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Abstract 12 

This teaching tool explores circadian rhythms in plants. This is an exciting and fast-moving area of 13 

research, which requires us to think in terms of temporal biological dynamics, interconnected 14 

networks of cellular components, and the relationship between plant molecular biology and 15 

environmental adaptation. We present this topic as a series of concepts illustrated by examples, 16 

including the architecture of circadian clocks, the connections between the oscillator and circadian-17 

regulated processes such as metabolism and control of flowering time, and consider how 18 

understanding circadian rhythms could lead to crop improvement. We also explain some of the 19 

techniques used to investigate circadian biology, as many of these may be unfamiliar. We do not 20 

describe each component of the circadian oscillator; there are so many genes and mechanisms 21 

involved that this resource would become unintelligible and not be useful to an undergraduate 22 

audience. Instead, we consider it more important to think in terms of the overall organisation and 23 

principles, rather than becoming lost in the details of individual components. For those interested in 24 

finding out more, there are many excellent reviews on circadian rhythms, some of which we highlight 25 

at the end of the article.  26 
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Article contents 28 

 29 

Introduction 30 

The importance of the circadian clock in plant biology 31 

The architecture of circadian clocks 32 

The circadian oscillator 33 

Entrainment pathways 34 

Investigating circadian rhythms in the laboratory 35 

Properties of circadian rhythms 36 

Non-invasive measurement techniques for studying circadian rhythms 37 

Further methods for studying circadian rhythms 38 

The circadian clock and plant metabolism 39 

Primary metabolism 40 

Secondary metabolism 41 

The circadian clock provides timing information to control photoperiodic flowering 42 

Circadian gating 43 

The potential for crop improvement using circadian-dependent traits 44 

Summary and Future Directions 45 

Recommended Reading: 46 

The importance of the circadian clock in plant biology 47 

The architecture of circadian clocks 48 

Investigating circadian rhythms in the laboratory 49 

The circadian clock and plant metabolism 50 

The circadian clock provides timing information to control photoperiodic flowering 51 

Circadian gating 52 

The potential for crop improvement using circadian dependent traits 53 

 54 

  55 



Introduction 56 

 57 

The rotation of the Earth on its axis causes cycles of day and night. This causes repetitive daily 58 

changes in the environment that present living organisms with a variety of challenges. During each 59 

24 h day, there are large fluctuations in light intensity and temperature, which also lead to daily 60 

fluctuations in other aspects of the environment such as humidity and predator behaviour. The 61 

requirement to co-ordinate biological processes with environmental light-dark and temperature 62 

cycles and biological processes, has led to the evolution of circadian clocks (from the Latin circa 63 

meaning about, and dies meaning day). Circadian rhythms are defined as biological oscillations 64 

having a cycle of about 24 hours, which persist in the absence of external signals. The persistence of 65 

the rhythms in conditions of continuous light (or dark) and temperature indicate that they are driven 66 

by an endogenous biological process. For example, rodents have higher levels of wheel running 67 

activity at night under normal light-dark cycles. However, if kept in continuous darkness there are 68 

still rhythms of activity, but the period of these oscillations is regulated by the internal biological 69 

oscillator so may not be exactly 24 hours. Human physiology is controlled extensively by an internal 70 

circadian oscillator. The impact of the circadian oscillator is felt most keenly in jet-lag, where the 71 

discrepancy between the time of day predicted by the internal oscillator and the external conditions 72 

results in physiological stress. Circadian oscillators (circadian clocks) have evolved multiple times 73 

independently, and are found in organisms from all kingdoms of life. 74 

 75 

Plant circadian biology has a long history; for example, it the ancient Greeks are thought to have 76 

been aware of rhythmic processes in plants. Detailed measurements of plant circadian rhythms were 77 

made in 1729 by the French biologist Jean-Jacques d’Ortous de Marian in the heliotropic plant 78 

Mimosa pudica. He observed changes in the folding of the leaflets of Mimosa under constant 79 

environmental conditions. These leaf movements were referred to as ‘sleep’ movements, and occur 80 

in a range of different plants. Charles and Francis Darwin also recorded daily changes in leaf position 81 

in ‘The Power of Movement in Plants’ (1880). In 1751 Carl Linneaus proposed a model for a ‘Floral 82 

Clock’, whereby the predictable opening and closing of flowers at particular times of day could be 83 

used to indicate the time. Uncovering the molecular bases for these rhythms has been the focus of 84 

a huge amount of research in recent years, and we now have a good understanding of how the 85 

circadian clock regulates many aspects of plant physiology, molecular biology and development. 86 

 87 

The architecture of circadian clocks 88 

 89 

Most of the research on the functioning of plant circadian clocks has been performed in the model 90 

plant Arabidopsis thaliana. Circadian clocks in plants, animals, insects, and fungi share similar 91 

properties and features, although the specific genes involved are different. Most circadian oscillators 92 

are based on transcriptional regulation, and the importance of post-transcriptional regulation is 93 

becoming increasingly understood. The circadian clock in cyanobacteria is functionally different to 94 

eukaryotic oscillators because it is based mainly upon post-translational regulation. Circadian clocks 95 

may be an interesting example of convergent evolution, because they are thought to have evolved 96 

independently on a number of occasions. 97 

 98 



The circadian network needs to have three main properties to coordinate the activities of the plant 99 

with the external environment: 100 

 101 

1) It needs to generate a 24 h rhythm inside the cell that can be sustained in the absence of 102 

external stimuli. This is accomplished by the genes and proteins of the ‘circadian oscillator’ 103 

