the use of SEM in Precambrian palaeobiology has been reinvigorated by a new 418 

generation of dual beam instrument, where the user has access to both a focused ion beam 419 

(FIB) and an electron beam (see Young & Moore, 2005 for overview). Thus, a highly 420 

focused beam of heavy ions (usually Ga+) can be used to sputter ions from the sample 421 

surface, essentially cutting into the sample with very high (nano-scale) precision (see Wirth 422 

2009 for details). The electron beam can be used to image the results. Additional detectors 423 

can be inserted to image backscattered electrons (BSE) as well as secondary ones, permit 424 

elemental analysis (using an energy dispersive X-ray spectroscopy (EDS) detector), or even 425 

phase detection and crystallographic mapping (using an electron backscatter diffraction 426 

(EBSD) detector). FIB milling can be used to cut into or through specific features in a thin 427 

section or rock chip, allowing the structure perpendicular to the surface to be better visualized 428 

(Westall et al. 2006). Furthermore, a number of sequential slices can be milled through an 429 



object, with images or other data acquired after each slice is milled. The latter is termed FIB-430 

SEM nano-tomography and permits the 3D reconstruction and visualisation of microfossils at 431 

very high spatial resolution (see Wacey et al. 2012 for details). The resolution attainable is 432 

essentially dictated by the size of the object to be analysed in 3D, plus the available time, 433 

although instrumental resolution limits may come into play for very small objects. Slice 434 

thicknesses are set by the user and can be smaller than 50 nm, however, for practical reasons 435 

100-200 nm slices have commonly been used. Proterozoic microfossils have been visualized 436 

using FIB-SEM nano-tomography from the 1878 Ma Gunflint Formation (Wacey et al. 2012, 437 

2013), ~1700 Ma Ruyang Group (Schiffbauer & Xiao 2009; Pang et al. 2013) and ~1000 Ma 438 

Torridon Group (see below). In the former, FIB-SEM data were key in revealing 439 

heterotrophic bacteria attached to, and fossilized in the act of decomposing, larger organisms 440 

(Wacey et al. 2013). Drawbacks of FIB-SEM nano-tomography include its destructive nature 441 

– the analysed specimen is completely consumed and only a digital record of its existence 442 

will remain – plus the restrictive timescales involved in both analyzing objects larger than 443 

about 30 μm in diameter (24 hours or more beam-time required), and in processing and 444 

reconstructing the data. A number of options exist for processing and visualizing such data 445 

(and data from other 3D techniques such as X-ray CT), ranging from freeware products such 446 

as SPIERS (serial palaeontological image editing and rendering system; Sutton et al. 2012), 447 

Drishti (Limaye 2012), and Blender (Garwood & Dunlop 2014) to more advanced (but 448 

expensive) products such as AVIZO (www.vsg3d.com). The choice of software will depend 449 

on budget, time constraints, quality of the raw data, and whether one is interested in 450 

producing just images, or images plus movies (see Sutton et al. 2014 for an overview of the 451 

options). 452 

 453 

Transmission Electron Microscopy (TEM) 454 



TEM covers a number of separate sub-techniques that can all be performed in a transmission 455 

electron microscope. Most simply, TEM is a very high spatial resolution imaging technique, 456 

capable of resolving objects separated by as little as ~0.1 nm. A standard TEM image results 457 

from variable electron scattering as a beam of electrons is accelerated at high voltage through 458 

an ultrathin (ideally ≤100 nm) sample; a true high-resolution image (HRTEM) is a phase 459 

contrast image with atomic-scale resolution, allowing the visualisation of the arrangement of 460 

atoms within a sample (Wiliams & Carter 2009). This provides information about the 461 

crystallinity of a sample, its lattice structure and any defects it may have.  462 

 463 

Sample preparation is key to obtaining high quality data, and in this regard FIB has 464 

revolutionized the use of TEM in Precambrian palaeobiology. Before the advent of FIB, 465 

sample preparation for TEM involved either grinding up a rock, extracting organic material 466 

by acid maceration, or using ion polishing, meaning that the context of the putative 467 

microfossils was often lost, it was very difficult to obtain samples of uniform (and ultrathin) 468 

thickness, and contamination was widespread. FIB-milling now allows individual 469 

microfossils, or even specific parts of individual microfossils to be targeted with great 470 

accuracy in their host thin section, then ultrathin wafers (typically about 15 μm x 10 μm x 471 

100 nm) can be extracted from below the surface of the thin section (hence eliminating the 472 

possibility of contamination) and mounted on a TEM grid (see Wacey et al. 2012 for an 473 

overview). 474 

 475 

In addition to morphology, a number of other parameters can also be analysed on many 476 

TEMs, including elemental composition, bonding and oxidation state, crystal structure 477 

(leading to mineral identification), and crystal orientation. The elemental composition of a 478 

sample can be determined at the nano-scale using either energy-dispersive X-ray 479 



spectroscopy (EDS) or by isolating and mapping specific energy windows from an electron 480 

energy loss spectroscopy (EELS) spectrum. The fine structure of peaks within an EELS 481 

spectrum can also be used to shed light on the bonding and oxidation state of the element of 482 

interest, for example distinguishing disordered carbon from graphite (Buseck et al. 1988), 483 

and Fe2+ from Fe3+(Calvert et al. 2005). For advanced crystallography and mineral 484 

identification, selected area electron diffraction (SAED) in the TEM provides quantitative 485 

information on the distances between atomic planes in crystalline materials, and permits the 486 

orientation of several grains of the same mineral to be compared to one another. 487 

 488 

In Proterozoic palaeobiology, TEM has been used for several decades with early images of 489 

microfossils extracted from their host rock in the ~850 Ma Bitter Springs Formation, 490 

Australia, shown in Oehler (1977). A number of studies have investigated the wall 491 

architecture of Proterozoic acritarchs in an attempt to decode their taxonomic affinities, 492 

because TEM can detect variations in electron density and texture of different layers within 493 

cell walls at nm-scale resolution. These include studies from: the ~575 Ma Tanana 494 

