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We introduce a hierarchical framework for conjunctive concept combination based on 
conceptual spaces and random set theory. The model has the flexibility to account for 
composition of concepts at various levels of complexity. We show that the conjunctive 
model includes linear combination as a special case, and that the more general model 
can account for non-compositional behaviours such as overextension, non-commutativity, 
preservation of necessity and impossibility of attributes and to some extent, attribute loss 
or emergence. We investigate two further aspects of human concept use, the conjunction 
fallacy and the ‘guppy effect’.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Humans undoubtedly have the ability to form new concepts by combining existing ones. The development of effective 
representational models of this phenomenon could potentially shed light on human cognition. Human-like reasoning has 
been argued to be important to artificial intelligence for its flexibility and robustness [6,29,44]. Further, a good representa-
tion of human concept use will aid us in considering problems of categorization and typicality, as argued by Freund [18]. 
Applications of AI that must interact with humans via natural language arguably need to be able to understand and to 
form for themselves novel combinations of concepts. Examples of theories proposed to account for such concept combi-
nation include prototype theory together with fuzzy set theory [51], conceptual spaces [19], and quantum probability [3,
9] approaches. Well-known counterexamples have been identified which suggest that fuzzy sets may not provide an ap-
propriate formalisation in this context [25,27,40]. It is argued in [25] that the failure of fuzzy set theory to adequately 
model human concept combination results from its failure to consider the intension of concepts, i.e., the attributes that the 
concept possesses. In contrast, the conceptual spaces and the quantum approaches take intension into account, either by 
considering concepts as being comprised of a combination of properties,1 which are themselves embedded in a space of 
quality dimensions, or by incorporating context into the model. Our proposed approach utilises a random set interpretation 
of membership so as to quantify an agent’s subjective uncertainty about the extent of application of a concept. We refer 
to this uncertainty as semantic uncertainty [33] in order to emphasise that it concerns the definition of concepts and cate-
gories. Lawry and Tang [33] combine random set theory with conceptual spaces [19] and prototype theory [43], to give a 
formalisation of concepts as based on a prototype and an uncertain distance threshold, located in a conceptual space. We 
use this account of concepts to provide a framework for conjunctive concept combination which captures the effects seen 
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in [25], including non-compositional behaviours such as overextension, non-commutativity, preservation of necessity and 
impossibility of attributes and to some extent, attribute loss or emergence.

An outline of the paper is as follows. Section 2 overviews a range of theoretical approaches to concept combination from 
the literature, and summarises the results from experimental studies that we aim to model. Section 3 describes a random 
set and prototype theory representational model for concepts within a conceptual space. This model provides the theoretical 
underpinning for our work. Section 4 introduces a framework for concept combination based on a hierarchy of conceptual 
spaces, and in which compound concepts are defined within Boolean spaces. We prove a number of results showing the 
properties of this framework and compare this approach to others in the literature. Section 5 provides a discussion of our 
results and indicates possible future directions.

2. Background

In this section, we describe a number of approaches to concept combination that have been proposed. We consider 
general set-theoretic approaches, supervaluation theory, prototype theory, fuzzy set theory, conceptual spaces theory, ap-
proaches from computational linguistics and quantum cognition approaches. We further describe some results from experi-
mental studies with which we compare the theory we develop.

2.1. Set-theoretic approaches

Montague semantics [39] takes a model-theoretic approach to concepts and sentences. Concepts are defined using no-
tions from set theory, and natural language expressions are modelled as functions or relations on these sets. This gives a de-
scription of how the semantics of a language interacts with the syntax, so that the meaning of a compound expression may 
be systematically derived from its parts. However, as discussed in [27,28], this is inadequate for modelling some types of ad-
jectives. In [39], an adjective is viewed as a function from properties to properties. This allows sentences such as ‘every small 
elephant is small’ not to be branded as logically true, which is what we require. This enables various types of adjective to be 
modelled. Intersective adjectives are those where the application of that adjective may simply be viewed as an intersection of 
sets (such as ‘red car’). Adjectives that are not intersective may be subsective, when the adjective-noun combination is a sub-
set of the noun, or non-subsective, for example privative adjectives like ‘fake’, or ‘former’. However, the theory of adjectives 
as a function of properties is inadequate, in particular because it doesn’t account for comparatives, i.e. the ability to say that 
x is A-er than y. To account for this, Kamp introduces a theory of vague models, which are viewed as a nested sequence of 
partial models. In a partial model, a predicate is explained as assigning a value 1 to those objects which fall under the pred-
icate, 0 to those that do not fall under the predicate, and no value to those for whom the predicate is indeterminate. These 
partial models may be completed in various ways, and the degree of truth of a sentence is related to the probability of a par-
ticular set of completions of a partial model of the sentence conditioned on all sets of completions of the model. This set of 
completed models forms the basis for Kamp’s supervaluation, where a sentence has truth value 1 if it is true in all comple-
tions of the model, 0 if it is false in all completions of the model, and indeterminate if it is true in some and false in others.