(sometimes called ‘circadian clock’). 104 

 105 

2) The circadian clock needs to be kept synchronized with the environment. In other words, its 106 

phase needs to match the phase of the environment. The synchronization process is known 107 

as ‘entrainment’. 108 

 109 

3) Mechanisms must exist to link the circadian clock with aspects of the plant that have 110 

circadian rhythms. These are known as ‘output pathways’ because they connect the output 111 

of the clock- which is a measure of the time of day- with other aspects of plant cells. The 112 

main way the circadian clock influences the cell is by regulating daily rhythms of transcription 113 

of a large number of genes. In turn, this leads to circadian rhythms in biochemistry and 114 

physiology (see later sections of the teaching tool). 115 

 116 

There is an additional level of complexity in that the sensitivity of both the entrainment and output 117 

pathways can change over the course of the day, which may be regulated by the circadian clock itself. 118 

This is referred to as ‘circadian gating’ and is discussed in detail in later sections of the teaching tool.  119 

 120 

A useful piece of terminology that is used in circadian biology, which we use in this article, is the 121 

word ‘subjective’ in relation to events that occur during the day-night cycle. When a plant is placed 122 

under constant conditions, it no longer experiences dawn and dusk. However, the time of day at 123 

which dawn, dusk or night would have occurred, had the plant been in day-night conditions, is called 124 

the ‘subjective dawn’ ‘subjective night’, etc. 125 

The circadian oscillator 126 

NB: In this section we consider processes that give rise to circadian rhythms in plant cells. This is a 127 

rapidly moving field and checking recently published literature or reviews is recommended, as models 128 

of the circadian oscillator are updated frequently as new discoveries are made. 129 

 130 

In general, circadian oscillators are formed from transcription-translation feedback loops. The 131 

conceptual example on the slides considers a very simple oscillator with two components, A and B. 132 

A and B are genes that encode proteins that are part of this oscillator. Here, one of the genes 133 

activates the other, and one gene represses the other, so they regulate each other in a cyclical 134 

manner. Over a day, Gene A is expressed in the morning and the protein that it produces is an 135 

activator of Gene B. Therefore, when a certain amount of Protein A has accumulated, Gene B is 136 

turned on and expressed later in the day. However, Protein B is a repressor of Gene A, so as Protein 137 

B accumulates, Gene A is switched off and Protein A levels decrease during the night. Since Protein 138 

A is required to activate Gene B, as Protein A decreases, Gene B is turned off. This releases the 139 

repression of Gene A by Protein B, and Gene A begins to increase again the following morning. The 140 

biochemical kinetics of these processes introduce rate constants and delays into the oscillator, 141 



causing the cycle to be completed in about 24 hours. Each plant cell is thought to have its own 142 

circadian oscillator that can operate independently, but recent research has found that there is 143 

communication between the circadian oscillators of different tissue types.  144 

 145 

Early breakthroughs in understanding the plant circadian clock focused upon interactions between 146 

the transcription factor genes TIMING OF CAB EXPRESSION 1 (TOC1), CIRCADIAN CLOCK ASSOCIATED 147 

1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). It was thought originally that TOC1 activates CCA1 148 

and LHY expression, and CCA1 / LHY repress TOC1, establishing a negative feedback loop in a similar 149 

manner to Gene A and Gene B in the hypothetical oscillator. Models of the oscillator have changed 150 

significantly since then, but at their core all contain a negative feedback loop. A significant revision 151 

to the early models is that we now know that TOC1 represses rather than activates CCA1 / LHY; care 152 

should therefore be taken when reading around this subject as older models may well include 153 

inaccuracies including the structure of the TOC1-CCA/LHY loop. 154 

 155 

A large number of oscillator genes have been identified through a variety of different experimental 156 

approaches. The oscillator genes are expressed at different times of day; for example CCA1 is 157 

maximally expressed around dawn while LUX ARRHYTHMO (LUX) reaches a peak around 12 hours 158 

after dawn. Current thinking about the structure of the plant circadian clock is that it is quite complex, 159 

with several feedback loops of gene expression that interact with each other. The circadian oscillator 160 

incorporates a main feedback loop linking CCA1 / LHY with TOC1, GI and LUX / ELF3 / ELF4. There is 161 

also a morning loop involving CCA1, LHY, PRR7 and PRR9, and an evening loop involving the ‘evening 162 

complex’ of ELF3, ELF4 and LUX.  163 

 164 

An underlying feature of plant circadian oscillators is that they maintain a free running period of 165 

about 24 h across a range of physiologically-relevant temperatures, meaning that the circadian 166 

period is buffered against changes in temperature. This feature is called ‘temperature compensation’ 167 

of the circadian oscillator. Given that the rate of enzyme activity is temperature-dependent, the 168 

robustness of the circadian oscillator to changes in temperature is an intriguing aspect of circadian 169 

regulation. Temperature compensation of the circadian oscillator appears involve temperature-170 

dependent regulation of CCA1 and LHY expression. Several mechanisms have been identified, 171 

including roles for PRR7 and PRR9, a regulator of CCA1 transcription called FBH1, and temperature-172 

dependent alternative splicing of RNA. 173 

 174 

In addition to transcriptional feedback loops, there are a number of post-transcriptional control 175 

mechanisms that contribute to the correct functioning of the oscillator. These include chromatin 176 

remodelling, regulation of protein degradation by the proteasome, phosphorylation of oscillator 177 

proteins and the involvement of small signalling molecules such as cyclic ADP ribose (cADPR) and 178 

cytosolic free Ca2+ (see Mas 2008 for a review of post-transcriptional processes). 179 