Formation, Australia (Arouri et al. 1999; Moczydlowska & Willman 2009) where recognition 495 

of a trilaminar sheath structure was part of a suite of evidence suggesting the microfossils 496 

were chlorophyte algae; the 650 Ma Chichkan Formation, Kazakhstan (Kempe et al. 2005) 497 

where TEM helped to elucidate the nanostructure of carbon particles making up the cell wall; 498 

and the ~1450 Ma Roper and Ruyang Groups of Australia and China respectively (Javaux et 499 

al. 2004) where at least four different types of wall ultrastructure suggested a greater 500 

diversity of eukaryote clades in these deposits than could have been recognised by standard 501 

optical techniques. TEM has also been used to investigate the interplay of microfossil walls 502 

with the minerals in which they have been preserved, with studies from the 1878 Ma Gunflint 503 

Formation showing how nano-grains of silica disrupt the carbonaceous walls of bacteria as 504 



they are fossilized (Moreau & Sharp 2004; Wacey et al. 2012), and data from the ~750 Ma 505 

Draken Formation, Svalbard, showing both the cell membrane and cytoplasm of the coccoid 506 

microfossil Myxococcoides embedded within nano-grains of silica (Foucher & Westall 2013). 507 

Finally, TEM data from the ~580 Ma Doushantuo Formation, China, helped to decode the 508 

relationships between preserved microfossils and the phosphate granules in which they are 509 

contained and suggested that phosphate precipitation was likely to have been microbially 510 

mediated (She et al. 2013). 511 

 512 

Secondary Ion Mass Spectrometry (SIMS) 513 

SIMS as applied to the field of Proterozoic palaeobiology is a surface analysis technique, 514 

whereby the elemental or isotopic composition of a sample can be determined at moderate to 515 

high spatial resolution and with great sensitivity (i.e. many elements can be detected even 516 

when present only at the parts-per-billion level). The surface of a sample is sputtered with an 517 

ion beam and the secondary ions ejected from the sample are collected and analysed using a 518 

mass spectrometer (see Ireland 1995 for details). Two different types of SIMS instruments 519 

are commonly used in in palaeobiological investigations:  520 

1) The large radius SIMS, used to accurately determine the stable isotope ratios of key 521 

biogenic elements (e.g., carbon, sulfur), plus ratios of radiogenic isotopes in order to date 522 

rock formations containing microfossils (see for example Stern et al. 2009; Williford et al. 523 

2013; Farquhar et al. 2013). Such instruments can analyse objects as small as ~10-20 μm 524 

diameter and the isotopic data can have a precision better than 0.5 parts per thousand (‰). 525 

2) The NanoSIMS, which has a different geometry and is thus capable of element (ion) 526 

mapping with a lateral resolution down to ~50 nm (see Kilburn & Wacey 2015 for details). 527 

The NanoSIMS can also make accurate isotopic measurements from objects smaller than 5 528 

μm, albeit with poorer precision (generally >1 ‰) than the large radius SIMS.  529 



Both forms of SIMS can be applied to surface features in standard geological thin sections 530 

and rock chips, although some specialist sample preparation is needed in order that the 531 

sample and appropriate standards can be correctly mounted together within the instrument. 532 

This generally involves mounting pieces of thin sections or rock chip alongside analytical 533 

standards in resin discs. SIMS is partially destructive in that layers of surface material (as 534 

deep as ~200 nm during isotope analysis with large radius SIMS) are consumed during the 535 

analysis. Small specimens may be entirely consumed by the analysis, whereas larger 536 

specimens can be repolished post analysis to look like new! 537 

 538 

A number of Proterozoic microfossils have been analysed by SIMS in the last 15 years. 539 

House et al. (2000) were the first to determine the carbon isotope composition of individual 540 

microfossils using material from the ~850 Ma Bitter Springs and 1878 Ma Gunflint 541 

Formations, finding δ13C signatures (-21 to -45 ‰) consistent within specific metabolic 542 

pathways (namely the Calvin Cycle and acetyl-CoA). This work was recently refined by 543 

Williford et al. (2013) who analysed microfossils from four Proterozoic assemblages 544 

(Gunflint, Bitter Springs, plus ~650 Ma Chichkan Formation and ~740 Ma Min’yar 545 

Formation) with greater precision and reproducibility. They were able to show considerable 546 

variability of δ13C within individual assemblages that may reflect the preservation of original 547 

metabolic differences between different components of each biota, and also potential 548 

heterogeneities in molecular preservation in single microfossils. It must be noted at this stage 549 

that non-biological reactions are able to produce similar δ13C fractionations (McCollom & 550 

Seewald 2006), so a δ13C value must be supported by a definitive biological morphology in 551 

order to prove the biogenicity of ancient carbonaceous objects.  552 

 553 



SIMS has also been used to investigate metabolic pathways involving sulfur in Proterozoic 554 

organisms. Wacey et al. (2013) determined the δ34S composition of pyritised microfossils 555 

from the 1878 Ma Gunflint Formation, finding sulfur fractionations (δ34S = +7 to +22 ‰) 556 

consistent with pyrite formation via the activity of sulfate reducing bacteria in sulfate starved 557 

sediment porewaters. In the same study, Wacey et al. (2013) used NanoSIMS to map the 558 

residual carbon and nitrogen associated with the pyritised microfossils and found 559 

reproducible differences in the preservation of organic material between two different types 560 

of organism (Huroniospora versus Gunflintia). Gunflintia was poorly preserved which 561 

suggests that it was more prone to decay by heterotrophic bacteria (that also mediated pyrite 562 

formation) than Huroniospora. NanoSIMS mapping of organic microfossils in the ~850 Ma 563 

