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ABSTRACT 

This work presents techniques to design and manufacture morphing honeycomb configurations using 

kirigami-inspired cutting and folding techniques. Kirigami is the ancient Japanese art of cutting and 

folding paper that can be used to form a 2D sheet material into a 3D cellular structure. The honeycombs 

developed in this work differ from traditional cellular structures because of their reduced density and 

variable stiffness. The stiffness is dependent on the loading direction and on the type of loading, and 

this directionality is ideal for 1D morphing applications. Using kirigami techniques also allows actuators 

and geometric features to be embedded into the honeycomb to control morphing. Work has so far 

focused on characterising the effect of unique new geometry features on the mechanical properties of 

the structure, using Finite Element Analysis. The work presented in this paper focuses on developing 

the honeycomb’s morphing capability; we present techniques for manufacturing honeycombs with a 

functional shape, and analysis methods to predict the honeycomb’s morphing shapes.  

1 INTRODUCTION 

Kirigami is the ancient Japanese art of forming a 2D sheet into a 3D cellular structure by cutting and 

folding paper, and can be applied to engineering sheet materials to create functional cellular structures. 

Engineering applications already make wide use of honeycombs; these are structures made from folded 

and glued sheet material, and as such can be folded using Kirigami. The first known instance of a 

honeycomb folded using Kirigami is a patent by H. B. Dean [1], who invented a specific cutting and 

folding process required to fold a honeycomb. Nojima and Saito developed the mathematics linking 

cutting patterns to 3D structures, so that honeycombs could be designed with a useful shape [2]–[4] 

(Figure 1). This work builds on these techniques to produce Kirigami cellular structures, which 

overcome some of the limitations of traditional honeycombs such as secondary curvature and the 

difficulty of forming complex shapes. Using the techniques described above, we have developed a 

cellular structure which has significantly more flexibility than traditional honeycombs. We denominate 

this architecture an “open” honeycomb because it lacks a closed cell form (we follow the naming 

conventions of foams, which are also called “open” or “closed” depending on their cell configuration). 

Figure 2 features a comparison between a traditional honeycomb and an open honeycomb specifically 

designed for morphing, and Figure 3 shows the manufacturing process used to manufacture the 

honeycombs in this work. The morphing open honeycomb has several unique features made possible by 

the Kirigami manufacturing process. The stiff corrugated strips are connected by folds and bridges of 

material which allow the structure to flex easily in one direction while maintaining stiffness in the other 

directions. Holes were included in the 2D cutting pattern such that these are located in controlled 

positions in the 3D structure. Cables are threaded through the holes in such a way that different deformed 

shapes can be produced by tensioning different cables. These features combine to give the open 

honeycomb significantly different properties and behaviour to traditional honeycombs. In past work we 

have characterised the effect of fold angle 𝛼 and fold stiffness 𝑘 on the mechanical properties of the 

structure.  
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In this work we focus on developing the morphing capability of the structure. We do this in two ways:  

1. A method is presented for designing useful shape open honeycombs. This is very similar to 

Saito’s method [4], but is a bit more complicated because there are more variables, and more 

room for design.  

2. A method is presented for modelling the structure as a series of rigid linkages, which can be 

used to predict the deformed shape of the structure in response to a cable load. 

 

Figure 1: a) Drawings from the patent by H.B. Dean [1] showing the process of folding a 

honeycomb. b) & c) Functional shaped honeycombs developed by Nojima and Saito, from references 

[4] and [3] respectively. 

 

Figure 2: L: traditional honeycomb, R: open honeycomb designed for morphing with cable 

actuators embedded.  
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Figure 3: The Kirigami manufacturing process. a) Flat sheet. b) Cutting patterns made using a ply 

cutter. c) Cut sheet. d) Thermoforming between hexagonal mould rods. e) Corrugated sheet. f) Folding 

along the corrugations. g) Open honeycomb. 
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2 USEFUL SHAPE GEOMETRY 

For morphing applications, we need to be able to produce a structure with a specific, useful shape 

e.g. an aerofoil. The 3D structure of the honeycomb is complex, but because of the orientation of the 

folds, it does not flex in the X direction; all of the useful morphing happens in the YZ plane. So we can 

analyse the structure in the YZ plane as a series of points and lines, and this makes the analysis much 

simpler. Figure 4 shows the dimensions of the unit cell in 2D. We now find the YZ coordinates of the 

points. We take point 𝐴 as our starting point and give it coordinates 𝑌0 and 𝑍0, as shown in equation (1). 

From here we find the coordinates of points 𝐵 to 𝐾 using the dimensions shown in Figure 4.  