 180 

The complexity of the oscillator means that circadian research is moving away from identification 181 

and characterisation of individual oscillator components, and towards understanding overall 182 

emergent properties of the gene network. Mathematical modelling studies (see later sections of 183 

teaching tool) have suggested that the complexity and interconnectivity within the oscillator may 184 

provide the oscillator with greater robustness or stability in the face of many fluctuating aspects of 185 

the environment that change the regulation of components of the clock. 186 



Entrainment pathways 187 

Circadian clocks never have a period of precisely 24 h, so if the circadian clock was not resynchronized 188 

with the environment every day it would not predict time accurately for the plant. Additionally, 189 

entrainment allows small daily adjustments to the phase of the circadian clock to match the changes 190 

in the time of dawn that result from the progression of the seasons (see Slide 14 for an example of 191 

the seasonal changes in the time of dawn that occur in northern Europe). Several environmental 192 

signals act as entrainment cues. Red and blue light, sensed by the phytochrome and cryptochrome 193 

photoreceptors respectively, provide a strong resetting signal to the circadian clock and are 194 

important for synchronization of the circadian clock with dawn. Phytochrome A acts to regulate the 195 

clock mainly under low intensity red light, whereas Phytochrome B is important under high intensity 196 

red light. Cryptochrome 1 is important for regulation of the clock under low and high intensity blue 197 

light. It is thought that phyA and phyB act additively, whereas cry1 and cry2 act redundantly. The 198 

circadian clock component ZEITLUPE (ZTL) also senses blue light and contributes to the response of 199 

the circadian clock to light. Photosynthesis within chloroplasts produce sugars, which also entrains 200 

the circadian oscillator (see later sections of teaching tool). Temperature fluctuations can also 201 

entrain the circadian oscillator, however the molecular mechanisms of temperature entrainment are 202 

poorly understood at present. 203 

The importance of the circadian clock in plant biology 204 

The circadian clock influences almost all aspects of plant biology, and confers a significant selective 205 

advantage. Arabidopsis thaliana plants that have been mutated to abolish circadian rhythms (CCA1-206 

ox) have only 53% of the biomass of wild type plants. Wild type plants also accumulate significantly 207 

less biomass when grown under either 20 or 28 hour days than under 24 hour days, indicating that 208 

the period of the endogenous oscillator must match that of the external environment for optimal 209 

growth. The correct functioning of the circadian clock therefore has very significant impacts on plant 210 

performance. 211 

 212 

The circadian clock influences plant biology at a range of different levels. Analysis of the 213 

transcriptome indicates a significant proportion of the Arabidopsis thaliana genome is under 214 

circadian control. The percentage of transcripts that are expressed rhythmically varies between 215 

different studies, but meta-analyses of multiple microarray datasets indicate that around a third of 216 

the transcriptome cycles in constant conditions. Similar patterns of circadian transcript abundance 217 

have been found in other species including tomato, soybean, rice, sugarcane and poplar. A large 218 

number of genes associated with metabolism are under circadian control, indicating that the clock 219 

has a significant effect on plant biochemistry (see later sections of teaching tool). The clock also 220 

controls physiological processes such as leaf gas exchange, with stomatal being more open in the 221 

subjective day than subjective night, when plants are grown under continuous light. 222 

 223 

Growth and development are also under the control of the circadian oscillator. Video imaging of 224 

Arabidopsis seedlings under continuous light reveals that both the elongation of the hypocotyls of 225 

seedlings, and changes in cotyledon position, are rhythmic. Whether the clock directly controls cell 226 

division in higher plants is an open question, but circadian control of water and carbon availability 227 

contributes to rhythmic patterns of growth. Gibberellin and auxin-dependent growth is also 228 

regulated by the oscillator through a variety of mechanisms.  Developmental transitions such as the 229 



initiation of flowering are also under the control of the circadian clock; many circadian clock mutants 230 

flower either earlier or later than wild type plants when grown under long days (see later section of 231 

teaching tool for details of mechanisms). It is clear that the circadian clock controls many different 232 

aspects of plant biology, and is essential for optimum plant performance. 233 

 234 

The circadian clock provides organisms with a fitness advantage, explaining why circadian oscillators 235 

have evolved independently multiple times across different kingdoms of life. In plants, this 236 

advantage can be demonstrated through competition experiments in the model plant Arabidopsis 237 

thaliana. When plants are grown under 20 hour long days (10 hours light, 10 hours dark), mutant 238 

plants with a short circadian period (toc1-2) accumulate more biomass than mutants with a long 239 

circadian period (ztl-27; see later sections of teaching tool for definition circadian period). However, 240 

if grown under 28 hour long days (14 hours light, 14 hours dark) the situation is reversed, so mutant 241 

plants with a long circadian period outcompete those with a short period. The same pattern was 242 

seen when mortality rates were compared, indicating that having an internal circadian oscillator that 243 

matches the dynamics of the external environmental conditions confers a significant fitness 244 

advantage.  245 

Investigating circadian rhythms in the laboratory 246 

Properties of circadian rhythms 247 

Circadian rhythms are self sustaining in the absence of signals from the environment. Therefore, a 248 

common way to study circadian rhythms is to place the plant under constant conditions- constant 249 

temperature and constant light or darkness- and monitor the circadian regulated aspect of 250 

physiology or biochemistry that is of interest. The plant is typically grown for a period time under 251 

cycles of day and night, then transferred to constant conditions. Under constant conditions, the 252 

circadian clock is said to ‘free run’ and the experimental conditions are sometimes called ‘free 253 