Bitter Springs Formation has shown the co-occurrence of carbon, nitrogen and sulfur in such 564 

microstructures (Oehler et al. 2006) and attempts have been made to quantify the ratios of 565 

nitrogen and carbon (N/C) to distinguish different components of microbial communities, or 566 

to distinguish biology from co-occurring abiotic organic material (Oehler et al. 2009; 567 

Thomen et al. 2014) although the SIMS community has yet to agree upon the robustness of 568 

these methods. 569 

 570 

A PROTEROZOIC CASE STUDY: THE 1200-1000 MA TORRIDONIAN LAKES 571 

The effectiveness of combining multiple high-spatial-resolution, in-situ techniques is 572 

demonstrated here using a case study of microfossils from the 1200-1000 Ma Torridonian 573 

Supergroup of Northwest Scotland. Not all techniques described above were applied to the 574 

Torridonian material in order to avoid duplication of data and in order to keep costs and 575 

processing time to reasonable levels. For example, we felt in this case that higher quality 3D 576 

morphological data could be acquired using FIB-SEM rather than CLSM, and that detailed 577 

chemistry could be better (and more cheaply) determined using TEM rather than X-ray 578 



spectroscopy. Below we present data obtained from light microscopy, SEM, μCT, laser 579 

Raman, NanoSIMS, TEM and FIB-SEM nano-tomography which together provide a detailed 580 

characterisation of a number of components of the Torridonian biota. 581 

 582 

Methods 583 

Optical microscopy 584 

Polished and uncovered petrographic thin sections of 30 μm and 100 μm thickness were 585 

examined under Nikon Optiphot-Pol and Nikon Optiphot-2 microscopes with 4x, 10x, 20x, 586 

40x and 100x (oil immersion) lenses at the Department of Earth Sciences, University of 587 

Oxford, and with a Leica DM2500M microscope with 4x, 10x, 20x and 50x lenses at the 588 

Centre for Microscopy Characterisation and Analysis (CMCA), The University of Western 589 

Australia. Images were captured using Synchroscopy imaging software (Acquis and Auto-590 

montage) at Oxford, and using Toupview imaging software at CMCA. Post processing, for 591 

example colouring of cells in Figures 2 and 3, was carried out in Adobe Photoshop (GIMP is 592 

an open source alternative). 593 

 594 

SEM analysis of palynological specimens 595 

Palynological samples were prepared at the Department of Animal and Plant Sciences, 596 

University of Sheffield, using conventional acid maceration techniques (Grey 1999). 597 

Following HCl-HF-HCl acid maceration, the residues were sieved using a 10 μm mesh. They 598 

were then treated to a heavy liquid separation using zinc chloride, followed by further sieving 599 

at 10 μm. The organic residues were mounted directly onto glass slides using epoxy resin. 600 

SEM imaging was carried out using a JEOL JSM-840A SEM located at the Department of 601 

Earth Sciences, University of Oxford. 602 

 603 



X-ray μCT 604 

CT scans were performed at the Manchester X-ray Imaging Facility using: a Nikon Metris 605 

225/320 kV X-ray CT system in a customized bay (tungsten reflection target; current/voltage 606 

of 130µA/80kV; no filtration; 3142 projections of 708 ms exposure collected with a 2000 × 607 

2000 detector; reconstructed dataset 5.1µm voxels); and a Zeiss Xradia Versa 520 (standard 608 

transmission target; current/voltage of 62µA/160kV; standard in-built, high energy 2 Zeiss 609 

filter; 4x optical magnification, 501–1001 projections of exposures between 0.5 and 2 610 

seconds, collected with 4x binning using a 2000 x 2000 detector; reconstructed datasets with 611 

1–2µm voxel size). Additional propagation-based phase-contrast scans were performed at the 612 

TOMCAT beamline of the Swiss Light Source (Paul Scherrer Institut, Villigen, Switzerland; 613 

1001 projections of 700ms exposure; 37 KeV monochromatic beam; 4x objective; a LAG:Ce 614 

100μm scintillator; reconstructions based on both attenuation and phase used to create 615 

datasets with 1.625μm voxels). Datasets were reconstructed using the SPIERS software suite 616 

(Sutton et al. 2012) following the methods of Garwood et al. (2012), and Drishti (Limaye 617 

2012) following the methods of Streng et al. (in press). 618 

 619 

Laser Raman 620 

Laser Raman analyses were carried out at the University of Bergen using a Horiba LabRAM 621 

HR800 integrated confocal Raman system and LabSpec5 acquisition and analysis software. 622 

Samples were standard uncovered geological thin sections allowing optical and chemical 623 

maps to be superimposed. All analyses were carried out using a 514.5 nm laser, 100 μm 624 

confocal hole, 1800 grating and 50x objective lens. The laser was focused at least 1 μm 625 

below the surface of the thin sections to avoid surface polishing effects. For mineral 626 

identification from Raman spectra, dual acquisitions were taken from each analysis point, 627 



each with an acquisition time of 4 s. Raman maps were acquired with a 1.5 μm spatial 628 

resolution. 629 

 630 

TEM of FIB-milled wafers 631 

TEM wafers were prepared using two dual-beam FIB system (FEI Nova NanoLab) at the 632 

Electron Microscopy Unit (EMU) of the University of New South Wales (UNSW), and 633 

Adelaide Microscopy at the University of Adelaide. Electron beam imaging was used to 634 

identify microfossils of interest in standard polished thin sections coated with c. 30 nm of 635 

gold, allowing site-specific TEM samples to be prepared. The TEM sections were prepared 636 

by a series of steps involving different Ga+ ion beam energies and currents (see Wacey et al. 637 

2012), resulting in ultrathin wafers of c. 100 nm thickness. These TEM wafers were either 638 

attached to Omniprobe copper TEM holders or deposited on continuous-carbon copper TEM 639 

grids. TEM data were obtained using a FEI Titan G2 80-200 TEM/STEM with ChemiSTEM 640 