 𝐴 = [𝑌𝐴, 𝑍𝐴] = [𝑌0, 𝑍0] (1) 

 

𝐵 = [𝑌𝐵, 𝑍𝐵] =  𝐴 + [

+(𝑐1 − 𝑏1) sin 𝛼1

−
𝑑1 sin(𝛼1 + 𝛽1)

sin𝛽1

,

+(𝑐1 − 𝑏1) cos𝛼1

−
𝑑1 cos(𝛼1 + 𝛽1)

sin 𝛽1

] (2) 

 𝐶 = [𝑌𝐶 , 𝑍𝐶] = 𝐵 + [𝑏1 sin𝛼1 , 𝑏1 cos𝛼1] (3) 

 
𝐷 =  [𝑌𝐷 , 𝑍𝐷] =  𝐶 + [

𝑑1 sin(𝛼1 + 𝛽1)

sin 𝛽1
,
𝑑1 cos(𝛼1 + 𝛽1)

sin𝛽1
] (4) 

 𝐸 =  [𝑌𝐸 , 𝑍𝐸] = 𝐶 + [𝜒1 sin𝜙1 , 𝜒1 cos𝜙1] (5) 

 𝐹 =  [𝑌𝐹 , 𝑍𝐹] = 𝐸 + [+𝑏2 sin 𝛼2 , 𝑏2 cos𝛼2] (6) 

 
𝐺 =   [𝑌𝐺 , 𝑍𝐺] = 𝐹 + [

𝑑2sin (𝛼2 + 𝛽2)

sin (𝛽2)
,
𝑑2cos (𝛼2 + 𝛽2)

sin (𝛽2)
]  (7) 

 𝐻 =  [𝑌𝐻 , 𝑍𝐻] = 𝐺 + [−𝑐2 sin 𝛼2 , −𝑐2 cos 𝛼2] (8) 

 𝐼 =   [𝑌𝐼 , 𝑍𝐼] = 𝐺 + [𝜒2 sin𝜙2 , 𝜒2 cos𝜙2] (9) 

 𝐽 =   [𝑌𝐽 , 𝑍𝐽] = 𝐵 + [𝑒1 sin 𝛼1 , 𝑒1 cos 𝛼1] (10) 

 𝐾 =  [𝑌𝐾 , 𝑍𝐾] = 𝐸 + [𝑒2 sin𝛼2 , 𝑒2 cos 𝛼2] (11) 

Having found the coordinates of all the points, we can now use these to generate equations to 

constrain the honeycomb to a useful shape. We choose two functions 𝑓1 and 𝑓2 to describe the desired 

lower and upper surface of the honeycomb, respectively.  Figure 5 shows how 8 equations are generated 

for each unit cell, by constraining the points 𝐵 to 𝐼 to lie on 𝑓1 or 𝑓2. This allows us to solve for up to 8 

unknowns in the system of equations. There are 14 dimensions for the whole unit cell (not counting 𝑒1 

or 𝑒2; these are not yet used), so we must fix 6 dimensions to obtain a solution. 𝑑1,2 are already fixed by 

the dimensions of the moulds used in manufacture. This leaves us with 4 dimensions to fix. The choice 

of constraints gives us some freedom of design. In this paper we fix 𝛼1,2 and 𝜒1,2 to generate 

honeycombs with regular geometry. Once the YZ coordinates of the points have been found, the X 

coordinates are easily calculated using the dimensions of the mould rods. Figure 6 shows an example 

honeycomb in both 2D and 3D.  
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Figure 4: 2D model of the open honeycomb unit cell. a) View of the open honeycomb showing the 

axes directions. b) Side view of the YZ plane, with unit cell highlighted. c) Unit cell represented by 

points and lines in the YZ plane, showing dimensions. Parts of the adjacent cells are shown in grey. 

Points J and K represent locations of holes in the cell walls. 

 

Figure 5: Equations generated by constraining points to lie on functions. 
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Figure 6: Honeycomb fit between two functions. Functions used were 𝑓1 = 0.005𝑦
2, 𝑓2 =

0.005𝑦2 + 10. The four dimensions fixed manually were 𝛼1 = 15°, 𝛼2 = 165°, 𝜒1 = 𝜒2 =
2.5 𝑙 cos𝜃 (where 𝑙 = 5𝑚𝑚, 𝜃 = 30° as determined by the mould rods).  