running conditions’. For example, to study circadian rhythms of photosynthesis, the plant might be 254 

cultivated in 24 h light-dark cycles for several weeks before being moved to continuous light for the 255 

measurement of photosynthetic CO2 uptake. 256 

 257 

Circadian rhythms have a number of properties that can be quantified and are often used during 258 

studies of plant circadian biology. In continuous conditions, the circadian period is the time taken by 259 

the rhythm to complete one full oscillation. This is typically about 24 h in wild type plants. The phase 260 

is the time after dawn when a specific point in the cycle occurs, such as the peak. For example, the 261 

rhythm could have a dawn phase or a dusk phase, depending on the property that is being 262 

investigated. The amplitude of the rhythm is the difference between the average (center) point in 263 

the oscillation and the maximum or minimum of the oscillation. These properties can be quantified 264 

with a variety of analytical tools, such as Fast-Fourier Transform. 265 

 266 

The reason it is useful to measure these properties of circadian rhythms is because they can change 267 

depending on the state of the circadian clock. For example, mutating genes that encode parts of the 268 

circadian oscillator can cause circadian rhythms to adopt a period that is longer or shorter than 24 h. 269 

Similarly, mutations to other parts of the circadian clock can change its phase or its amplitude. 270 

Measuring these properties has allowed important progress to be made in the identification of 271 



components of the circadian clock, understanding how the components interact, and understanding 272 

which aspects of plant physiology are controlled by which component of the circadian clock. For 273 

example, the central oscillator component TOC1 was first identified in a forward genetic screen for 274 

plants with altered circadian periods of CAB2:LUCIFERASE activity (see below).  275 

Common measurement techniques for studying circadian rhythms 276 

 277 

To gain molecular insight into circadian rhythms it is common to collect a time-course of samples of 278 

plant tissue from which mRNA is isolated to monitor circadian changes in mRNA transcripts encoding 279 

proteins. Depending on the transcript studied, this can be used to investigate- for example- the 280 

functioning of the circadian clock, the control of metabolism by the clock, or provide a read-out of 281 

the operation of a signalling pathway associated with the clock. Experiments often use quantitative 282 

RT-PCR to measure the amount of transcript, but also studies have monitored circadian changes in 283 

either all or a substantial proportion of plant transcripts (the transcriptome) using microarray or 284 

sequencing methods (Harmer et al. Science 2000 is a great example of this). In a similar manner, 285 

tissue samples can be collected to monitor circadian rhythms in the quantity of certain proteins, the 286 

activity of enzymes, or the concentration of metabolites. 287 

 288 

Circadian experiments often involve repetitive measurements at regular intervals over a long period 289 

of time. This is laborious, can involve antisocial hours- also increasing the chances of mistakes- and 290 

makes large scale experiments difficult. In addition, taking regular plant tissue samples to measure 291 

gene expression, enzyme activity or a metabolite requires considerable amounts of plant material to 292 

be grown in order to obtain enough samples through the time-course for sufficient levels of 293 

experimental replication. To address this, several non-destructive / non-invasive technologies have 294 

been developed to allow relatively straightforward monitoring of plant circadian rhythms. 295 

 296 

One non-invasive technique involves monitoring circadian rhythms of seedling growth using a 297 

camera. The hypocotyl (stem) of seedlings grows faster at night, and an automated camera trained 298 

carefully on the young seedling can capture the rhythms in the position of the leaves that result from 299 

this pulsatile growth. Since the circadian rhythm of growth is controlled by the circadian clock, this 300 

method again provides a way to study the operation of the circadian clock. More commonly the 301 

positions of the leaves themselves can be recorded; in some species the leaves change position due 302 

to the activity of the pulvinus at the base of the leaf, whereas in others (including Arabidopsis 303 

thaliana) the ‘leaf movement’ response is in fact due to rhythmic patterns of growth. One advantage 304 

of this approach is that it does not require the generation of transgenic plants (see below). To see 305 

some growth rhythms of plants, check out the movies on the Plants in Motion website 306 

(http://plantsinmotion.bio.indiana.edu/plantmotion/starthere.html).  307 

 308 

While leaf movement imaging is useful as a circadian-dependent phenotype and is commonly used 309 

to screen for or characterise circadian mutants, it gives little molecular insight into the oscillator. The 310 

non-invasive bioluminescent reporter luciferase has revolutionized plant circadian biology and 311 

underpinned the discovery of many parts of the circadian clock in the model plant Arabidopsis 312 

thaliana. Luciferase is an enzyme derived from fireflies that catalyzes the biochemical reaction 313 

causing fireflies to glow. If an optimized luciferase is introduced to plants by making a transgenic 314 



strain, and the plant is supplied with the substrate of luciferase (called luciferin), the plants will emit 315 

light when the luciferase gene is expressed. The light emitted from the plant, due to the luciferase, 316 

can be detected with sensitive camera systems or a luminometer. If luciferase is expressed in plants 317 

under the control of a circadian-regulated gene promoter from the plant such as CHLOROPHYLL A/B 318 

BINDING PROTEIN 2 (CAB2), circadian rhythms occur in expression of luciferase (and hence there is 319 

a rhythm in the amount of light emitted from the plant). Luciferase monitoring instruments for 320 

circadian rhythms research are often automated, making experiments relatively straightforward. In 321 

a typical experiment, the plants are illuminated, then every hour or so the lights turn off, luciferase 322 

bioluminescence is measured, then the lights turn back on again, then the lights turn back on again 323 

so the plants can photosynthesize. 324 

Advanced methods for studying circadian rhythms 325 

Circadian bioluminescence imaging has been adapted to address specific questions in plant circadian 326 

biology. This type of imaging typically monitors the circadian rhythms in a whole seedling by 327 

measuring luciferase bioluminescence from entire plants. However, by using a particularly sensitive 328 

camera and appropriate lens, the variation in circadian rhythms across single leaves can be measured. 329 