Technology operating at 200 kV, plus a JEOL 2100 LaB6 TEM operating at 200 kV equipped 641 

with a Gatan Orius CCD camera and Tridiem energy filter. Both instruments are located in 642 

CMCA. 643 

 644 

NanoSIMS 645 

Ion mapping was performed using a CAMECA NanoSIMS 50 at CMCA, with instrument 646 

parameters optimized as described in Wacey et al. (2011). Analysis areas were between 12 x 647 

12 μm and 25 x 25 μm with a resolution of 256 x 256 pixels (so each pixel measures between 648 

47 nm and 98 nm), with a dwell time of 5-15 ms per pixel, and a primary beam current of 649 

~2.5 pA. Secondary ions mapped were 24C2
-, 12C14N-, 28Si-, 32S-, and 56Fe16O-, and charge 650 

compensation was achieved by using the electron flood gun. 651 

 652 



FIB-SEM nano-tomography 653 

Sequential FIB milling and SEM imaging was carried out on a Zeiss Auriga Crossbeam 654 

instrument at the Electron Microscopy Unit of UNSW, using the method of Wacey et al. 655 

(2012, 2014). Key parameters were adjusted to suit the specific size and nature of each 656 

sample of interest. In summary: initial trenches were milled using a 9 nA beam current; the 657 

imaged face was cleaned using a 2 nA beam current; ion beam current for slice milling was 2 658 

nA; electron beam voltage for imaging varied between about 800 V and 5 kV; step sizes 659 

between slices were between 75 nm and 200 nm; and image capture times were around 30 660 

seconds per frame. In some cases, dedicated trenches were milled in order to obtain elemental 661 

(EDS) maps of microfossils that were not subsequently milled for 3D analysis. 662 

 663 

In order to visualize the data, FIB-SEM images were stacked, aligned and cropped using 664 

SPIERSalign (Sutton et al. 2012). The resultant stacks were imported into SPIERSedit 665 

(Sutton et al. 2012) where a number of masks were added to segment individual components 666 

(e.g., cell walls, cell contents) of the microfossil assemblage. The resulting files were 667 

exported and loaded into SPIERSview (Sutton et al. 2012) to generate the 3D surface 668 

renderings. 669 

 670 

Results 671 

Critically, before the Torridonian microfossils were subjected to the high-spatial-resolution, 672 

in situ microanalysis described here, multiple seasons of fieldwork had been completed in 673 

order to gain a firm understanding of the geological context of the host rocks. In addition, 674 

over 100 thin sections and hand samples had been studied in order to understand the 675 

depositional context and post-depositional history of the rocks, and to isolate only the very 676 

best and most promising samples for further study. A large amount of optical microscopy 677 



work had also been completed in order to form an estimate of the morphological diversity of 678 

the biota. This work has all been peer reviewed and published (Strother et al. 2011; Callow et 679 

al. 2011; Battison & Brasier 2012; Strother & Wellman, 2015) thus giving a firm platform on 680 

which to build with this high-resolution work. A summary of some of the most common 681 

components of the Torridonian biota as observed by optical microscopy is given in Figure 1 682 

for reference. 683 

 684 

SEM data 685 

As may be expected, the range of morphologies visible in SEM analysis (Fig. 2) is broadly 686 

comparable to those observed within thin sections of the phosphate (Fig.1, plus Battison & 687 

Brasier 2012). Many simple vesicles and tubular morphotypes are observed, with SEM 688 

imaging affording enhanced resolution of their shape and wall structure.  In particular, 689 

differences in the physical responses of structures to compression hint at differences in cell 690 

wall architecture.  Two principal wall responses are observed. Thicker walled (wall at least 1 691 

μm thick) specimens accommodate flattening with broad rounded velvet-like folds, or large 692 

creases (Fig. 2a). In contrast, thin-walled vesicles (<0.5 μm) accommodate compression with 693 

fine wrinkles irregularly distributed across the surface, and are apparently more prone to 694 

small tears (Fig. 2b). The flattening of these walls during preparation does not permit 695 

resolution of any ultrastructural lamination, but synthesis of taphonomic response and wall 696 

thickness may be used to enhance interpretation of microfossils studied by optical 697 

microscopy.    698 

 699 

A number of unique forms of microfossils are also observed in SEM.  This is likely due to the 700 

processing of larger quantities of material during preparation by acid maceration, as well as 701 

the enhanced resolution afforded by SEM imaging.  Of note are two morphotypes, the first 702 



(Fig. 2c) comprising a vesicle around 50 μm in diameter, ornamented with regular pits 703 

around 10 μm across, with each pit possessing a raised `collar' approximately 2 μm wide and 704 

2 μm high.  This form bears some resemblance to the basal vesicle of Cheilofilum 705 

hysteriopsis Butterfield (see Butterfield, 2005 fig. 8 and fig. 10) or the freshwater green 706 

microalga Botryococcus braunii (see Vandenbroucke & Largeau 2007 plate e) in its 707 

possession of flanged openings. The second form (Fig. 2d) is a spherical hollow vesicle 708 

around 20 μm in diameter, with a spongy textured wall, and irregularly distributed, rounded 709 

or sub circular holes ~1-3 μm across. This morphotype is particularly notable for its retention 710 

of three-dimensional structure following maceration, indicating significant rigidity of the 711 

wall. In addition, distributed abundantly amongst the structurally distinguishable vesicles and 712 

sheaths, is non-vesicular membranous organic matter, with an irregularly pustulate and pitted 713 

texture, and an amorphous architecture. The size and nature of this material is likened to the 714 

amorphous extra-polymeric substances (EPS) secreted by mat-forming organisms in modern 715 

microbial ecosystems (cf. Pacton et al. 2007), but could also be amorphous kerogen.  This 716 

material is occasionally seen contained within thin sections as a light-walled membrane, but 717 

its texture and extent is clearer under SEM analysis. 718 

 719 

Of particular note, amongst the vesicles, sheaths and putative EPS are small coccoid or 720 

baccilate forms seen to be colonizing, to varying degrees, some of the larger fossil structures. 721 