3 DEFORMED SHAPE WITH CABLE TENSION 

We have shown a method to produce a honeycomb with a functional shape, and we have shown how 

the Kirigami process can be used to embed cable actuators into the structure. In this section we 

demonstrate a method to model the deformation of the structure in response to cable tension. We assume 

that the corrugated strips remain rigid, and that the structure deforms purely by rotating about the folds 

(this is a reasonable assumption because the corrugated strips are much stiffer than the folds). Given this 

assumption, we can idealise the corrugated strips as rigid beams, with the folds represented as rotational 

springs. We can then find the forces and moments at each fold, and from these we can calculate the 

deflections. Figure 7 shows the idealisation of the unit cell, with forces and moments. By considering 

each beam element starting from 𝐺𝐼, and working backwards through the structure, we can find the 

forces and moments at the folds 𝐴, 𝐶, 𝐸, 𝐺 in terms of the external forces and the lengths and angles of 

each beam. We represent these in matrix form in equation (12) (𝑖 is the cell number, and 𝑗 = 𝐴, 𝐶, 𝐸, 𝐺). 

 {𝑀𝑗}𝑖 =
[𝐶𝑀]𝑖 {𝐹𝑒𝑥𝑡}i (12) 
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Figure 7: The unit cell idealised as a series of beams. The large blue line represents the cable with 

tension 𝑇. External applied forces are blue. Internal fold forces are black. External reaction forces are 

red. For clarity, lengths and angles of each beam are not shown. They are defined as shown in the 

bottom insert, with the angle measured positive counterclockwise from the Y axis.  

[𝐶𝑀] is a matrix of coefficients made up of cell dimensions. Treating each fold as a linear rotational 

spring with relationship 𝛾 = 𝑀 𝑘⁄ , the fold deflections 𝛾𝑗 are given by: 

 {𝛾𝑗}𝑖 = {1 𝑘𝑗⁄ }
𝑖
{𝑀𝑗}𝑖

{

𝛾𝐴
𝛾𝐶
𝛾𝐸
𝛾𝐺

}

𝑖

=

{
 

 
1 𝑘𝐴⁄

1 𝑘𝐶⁄

1 𝑘𝐸⁄

1 𝑘𝐺⁄ }
 

 

𝑖

{

𝑀𝐴
𝑀𝐶
𝑀𝐸
𝑀𝐺

}

𝑖

 (13) 

We substitute (12) into (13) to obtain: 

 {𝛾𝑗}𝑖 = {1 𝑘𝑗⁄ }
𝑖
[𝐶𝑀]𝑖 {𝐹𝑒𝑥𝑡}i (14) 

We now have the deformation of each fold in terms of known parameters (stiffnesses {𝑘𝑗}, cell 

geometry in [𝐶𝑀], and external forces {𝐹𝑒𝑥𝑡}). We can now find the absolute values of the fold angles 

measured from the vertical. We denote undeformed dimensions with a superscript “0”, and deformed 

dimensions with a superscript “*”. We find the deformed fold angles {𝜃𝑗}𝑖
∗
= {𝛼1, 𝜙1, 𝛼2, 𝜙2}𝑖

∗ by adding 

the deformations {𝛾𝑗}𝑖 to the undeformed fold angles {𝜃𝑗}𝑖
0
= {𝛼1, 𝜙1, 𝛼2, 𝜙2}𝑖

0. The matrix [𝐶] accounts 

for the fact that point 𝑗 experiences its deformation plus the deformations of the previous points.  
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 {𝜃𝑗}𝑖
∗

= {𝜃𝑗}𝑖
0

+ [𝐶]{𝛾𝑗}𝑖

{

𝛼1
𝜙1
𝛼2
𝜙2

}

𝑖

∗

= {

𝛼1
𝜙1
𝛼2
𝜙2

}

𝑖

0

+ [

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

] {

𝛾𝐴
𝛾𝐶
𝛾𝐸
𝛾𝐺

}

𝑖

 (15) 

This gives us the deformed fold angles in response to cable tension for one cell 𝑖. We now expand 

this to multiple cells. Adjacent cells 𝑖 and 𝑖 + 1 are joined by point 𝐼𝑖 meeting point 𝐴𝑖+1 (see the grey 

lines in Figure 4). We must account for moments and deformations accumulating throughout the entire 

structure as well as through the cells. The fold forces and moments at point 𝐴𝑖+1 act on cell 𝑖 as the 

“external forces” at point 𝐼𝑖. For the final cell in the chain, 𝑁, external forces at point 𝐼𝑁 will be zero. 

Deformations are summed along the structure in a similar way to how they are summed along a cell. 