Circadian rhythms can even be measured in single tissue types by using a ‘split luciferase’ or 330 

‘bimolecular luminescence complementation’ technique. In this, one half of the protein is expressed 331 

with a tissue specific promoter (e.g. vascular tissue only) and the other half a circadian regulated 332 

promoter- and the two halves of the enzyme only come together to emit light in the chosen tissue 333 

at the right time! It is even possible to measure circadian rhythms in single cells of a leaf by firing 334 

microscopic beads coated with luciferase gene at the leaf- they only penetrate some cells, which are 335 

the ones that subsequently glow and from which the rhythm can be measured. 336 

 337 

From the slides about the structure and function of the molecular circadian clock, you will see that it 338 

is extremely complex. There are multiple feedback loops, many interconnected components with 339 

both negative and positive regulation steps, and both transcriptional and post-transcriptional 340 

regulation processes. Considering the number of components, it is difficult- if not impossible- to 341 

envisage with a diagram how the plant circadian clock functions. As a result, circadian biologists have 342 

turned to mathematical modelling to deepen their understanding of the plant circadian clock. 343 

Mathematical modelling has helped to identify gaps in our knowledge of the circadian clock, test the 344 

accuracy of our theories concerning the operation of the circadian clock, and provide adaptive 345 

explanations for certain properties of the clock, such as its complexity. In molecular plant biology, 346 

the field of circadian rhythms was one of the first to use mathematical modelling to understand a 347 

complex gene network and it could be argued that circadian rhythms researchers had a pioneering 348 

role in the more widespread adoption of ‘systems biology’ approaches in plant sciences.  349 

 350 

The circadian clock and plant metabolism 351 

Primary metabolism 352 

Plant metabolism undergoes dramatic shifts under each day-night cycle, with photosynthesis 353 

dominating during the day and starch degradation and nutrient assimilation occurring at night. This 354 



is not simply a response to changes in light availability, but is also under the control of the circadian 355 

clock. 356 

 357 

The first circadian transcriptome studies revealed extensive control of metabolism by the circadian 358 

oscillator. It regulates the transcription of large number of enzymes of primary metabolism, including 359 

chlorophyll biosynthesis, photosynthetic electron transport, starch synthesis and degradation, 360 

nitrogen and sulphur assimilation (see Farré and Weise, 2012 for review). In many cases the peak in 361 

RNA abundance precedes that of the actual physiological process that the enzyme is involved in; for 362 

example the expression of chlorophyll biosynthesis genes occurs at the end of the night, anticipating 363 

the onset of dawn. In contrast, the peak of genes associated with starch catabolism is around 364 

subjective dusk. 365 

 366 

Care should be taken not to over-interpret circadian transcriptome analyses as there are several 367 

examples where individual transcripts have a circadian rhythm but there is no corresponding 368 

circadian rhythm in protein level or catalytic activity. This does not necessarily mean that circadian 369 

rhythms of transcription are without physiological significance; it may be that circadian rhythms in 370 

gene expression compensate for patterns in protein degradation, so the role of the oscillator is to 371 

maintain a constant level of protein. Alternatively there may be additional levels of post-372 

transcriptional regulation that contribute to control of metabolism. 373 

 374 

Metabolite concentrations in circadian mutants differ from those in wild type plants, indicating a link 375 

between the circadian oscillator and metabolism suggested by the transcriptome data. A metabolite 376 

analysis of a prr9/7/5 triple mutant found that the concentration of citric acid cycle (TCA cycle/Kreb’s 377 

cycle) intermediates (e.g. malate, fumarate) was significantly higher in the mutant than in wild type 378 

plants. This can be partially explained by the reduced levels of fumarase and 2-oxoglutarate 379 

dehydrogenase expression in these mutants. The triple mutants also have high levels of shikimate, 380 

which is a precursor molecule for many secondary metabolites. The metabolic phenotype of the prr 381 

triple mutant was distinct from that of CCA1-ox despite both mutants being arrhythmic, indicating 382 

different parts of the oscillator have different regulatory functions in metabolism. 383 

 384 

One of the roles of the oscillator is to allow plants to predict light availability. At night plants are 385 

unable to photosynthesise, so are in danger of starvation. During the day starch is synthesised as a 386 

temporary store of carbon, which is then degraded through the night to support respiration and 387 

growth. The rate of starch degradation is tightly controlled so that plants exhaust 95% of their starch 388 

by the end of the night. The plant can adjust this rate to reflect the length of the night, so that starch 389 

degradation occurs more slowly in long nights. Remarkably, the plant can also adjust the rate of 390 

degradation immediately in response to an unexpected early onset of night. When plants grown 391 

under 12h light: 12 h dark cycles experience darkness only 8 hours after dawn they reduce the rate 392 

of nocturnal starch metabolism, thereby preventing starvation at the end of the night. cca1/lhy 393 

mutants degrade starch 35% faster than wild type plants, meaning they run out of starch 3-4 hours 394 

before the end of the night and enter a period of starvation. The inability to regulate starch 395 

metabolism therefore also contributes to the reduced growth of circadian clock mutants. 396 