These are associated with pits within those larger structures, and are apparently embedded 722 

within a membrane that links them to the host fossil (Fig. 3).  We interpret these forms as 723 

fossils of heterotrophic bacteria preserved feeding on the larger Torridonian microbial flora, 724 

and this interpretation reinforces observations made previously using light microscopy (see 725 

Battison and Brasier, 2012, fig.9, where evidence for heterotrophy includes roughly circular 726 



holes in large microfossil vesicles and inferred clumps of heterotrophic bacteria 727 

pseudomorphing decayed vesicles). 728 

 729 

X-ray μCT data 730 

Microtomography was explored as a method to investigate the petrographic context of 731 

cellular material and was also tested in order to determine whether individual microfossils 732 

could be detected and their 3D morphology characterized. Scans of rock chips from the 733 

Cailleach Head Formation using a Nikon Metris 225/320 kV X-ray CT system with 5.1 μm 734 

voxels revealed phosphate nodules as a slightly denser phase that could be distinguished from 735 

the surrounding matrix sediment (Fig 4a, purple). It also suggested that phosphate was 736 

present in small quantities close to, but exterior to the main nodule. Rounded concentrations 737 

of a very dense phase, most likely to be an iron rich mineral such as pyrite or iron oxide, were 738 

shown to be present both within and outside the nodule (Fig. 4a, gold). Hence, CT could be 739 

employed in future investigations as a pre-screen of rock fragments in order to determine the 740 

best position within the rock to cut thin sections. Within the phosphate nodules, the Nikon CT 741 

scans detected phases of lower density that may be organic microfossils. However, the spatial 742 

resolution of this instrument was insufficient to determine if these lower density objects were 743 

indeed microfossils or simply lower density sediment grains (e.g. quartz) scattered through 744 

the phosphate nodules. Higher resolution scans of a different rock chip (with 1.625 μm 745 

voxels) conducted at the Swiss Light Source demonstrate a complex sedimentary texture - 746 

here both phosphate and other dense phases are present in the form of evenly spaced 747 

rounded- to angular- fragments within the scanned rock chips (Fig. 4b), with no evidence of 748 

well-formed nodules of phosphate. The lack of evidence for nodules suggest that this rock 749 

chip would not be a promising target for further investigation of microfossils.  750 

 751 



CT scans of a sub-portion of the sample examined in the Nikon instrument, performed using a 752 

Zeiss Xradia Versa 520 with voxels of c. 1.5 µm detected a small number of low density 753 

objects that strongly resemble microfossils observed in thin sections (Fig. 4c-d, f-g). These 754 

objects are analogous to some of the largest and darkest-walled vesicles seen in thin sections 755 

(Fig. 4e, h) and CT permits their viewing from multiple orientations in 3D space. These 756 

putative fossils are also frequently found close to the very high density phases (presumably 757 

iron oxide or pyrite). The combined evidence suggests that μCT at this resolution is only 758 

capable of detecting the largest and thickest-walled components of the Torridonian biota. We 759 

also suggest that the increased density contrast when such fossils occur in close proximity to 760 

iron oxide or pyrite aids detection by CT. The remaining components of the biota (e.g. 761 

examples shown in Fig. 1) are essentially invisible on X-ray CT scans conducted at these 762 

resolutions. The biggest challenge for future work will be identifying workflows to isolate 763 

known microfossils for future scanning.  764 

 765 

Raman data 766 

Raman data inform upon the dominant mineralogy of the Torridonian microfossils and their 767 

surrounding matrix, plus the structure and thermal history of any organic carbon present. 768 

Raman maps from the Cailleach Head Formation (Fig. 5a-c) demonstrate that the 769 

microfossils are indeed carbonaceous (Fig. 5b) and that the dominant fossilizing phase is 770 

apatite (Fig. 5c). Raman also shows that intracellular inclusions (Fig. 5a arrows), common in 771 

many of the spheroidal fossils from this formation, are also carbonaceous in composition. 772 

Hence, these inclusions likely represent plasmolysed (shrunken) cell contents or, in some 773 

cases, could represent a fossilised cell nucleus. Raman spectrum in the first order region of 774 

carbon, show the two main bands (D1 at about 1350 cm-1 and G at about 1600 cm-1) 775 

characteristic of disordered carbonaceous material. The D1 band is very broad (full width at 776 



half peak maximum (FWHM) of ~120 cm
-1

) with a shoulder at its low wavenumber side. 777 

This shoulder is caused by a small band at ~1150 cm
-1 

which is only observed in very 778 

disordered carbonaceous material (Marshall et al. 2005). The G band appears to have been 779 

shifted considerably from its value in crystalline graphite (1582 cm
-1

) to a value of ~1610 cm
-

780 

1
. This reflects an overlap of the G band with a well-developed disorder band (D2) at ~1620 781 

cm
-1

.
 
The spectrum indicates that the carbonaceous material has very weak structural 782 

organization, has experienced little or no metamorphism (cf. Wopenka & Pasteris 1993), and 783 

is consistent with previously suggested maximum heating of only ~100 °C (Stewart & Parker 784 

1979). 785 

 786 

Not all microfossils are preserved purely as carbon. In the Stoer Group, Raman reveals that 787 

significant portions of microfossil walls have been pyritised, although some carbonaceous 788 

signal remains (Fig. 5d-f). The matrix mineralogy is also different here, with typical phases 789 

including calcite and albitic feldspar (Fig. 5g-h). These data indicate that different suites of 790 

lakes within the Torridonian had different chemistries, with those of the Stoer Group being 791 

sulphate-rich and phosphate-poor compared to those of the Cailleach Head and Diabaig 792 