Cell 𝑖 experiences its deformations plus those of previous cells. This is represented in matrix form for 

𝑁 cells: 

 

{
 
 

 
 
{𝜃𝑗}1
{𝜃𝑗}2
⋮

{𝜃𝑗}𝑁}
 
 

 
 
∗

=

{
 
 

 
 
{𝜃𝑗}1
{𝜃𝑗}2
⋮

{𝜃𝑗}𝑁}
 
 

 
 
0

+

{
 
 

 
 
[𝐶]{𝛾𝑗}1
[𝐶]{𝛾𝑗}2

⋮
[𝐶]{𝛾𝑗}𝑁}

 
 

 
 

+ [

0 0 ⋯ 0
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

]

{
 
 

 
 
Σj{𝛾𝑗}1
Σj{𝛾𝑗}2
⋮

Σj{𝛾𝑗}𝑁}
 
 

 
 

 

Where [

0 0 ⋯ 0
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 1 ⋯ 0

] = 𝐷 

(16) 

We now have the deformed structure fold angles in terms of fixed geometry dimensions and cable 

tension 𝑇. These can be substituted into equations (1)-(11) to find the deformed coordinates of points 𝐴-

𝐾. At this point we could input a value for 𝑇 and find the deformed geometry, but it would be more 

useful to be able to specify a cable displacement 𝛿𝑐𝑎𝑏𝑙𝑒, since the role of a morphing structure is to 

assume a specific deflection. We must generate one equation so that we can specify 𝛿𝑐𝑎𝑏𝑙𝑒 and solve for 

𝑇. If we were to pull a section of cable with length 𝛿𝑐𝑎𝑏𝑙𝑒 out of the undeformed structure to produce a 

deformed shape, the length of cable left inside the deformed structure would be given by: 

 𝐿𝑐𝑎𝑏𝑙𝑒
∗ = 𝐿𝑐𝑎𝑏𝑙𝑒

0 − 𝛿𝑐𝑎𝑏𝑙𝑒 (17) 

Where 𝐿𝑐𝑎𝑏𝑙𝑒 is the length of cable inside the structure. We can find 𝐿𝑐𝑎𝑏𝑙𝑒 from the sum of the 

distances between the various points 𝐽 and 𝐾 throughout the cells:  

 
𝐿𝑐𝑎𝑏𝑙𝑒 = (∑ |𝐾𝑖−1𝐽𝑖| + |𝐽𝑖𝐾𝑖|

2:𝑁

𝑖
) + |𝐽1𝐾1| (18) 

We have 𝐽0 and 𝐾0 because they are fixed by our choice of 𝑒1 and 𝑒2, and we have 𝐽∗ and 𝐾∗ in 

terms of 𝑇; thus we can specify a displacement 𝛿𝑐𝑎𝑏𝑙𝑒 and solve (17) for 𝑇. Figure 8 shows the predicted 

displacement for a flat honeycomb compared to the displacement of a real honeycomb.  
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Figure 8: Comparison between predicted deflection (top) and actual deflection (bottom) when 

subjected to a similar cable load. The transparent plot shows the undeformed structure.  

4 DISCUSSIONS 

We have demonstrated several methods to a) manufacture an open honeycomb, b) design an open 

honeycomb with a functional shape, and c) predict the deformation of the open honeycomb in response 

to cable loads. We have given some basic examples to illustrate this. In this section we discuss the 

potential to build on these techniques by adding more functionality.  

4.1 Other inserts 

Future work will look at implementing other inserts besides cables. Axially stiff rods/plates and outer 

skin elements are all of interest. It is feasible to embed stiff rod elements into the honeycomb in much 

the same way as the cables. These rods could prevent the honeycomb contracting in the Y direction and 

encourage instead a bending motion about the X axis. Rod elements could be implemented 

mathematically as an equation specifying a fixed distance between two points. A compliant outer skin 

could be modelled by spring elements between adjacent points on the upper/lower surface.  
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4.2 Multiple useful shapes 

If the cable inside the structure is pulled far enough, the structure will contract until the adjacent 

strips begin to touch one another, locking it in place. By controlling the length of the bridges between 

strips it may be possible to tailor this collapsed configuration to a second useful shape.  

4.3 Refined structural analysis 

Future work will include a more refined analysis of the full 3D structure using Finite Element 

Analysis. This will capture important details such as stresses at the folds and actuator load introduction 

points. 

5 CONCLUSIONS 

We have presented a method for producing open honeycombs with useful geometries, and predicting 

the deformation of the structure in response to embedded actuators. Future work will investigate the 

potential of other actuators/structural inserts, and further tailoring of the shape of the honeycomb.  
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