 397 

As metabolism in plants is split between different organelles it is also important to consider how the 398 

oscillator is spatially organised within the cell. There are circadian rhythms of gene expression within 399 



the chloroplast, which seem to controlled by the nucleus. Gene expression of the nuclear-encoded 400 

sigma factor SIG5 is controlled by the circadian oscillator, with maximal expression around dawn. 401 

SIG5 is then imported into the chloroplast where it forms part of a chloroplast RNA polymerase to 402 

control the expression of plastid genes including psbD, which encodes the D2 protein of Photosystem 403 

II.    404 

 405 

Early genetic models of the plant circadian system proposed that light and temperature entrained 406 

the oscillator, which then controlled outputs such as metabolism and stomatal movements. However, 407 

it is now clear that metabolic processes also regulate the circadian oscillator, so the connection 408 

between the clock and metabolism is infact bi-directional. Young seedlings grown in the absence of 409 

sucrose have very low amplitude circadian oscillations of CCA1:luc and CAB2:luc in continuous dark, 410 

but these rhythms increase in amplitude in the presence of exogenous sucrose. The restoration of 411 

rhythmicity is dependent on the central oscillator component GIGANTEA. Application of 412 

metabolically active sugars (sucrose, glucose, fructose) shortens the period of circadian rhythms of 413 

plants grown in continuous low light. Externally applied sugar entrains the central oscillator, but 414 

rhythms entrained to sugar have different characteristics to those entrained by light, indicating that 415 

sugar is an independent entrainment signal in the circadian network. Redox status and the co-416 

enzyme NAD+ also contribute to plant circadian rhythms. The relationship between the clock and 417 

primary metabolism is therefore more complex than the early models suggested, with metabolism 418 

both being controlled by and controlling the central oscillator. 419 

Secondary metabolism 420 

Secondary metabolism is also under the control of the oscillator. Secondary metabolites are 421 

molecules that are not required directly for the survival of the organism. Secondary metabolites play 422 

a variety of roles in plants, including pigments and herbivore defence compounds. Floral scent 423 

molecules are volatile secondary metabolites, having a key role in attracting pollinators. For example, 424 

Petunia hybrida cv. Mitchell releases volatile compounds at night to attract pollinators such as 425 

hawkmoths, and this has been shown to be under the control of the circadian oscillator. There is a 426 

circadian rhythm in the production of volatiles such as methyl benzoate in continuous darkness, but 427 

no such rhythm occurs in continuous light. Volatiles are synthesised from phenylalanine via the 428 

shikimate, phenyl-propanoid and benzenoid pathways. Many of the enzymes and transcriptional 429 

regulators in this pathway are under circadian control at the level of transcription, with maximal 430 

expression occurring during the subjective night. If the clock gene LHY is constitutively overexpressed 431 

in Petunia hybrida, rhythms of volatile emission are disrupted.  432 

 433 

The circadian clock also plays a role in the interactions between plants and herbivores. In one study 434 

looking at the interaction between Arabidopsis and cabbage loopers it was found that if the plants 435 

and insects were entrained to the same light-dark cycles, the plants were able to resist herbivory 436 

under continuous darkness. However, if the plants and insects were entrained to opposite conditions, 437 

the plants were vulnerable to attack by the caterpillars. The insects have a strong circadian rhythm 438 

of feeding, with maximal feeding occurring during the subjective day. Plant herbivore defences are 439 

induced by jasmonates, which were found to accumulate during the subjective day. The plant is 440 

therefore actively protecting itself during the time of maximal insect feeding, representing an 441 

additional benefit to having a circadian clock. Through influencing plant-animal interactions it is 442 



therefore likely that the circadian clock contributes towards ecological dynamics, although this has 443 

not yet been systematically been investigated.  444 

The circadian clock provides timing information to control photoperiodic flowering 445 

Annual changes in photoperiod provide an environmental cue that is used by plants to detect 446 

changes in the seasons. Many plants use the changing photoperiod to control the season of flowering. 447 

For example wheat (Triticum aestivum) flowers in late spring when the days become longer, whereas 448 

rice (Oryza sativa) flowers in late summer when days become shorter. Photoperiod sensitive plants 449 

can be divided into long day and short day plants. Long day plants flower when the dark period is 450 

shorter than a particular duration, and will also flower if a long night is interrupted by a short 451 

exposure to light. Short day plants flower when the dark period is longer than the critical length, and 452 

are unaffected by interruptions to the night. Some plants are obligately photoperiodic (they only 453 

flower under a specific photoperiod), while others are facultatively photoperiodic (flowering is 454 

stimulated by photoperiod but the plant will eventually flower even under non-flowering 455 

photoperiods). Here, we consider specifically the role of circadian regulation in the seasonal 456 

regulation of flowering, though it is important to remember that other environmental cues (e.g. 457 

temperature, abiotic stress) also influence the transition to flowering. 458 

 459 

The “external coincidence model” was first proposed by Erwin Bünning in 1936 as way to explain 460 

photoperiod-dependent flowering in long days. In the simplest version of the model there are two 461 

components; a circadian dependent regulator which has its peak of expression between 10-14 hours 462 

after dawn, and a downstream floral inducer. Flowering is only induced when expression of the 463 

circadian dependent regulator and light coincide. In short days the expression of the regulator is low 464 

during the day so the plant continues in vegetative growth. In long days the regulator is expressed 465 

highly in the afternoon, therefore light and the regulator coincide and the floral inducer is activated. 466 