Formations (see Parnell et al. 2016, this volume, for further details on contrasting fossil 793 

preservation in these lakes). 794 

 795 

NanoSIMS data 796 

NanoSIMS was used as an additional tool to determine whether the microfossils were 797 

composed of carbonaceous material and then to determine if any additional elements of 798 

biological interest were preserved within their cell walls or intracellular space. NanoSIMS 799 

uniquely revealed significant (but not quantifiable) amounts of nitrogen and sulfur within 800 

cellular material from the Diabaig Formation (Fig. 6). These data were collected from FIB-801 



milled wafers and so the nitrogen and sulfur come from cell walls located below the surface 802 

of a thin section; this negates the possibility that these biological signals come from surface 803 

contamination and provides an improvement on previous NanoSIMS methodology where 804 

such ion mapping was performed on surface features (e.g. Oehler et al. 2006, 2009). The co-805 

occurrence of C, N and S in microstructures that have cellular morphology is strong evidence 806 

of the biogenicity of such structures; while this is less relevant to the Torridonian material 807 

whose biogenicity is well accepted, it is a very useful tool for the investigation of older 808 

and/or more controversial fossil material. Building up a database of the C, N and S 809 

concentrations of different types of organic material may also be useful in the future to help 810 

determine if different components of cells (i.e. wall, membrane, nucleus, cytoplasm) can be 811 

preserved in exceptional circumstances. NanoSIMS also revealed the nature of some non-812 

carbonaceous intracellular inclusions within the Diabaig Formation; in optical microscopy 813 

these inclusions are ruby red in colour (Fig. 6a), and NanoSIMS shows that they are iron 814 

oxides (Fig. 6e-f) and at least some occur in direct contact with the inner cell wall. These 815 

inclusions are rare, found in <1% of Torridonian microfossils, but may indicate a unique 816 

intracellular chemistry in this small proportion of specimens. 817 

 818 

TEM data 819 

TEM data reveal the chemistry of the fossilizing mineral phases and the ultrastructure of the 820 

microfossils at a spatial scale (nm) unattainable by any other technique. For example, 821 

ChemiSTEM (STEM-EDS) elemental mapping combined with selected area electron 822 

diffraction has shown that phosphate is not necessarily the dominant mineral responsible for 823 

exceptional microfossil preservation in the Cailleach Head and Diabaig Formations (cf. 824 

Raman and optical data). In fact, the minerals immediately adjacent to most vesicle walls are 825 

Fe-rich clay minerals of the chlorite group or K-rich clay minerals approximating illite (Fig. 826 



7; see Wacey et al. 2014 for details on clay mineral identification); phosphate only dominates 827 

at some distance (tens to hundreds of nm) away from the cellular material.  The interior of 828 

many microfossils are also filled with K-rich clay minerals (Fig. 7), although phosphate 829 

grains are also common in many cell interiors (e.g., Wacey et al. 2014, fig. 8). STEM-EDS in 830 

the TEM detects small C and F peaks in the phosphate spectra confirming that the phosphate 831 

is the common low temperature form often associated with fossils, francolite (carbonate 832 

fluorapatite).  833 

 834 

TEM imaging reveals sub-components of microfossil walls that were not previously 835 

recognized. In many cases a presumed single, thick vesicle wall is shown to comprise 836 

multiple components. These can include a thicker inner wall sitting within a thinner outer 837 

wall, perhaps suggesting a cyst housed within a vegetative cell, or even more complex 838 

arrangements of up to four distinct layers within a ‘wall zone’ (Fig. 7). Such arrangements 839 

are too complex for simple prokaryote cells. Hence, this strongly suggests a eukaryotic 840 

component to the biota. These complex layered walls are also preserved in clay minerals. 841 

Hence, the combined data suggest that the fidelity of microfossil preservation may be 842 

enhanced by early precipitation of clay minerals, and that microfossil preservation in clay 843 

minerals may be of even higher quality than in phosphate. 844 

 845 

FIB-SEM data 846 

Two types of data were acquired using FIB-SEM, chemical and 3D morphological. Chemical 847 

data were acquired by simply slicing into a microfossil using a FIB and then analyzing the 848 

chemistry of a cross section through the microfossil using SEM-EDS. This provided similar 849 

data to STEM-EDS in the TEM but at a more flexible spatial scale (i.e. could be applied to 850 

larger fossils, albeit at lower spatial resolution). These data reinforced those acquired using 851 



TEM, showing that in fossils with complex walls (interpreted as eukaryotes) clay minerals 852 

occurred in direct contact with microfossil walls, in between multiple walls, and in 853 

microfossil interiors, while calcium phosphate tended to occur exterior to the fossil (Fig. 8). 854 

In simpler prokaryote fossils, the pattern was less defined, with phosphate mixed with clay 855 

minerals typically occurring both exterior and interior to the cell (Fig. 9a-b).  856 

 857 

Morphological data in three dimensions were acquired using FIB-SEM nano-tomography 858 

whereby sequential FIB slicing was followed by imaging using the SEM (see methods 859 

above). This provided an excellent visualization of cellular material located below the surface 860 

of the thin section (Fig. 9b) that would otherwise have been hidden by overlying fossil 861 

material (Fig. 9a). In addition, individual cells and cell contents could be visualized from 862 

multiple orientations in 3D space (Fig. 9c-f). This is particularly useful for accurately 863 

locating the position of organic intracellular inclusions (Fig. 9c-f). In the example presented 864 

here these inclusions are most likely shrunken remnants of the cytoplasm of simple 865 

prokaryote cells, but in future it may be possible to detect the remnants of eukaryotic nuclei 866 

or organelles, if preserved using such methods. 867 

 868 

CONCLUSIONS 869 

Here we have provided an overview of the types of high-resolution techniques currently 870 

available to those interested in characterizing Proterozoic microfossils and their associated 871 

minerals and fabrics. Techniques have been classified either as non-destructive, hence 872 

applicable to all material including holotypes, or destructive, hence applicable in cases where 873 

conservation of the specimen is not a requirement. Non-destructive techniques include laser 874 