 467 

The molecular basis of this process is now well characterised, with at least a dozen different proteins 468 

playing a role in the mechanism. Flowering is a tightly controlled event which centres on the 469 

regulatory protein FLOWERING LOCUS T (FT). FT is regulated at the level of transcription by a number 470 

of different pathways including the photoperiodic pathway, and when its expression is stimulated 471 

the protein moves from the leaves to the shoot apical meristem to induce flowering. One activator 472 

of FT is CONSTANS (CO), a zinc-finger transcriptional activator which is indirectly regulated by the 473 

circadian oscillator. These two proteins can be integrated into the external coincidence model, where 474 

CO represents the circadian dependent regulator and FT the floral inducer. 475 

 476 

CONSTANS expression is rhythmic, with the maximal level of CO mRNA being ~12-14 hours after 477 

dawn. However, CO protein is unstable in the dark as it is targeted for degradation by the E3 ubiquitin 478 

ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). This provides a mechanism through which 479 

photoperiod can be detected:  480 

• In short days the peak in CO mRNA levels occurs at night, and the protein does not 481 

accumulate, hence FT is not induced and the plant stays in the vegetative state.  482 

• In long days the peak of CO mRNA occurs during the light, and CO protein is able to 483 

accumulate. The stabilisation of CO protein in the late afternoon allows the expression 484 

of FT, which can then travel to the meristem and induce flowering.  485 



 486 

The same basic coincidence model is conserved between Arabidopsis and crop species, including rice 487 

which is a short day plant. In rice the equivalent of CO is Heading-date 1 (Hd1), and the equivalent 488 

of FT is Heading-date 3a (Hd3a). The major difference between the two models is that while in 489 

Arabidopsis CO activates FT expression, in rice Hd1 is a repressor of Hd3a. This means that when 490 

coincidence between Hd1 expression and light occurs in long days the expression of Hd3a is 491 

suppressed, and the plant remains in the vegetative state.  492 

Circadian gating 493 

 494 

An important principle in circadian biology is circadian gating. Circadian gating is the process whereby 495 

the circadian clock adjusts the sensitivity or response of another signalling pathway, so that the 496 

outcome from the pathway depends on the time of day. In practice this means that when an identical 497 

stimulus is applied at different times of day, there is a circadian rhythm of the strength of the 498 

response to the stimulus. Essentially, the clock acts as a valve on another signalling pathway. 499 

 500 

Circadian gating acts upon the entrainment of the oscillator itself, and also the responses of plant 501 

cells to the environment. Firstly, the circadian clock gates its own response to entrainment signals. 502 

Application of an entrainment cue (e.g. light) changes the phase of the circadian clock towards dawn. 503 

Circadian gating of this response means that the clock is much more sensitive to light during the night 504 

and around dawn than during the rest of the day. This is very important, because if the circadian 505 

clock were equally sensitive to light throughout the entire day, it would be continuously reset to 506 

dawn and so unable to maintain an accurate measure of the time of day. In addition, the light 507 

intensity may change considerably over the course of the day due to cloud cover or shading by other 508 

plants, so adjusting sensitivity to light levels through the day may confer benefits to plants in the 509 

natural environment.  510 

 511 

In addition to gating of the entrainment pathways, the circadian clock also gates the responses of 512 

other environmental responses in plants. It is thought that this ensures that the nature of the 513 

response to the environmental signal is appropriate for the time of day. Here are two examples of 514 

circadian gating:  515 

 516 

(1) The circadian clock underlies a daily rhythm in the sensitivity of plants to cold. The CBF family of 517 

genes regulate processes that increase the freezing tolerance of Arabidopsis. When plants were 518 

exposed to 4 oC at a range of times of day, the degree of upregulation of the CBF family genes (CBF2 519 

on the slide) has a circadian rhythm. Overall, the CBF genes are more sensitivity to upregulation by 520 

cold at 4 h and 10 h after subjective dawn, rather than during the subjective night.  521 

 522 

(2) The circadian clock regulates a rapid response of developing seedlings to shade. During seedling 523 

establishment, rapid elongation of the hypocotyl positions the leaves optimally for photosynthesis. 524 

If the seedling is shaded by other plants, the ratio of red to far red light reduces, because vegetation 525 

absorbs red light and reflects/transmits far red. This is sensed by the seedling and causes rapid 526 

elongation of the hypocotyl, to allow the seedling to over-top its neighbours and catch the light. This 527 



response is gated by the circadian clock, such that the hypocotyl elongates much faster when 528 

exposed to low red:far red light around subjective dusk than at other times of day .  529 

The potential for crop improvement using circadian-dependent traits 530 

 531 

Given that circadian regulation increases the fitness of plants at a number of levels and agronomic 532 

traits are associated with certain circadian clock genes, there is significant interest in understanding 533 

and optimising circadian networks in crop species. The overall architecture of the oscillator is broadly 534 

conserved between the model system Arabidopsis thaliana and agronomically important crop 535 

species. A number of circadian clock genes underlie QTLs (Quantitative Trait Loci) associated with 536 

key agronomic traits, indicating that the circadian-related fitness advantages conferred to 537 

Arabidopsis by circadian regulation may also be relevant to crops. Flowering time and biomass 538 

accumulation are obvious target traits, but given the widespread influence of the oscillator there 539 

may be other aspects of crop productivity that could be improved with increasing understanding of 540 

circadian rhythms. One example might be to increase the latitudinal range over which some crops 541 

can be grown, by manipulating the role of the circadian clock in photoperiodism. In the face of 542 

climate change and associated increases in abiotic stress, the gating of environmental signalling 543 

pathways may also become an area of interest to agronomists. 544 

 545 

Case study 1: A slower clock was selected for during the domestication of tomato 546 