Raman, CLSM, SEM, infrared spectroscopy, X-ray CT and X-ray spectroscopy, although to 875 

obtain the highest spatial resolution data using the latter two methods, specialized (and partly 876 



destructive) sample preparation is required. Destructive techniques include SIMS where the 877 

surface layers of a microfossil are sputtered away during analysis, TEM where an ultrathin 878 

slice must be extracted from the microfossil, and FIB-SEM nano-tomography which 879 

consumes the entire specimen during analysis.  880 

 881 

Maximum information is gained by the consilience of multiple approaches to a microfossil 882 

assemblage, but in reality there will be some tradeoff between time and budget constraints, 883 

efforts to conserve the best specimens, and the spatial resolution required. The destructive 884 

techniques of TEM and FIB-SEM provide the greatest spatial resolution while SIMS 885 

uniquely provides isotopic data. A sensible workflow would involve analysis of petrographic 886 

context and a significant number of representative specimens using non-destructive avenues, 887 

followed by focused analysis of fewer specimens by destructive means. 888 

 889 

A case study from the Torridonian of northwest Scotland, a microfossil assemblage whose 890 

importance has recently been highlighted by work led by Martin Brasier, demonstrated the 891 

additional insights that these high resolution techniques can offer. Microtomography 892 

provided a rapid way to determine the locality of phosphate nodules that house microfossils, 893 

and other petrological details. SEM revealed a number of new morphotyes not previously 894 

recognized in optical work and hinted at different taphonomic responses by different types of 895 

cell and vesicle walls. TEM revealed the fine scale distribution of mineral phases in and 896 

around cellular material, and showed that clay minerals played an important part in the 897 

exceptional preservation of this biota. Raman together with NanoSIMS revealed details of the 898 

organic material making up the cells, including its thermal maturity and biochemistry in 899 

terms of C, N and S content. Finally, FIB-SEM nano-tomography provided a detailed 3D 900 



view of a number of fossilized cells, including the location of the remains of organic cell 901 

contents. 902 
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FIGURE CAPTIONS 1323 

 1324 

Fig 1. Optical microscopy of Torridonian microfossils, demonstrating common morphotypes 1325 

present in the assemblage. (a) Highly degraded dark-walled vesicle. (b) Pristine dark-walled 1326 

vesicle. (c) Light-walled vesicle, potentially possessing a double wall. (d) Cluster of light-1327 

walled spheroidal unicells, most with a dark spot indicating potential preservation of cell 1328 

contents. (e) Cluster of light-walled cells with mutually adpressed cell walls. (f) Pair of 1329 

spheroidal unicells with very prominent dark inner sphere. (g) Partially decomposed 1330 

filamentous sheath. (h) Filamentous sheath with bulbous termination housing potential 1331 

spheroidal cell. (i) Colony of light-walled elliptical cells comparable to Eohalothece 1332 

lacustrina described by Strother & Wellman (2015). (j) Pair of cells that may have divided 1333 

shortly before fossilisation, each containing a dark spot. Scale bars are 20 μm for (a-i) and 10 1334 

μm for (j). 1335 

 1336 

Fig. 2. Torridonian microfossils imaged and analysed by SEM-SE, coloured for easier 1337 

interpretation.  (a) Large, thick-walled vesicle, showing `velvet-like' folds. (b) Smaller, thin-1338 

walled vesicles with a crinkled surface and finely irregular outline. (c) Vesicle with large 1339 

hemispherical pits bounded by raised rims or `collars'. (d) Subspherical rigid vesicle retaining 1340 

a 3D structure, and bearing many irregular rounded holes. Pink coccoid structures attached to 1341 

the vesicles in (a-b) are potential fossil heterotrophs (see also Fig. 3). Sample CAI-7, 1342 

macerated from phosphate from Cailleach Head.  All scale bars are 10 μm. 1343 

 1344 

Fig. 3. Evidence of bacterial heterotrophy in SEM images. (a-b) Rounded pits and occasional 1345 

holes, irregularly distributed on the surface of larger vesicles' walls, (b) is enlargement of 1346 

boxed area in (a). (c-d) Collapsed coccoid or baccilate cells ~5 μm across, occupying pits in 1347 



the walls of larger vesicles, occasionally with a thin raised lip, (d) is enlargement of boxed 1348 

area in (c) with heterotrophs false coloured pink. (e) Densely packed colony of coccoid and 1349 

baccilate cells (pink) continuous with amorphous degraded vesicular or EPS material (grey-1350 

green). (f) Higher magnification of colony in boxed area of (e), showing collapsed coccoid 1351 

and baccilate structures arranged randomly with possible supporting and sheathing 1352 

membrane.  Sample CAI-7, macerated from phosphate from Cailleach Head. Scale bars are 1353 

20 μm for (a, c, e) and 10 μm for (b, d, f). 1354 

 1355 

Fig. 4. X-ray microtomography analysis of Torridonian rock chips. (a) Reconstruction of a 1356 

CT scan of a rock chip using the Nikon instrument (voxels c. 5 μm), highlighting part of a 1357 

phosphate nodule (purple) within a quartz-rich sediment (grey), plus a number of higher 1358 

density grains that are likely pyrite or iron oxide (gold). (b) Reconstruction of an X-ray scan 1359 

of a second rock chip using the Swiss Light Source Synchrotron (voxels 1.625 μm). This 1360 

shows a mixture of phosphate and other denser phases rather evenly distributed through the 1361 

rock chip with no distinct phosphate nodule. (c-d and f-g) Reconstruction of two putative 1362 

vesicles identified in a higher resolution CT scan using the Zeiss Xradia Versa instrument 1363 

(voxels c. 1.5 μm). The light micrograph images (e and h) show specimens observed in thin 1364 

sections that may be analogous to those identified using CT. Scale bar is 2 mm for (a) 500 1365 

μm for (b) and 20 μm for (c-h). 1366 

 1367 

Fig. 5. Raman analysis of microfossils from the Torridonian Supergroup. (a) Optical 1368 

photomicrograph of two coccoid microfossils from the Cailleach Head Formation, each 1369 

containing dark interior spheroids (arrows). (b) Raman map of the carbon G ~1600 cm
-1

 peak 1370 

showing that the microfossils have carbonaceous walls and the dark interior spheroids are 1371 

also carbonaceous. This suggests that they are clumps of degraded cellular material or 1372 



remnants of a cell nucleus. (c) Raman map of the major calcium phosphate (apatite) ~960 cm
-

1373 

1
 peak showing that a large proportion of the mineralising phase is apatite. The patchy 1374 

appearance of the apatite suggests the presence of further mineral phases, interpreted to be 1375 

clay minerals as detected in higher resolution SEM and TEM analyses (see Figs 7-8). (d) 1376 

Optical photomicrograph of a microfossil from the Stoer Group. Raman maps of the carbon 1377 

G ~1600 cm
-1

 peak (e), pyrite ~380 cm
-1

 peak (f), calcite ~1090 cm
-1

 peak (g), and albite 1378 

~510 cm
-1

 peak (h) demonstrating that the microfossil is partially pyritised but some 1379 

carbonaceous composition remains, and that the sediment is dominantly calcite and feldspar. 1380 

Scale bars are 10 μm. 1381 

 1382 

Fig. 6. NanoSIMS analysis of a microfossil from the Diabaig Formation. (a) Optical 1383 

photomicrograph of a light-walled spheroidal cell with ruby red intracellular particles. (b) 1384 

Overview of a FIB-milled wafer prepared for NanoSIMS from the region indicated by the 1385 

yellow line in (a). Note the contrast between the large dark-grey grains, which equate to the 1386 

ruby red grains in (a), and the remainder of the wafer, plus holes in the wafer likely induced 1387 

by excessive FIB-milling. (c) NanoSIMS ion map of nitrogen measured as CN-. (d) 1388 

NanoSIMS ion map of sulfur measured as S-. (e) NanoSIMS ion map of iron oxide measured 1389 

as FeO-. (f) Three colour overlay of nitrogen (blue), iron oxide (red) and silicon (green) 1390 

showing that the large dark grains are iron oxides and they are located just inside the cell wall 1391 

(intracellular). The other mineral phases are dominantly clays and quartz. Scale bar is 20 μm 1392 

in (a), and 5 μm for (b-f). Note scale bar in (c) also applies to (d-f). 1393 

 1394 

Fig. 7. TEM analysis of a FIB milled wafer extracted from a Torridonian microfossil. (a) 1395 

Optical photomicrograph of a dark-walled spheroidal microfossil from the Cailleach Head 1396 

Formation. (b) Overview of the FIB-milled wafer extracted from the region marked by the 1397 



yellow line in (a) showing a complex wall structure and different mineral phases (indicated 1398 

by different levels of grey within the image) inside and outside of the microfossil (from 1399 

Wacey et al. 2014). (c) Three colour overlay of ChemiSTEM elemental maps of carbon 1400 

(blue), aluminium (orange) and calcium (pink) from the region indicated by the dashed box in 1401 

(b). Carbon represents the organic material of the microfossil walls, and at least four separate 1402 

walls (or wall layers) can be seen. Calcium represents apatite, the dominant mineral phase 1403 

outside of the microfossil. Aluminium represents clay minerals that infill the microfossil, 1404 

occur between the walls of the microfossil and occur in minor amounts outside of the 1405 

microfossil. Black areas are holes in the TEM wafer. Scale bar is 10 μm in (a), 2 μm in (b), 1406 

and 1 μm in (c). 1407 

 1408 

Fig. 8. FIB-SEM-EDS of a microfossil from the Cailleach Head Formation. (a) Optical 1409 

photomicrograph of a dark walled spheroidal vesicle showing the location of the FIB-milled 1410 

area and direction of view for the other panels in the figure (from Wacey et al. 2014). (b) 1411 

Secondary electron image showing the FIB-milled face below the surface of the thin section. 1412 

Shown below are energy-dispersive X-ray (EDS) elemental maps of the FIB-milled face 1413 

shown in (b). Carbon (light blue) represents the organic microfossil walls, highlighting a 1414 

thick inner cyst wall and thinner outer vegetative cell wall. Phosphorus (red), calcium (pink) 1415 

and moderate levels of oxygen (green) represent apatite, the dominant fossilising mineral 1416 

outside of the microfossil. Iron (blue), plus moderate amounts of silicon (turquoise), 1417 

aluminium (orange) and oxygen represents Fe-rich clay, occurring between the two 1418 

microfossil walls, replacing parts of the outer wall, and continuing for 1–2 μm outside the 1419 

outer wall. Potassium (yellow), plus silicon, aluminium and oxygen represents K-rich clay 1420 

restricted to the interior of the vesicle. 1421 

Scale bars are 5 μm. 1422 



 1423 

Fig. 9. 3D FIB-SEM nano-tomography of a Torridon microfossil. (a) Optical 1424 

photomicrograph of a cluster of light-walled spheroidal cells from the Cailleach Head 1425 

Formation (from Wacey 2014). (b) Example of a FIB-milled slice through the cluster of 1426 

microfossils in the region indicated by the dashed line in (a). Note that portions of at least 8 1427 

cells can be seen in this image, some of which are hidden from view below other cells in the 1428 

optical photomicrograph. Note also dark material inside the upper central cell (dashed arrow) 1429 

(c-f) 3D model of the cell indicated by the solid arrow in (b) viewed from four different 1430 

orientations, showing the location of preserved cell contents (blue) with respect to the cell 1431 

wall (yellow). Note that in (f) part of the cell wall has been removed to better visualize the 1432 

cell contents. Scale bar is 10 μm in (a), and 5 μm for (b-f). Note scale bar in (c) also applies 1433 

to (d-f). 1434 

 1435 
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