Analysis of wild and cultivated tomato varieties identified that cultivated varieties have a longer 547 

circadian period and delayed phase when compared to wild relatives. QTL analysis isolated two 548 

genomic regions that independently controlled the period and phase phenotypes, and the phase QTL 549 

was subsequently mapped to a homologue of an Arabidopsis light signalling protein (EID1). Genetic 550 

analysis suggests delayed phase was selected for relatively early in tomato domestication, and long 551 

period arose at a later stage. The late phase mutation results in late flowering and increased 552 

chlorophyll content specifically in long days, both of which would have been advantageous as tomato 553 

spread from Mesoamerica to more northerly latitudes.  554 

 555 

Case study 2: Photoperiodism in Barley is controlled by a circadian clock component 556 

Barley was domesticated around 8000 years ago in the fertile crescent (between the Mediterranean 557 

Sea and Persian Gulf, including modern Iraq, Egypt, Lebanon, Jordan and Israel). Wild barley 558 

(Hordeum vulgare ssp. spontaneum C. Koch.) is a long day plant, so flowering is accelerated in when 559 

day lengths are longer than ~13 hours. Cultivated barley (H. vulgare ssp. vulgare L.) has two forms; 560 

winter barley which is sown at the end of the autumn and is harvested in the spring, and spring barley 561 

which is sown in early spring and is harvested in the summer. 562 

 563 

Growing spring barley has the advantage that sowing occurs after winter, therefore the potential for 564 

frost damage is reduced. On the other hand, winter barley has the advantage that harvesting occurs 565 

before the height of summer when dehydration may affect yield. There are several differences 566 

between the two varieties, one of which is a difference in sensitivity to photoperiod. Winter barleys 567 

are photoperiod sensitive, i.e. flowering is accelerated in long days, which is the ancestral phenotype. 568 

Spring barleys are photoperiod insensitive, i.e. flowering is not accelerated by long days therefore 569 

flowering (and therefore harvest) occurs later in the year. Fine mapping of a cross between the 570 



photoperiod sensitive variety ‘Igri’ and the late flowering non-sensitive variety ‘Triumph’ identified 571 

a genomic region containing a single pseudo-response regulator gene, which is most similar to the 572 

Arabidopsis circadian clock gene PRR7. The recessive ppd-H1 mutation causes a single amino acid 573 

change in the protein which results in photoperiod insensitivity, although mutation of this gene does 574 

not affect the free-running period of the circadian oscillator. Analysis of barley land races across 575 

Europe shows that there is a shift from Ppd-H1 (photoperiod sensitive) varieties in the south to ppd-576 

H1 (photoperiod insensitive) varieties in the north, indicating that there has been selection pressure 577 

at this locus during the spread of barley away from the fertile crescent.  578 

 579 

As flowering time is such an important characteristic of cereal crop yield, the potential to fine tune 580 

flowering time to environmental conditions and extend growing seasons is of great interest. PRR7 581 

provides an example of difference between the oscillator model obtained from studies in Arabidopsis 582 

thaliana and the clock in monocots. AtPRR7 is not a major regulator of photoperiodism in natural 583 

Arabidopsis populations, whereas natural mutations at PRR7 in both rice and barley alter the 584 

flowering time. Crop development based on the Arabidopsis model of the circadian clock will 585 

therefore need to be done with care, to ensure any changes to the circadian clock in crops actually 586 

target traits of importance for agriculture.  587 

 588 

Summary and Future Directions 589 

 590 

Plant circadian biology has seen extraordinary progress in recent years and is the focus of research 591 

groups across the globe. It is now clear that the circadian clock influences almost all plant processes 592 

in one way or another, which contributes to the significant fitness advantage conferred by the 593 

circadian clock. Some of this control is direct, with circadian oscillator components directly 594 

controlling output pathways, while other processes are controlled indirectly through circadian-595 

dependent gating of environmental signalling pathways. The complexity of the clock and the diversity 596 

of processes that it controls means that we have to consider the circadian clock to be an extensive 597 

control network within plant cells, where it is both difficult and arguably meaningless to consider any 598 

individual clock component in isolation. The use of mathematical modelling approaches to studying 599 

circadian rhythms is now widespread, and helps us analyse the emergent properties of the network 600 

such as circadian period and gating.  601 

 602 

There are many unresolved questions in circadian biology, some of which require technical 603 

innovation to address. Some of the open questions in plant circadian biology that remain include: 604 

• Is the circadian oscillator specialized at a molecular and functional level in each plant cell 605 

type and organ, and do these oscillators communicate with each other? 606 

• What are the molecular bases for circadian gating in plants? 607 

• What is the contribution of circadian regulation to the performance of crop plants, and how 608 

can we capitalize upon this to increase crop production? 609 

• How does circadian regulation in plants contribute to the dynamics of ecosystems? 610 

• How did the plant circadian oscillator evolve? 611 

 612 



The number of papers published on plant circadian rhythms continues to increase every year as more 613 

metabolic, physiological and developmental processes that the clock regulates are discovered. The 614 

interface between circadian biology and downstream processes is still poorly understood in some 615 

cases, particularly those where the gating of environmental signals plays a role. An increased 616 

understanding of plant circadian rhythms may result in the optimization of agriculturally important 617 

traits, so this aspect of plant biology is of significant future interest to both the scientific community 618 

and commercial enterprise. As the circadian clock underpins so many processes in plants it 619 

represents both a fascinating and powerful system for understanding coordination in biological 620 

systems, and will continue to be actively researched for many years to come.  621 
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