Kamp’s approach is similar to Fine’s [17], in which the questions of the correct logic for vagueness and the correct 
truth conditions for a vague language are considered. Fine calls the possibility that logical relations hold between indefinite 
sentences penumbral connection, and truths that arise from such a connection penumbral truths, and argues that no natural 
truth-value approach respects such truths. He argues that differences in truth-value within penumbral truths concerning two 
predicates are essentially a difference in the way that these predicates can be made more precise. He describes a theory of 
super-truth, in which a sentence is true iff it is true in all admissible and complete specifications of the sentence.

Both these approaches use the idea that there are in fact precise ways of describing a concept, and that the truth value of 
a sentence using a vague concept is dependent on the different possible ways of making the sentence more precise. In what 
follows, we do not consider truth values of sentences but rather typicality of an item to a concept. However, consideration 
of logics using the fuzzy sets we develop would be an interesting line of future work.

Interestingly, [1] argue that adjective-noun combinations can be represented purely as set intersection between the 
adjective and the head noun. This is achieved by the use of typed sets. These are sets in which members are assigned types. 
So the adjective ‘clever’ is represented in the following way:

Clever = { j : human, f : pet, f : policedog} : clever

where the interpretation of j is ‘John’, and the interpretation of f is ‘Fido’. [1] argue that by using this type of representation 
the problems of privative adjectives can be circumvented. An example is as follows. From the two sentences ‘Maria is 
a former teacher’ and ‘Maria is a programmer’, we do not wish to infer ‘Maria is a former programmer’. The typed set 
representation is as follows:

Human = {m : human, ...} : human

T eacher = {m : teacher, ...} : teacher

F ormer = {m : teacher, ...} : f ormer

Programmer = {m : programmer, ...} : programmer
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Then, we can infer that m ∈ F ormer ∩ T eacher, but not that m ∈ F ormer ∩ Programmer. This is further extended to describe 
differences in scope when applying multiple adjectives. The approach described is interesting, and could presumably be 
extended to include some sort of typicality measure.

2.2. Fuzzy set theory and prototype theory

Prototype theory views concepts as being defined in terms of prototypes, rather than by a set of necessary and sufficient 
conditions. Elements from an underlying metric space then have graded membership in a concept depending on their 
similarity to a set of prototypical cases. There is some evidence that humans use natural categories in this way; see for 
example experiments reported in [43]. Fuzzy set theory [49] was proposed as a calculus for combining and modifying 
concepts with graded membership, and these ideas were then extended [51] to linguistic variables, these being variables 
taking words as values, rather than numbers. For example, ‘height’ can be viewed as a linguistic variable taking values ‘short,’ 
‘tall’, ‘very tall’, etc.. The variable relates to an underlying universe of discourse �, which for the concept ‘tall’ could be R+ . 
Then each value L of the variable is associated with a fuzzy subset of �, and a function μL : � → [0, 1] associates with 
each x ∈ � the value of its membership in L. Prototype theory gives a semantics for fuzzy set theory through the notion of 
similarity to a prototype, as described in [15]. In this context, concepts are represented by fuzzy sets and membership of an 
element in a concept is quantified by its degree of similarity to the prototype. Another possible semantic basis for fuzzy sets 
is random set theory (see [15] for an exposition). Here, the fuzziness of a set is a result of uncertainty about an underlying 
crisp set, i.e. semantic uncertainty. Fuzzy set theory seemed initially to be a natural formalisation of prototype theory, since 
it admits graded membership of concepts. However, work in this area has shown that it is inadequate as a model for human 
concept combination. A fuzzy set L is defined over a universe � via a membership function μL : � → [0, 1]. Elements x ∈ �

that are very good examples of the concept L have membership close to 1, whereas elements x that are bad examples of 
the concept have membership close to 0. The conjunction of two fuzzy sets is defined purely extensionally, for example 
μL1∧L2 (x) = min(μL1(x), μL2 (x)), where min(a, b) indicates the minimum of the two values a and b. Then, overextension of 
conjunctions of concepts cannot be explained using standard conjunction operators within fuzzy set theory [25,27,40]. Two 
key examples of this are the conjunction fallacy [47] and the ‘guppy effect’ [40]. The conjunction fallacy is that humans 
often judge more specific conditions as more probable than more general conditions. For example, one might judge a 
bicycle that has been painted with polka dots to be more typical of the combined concept ‘polka dot bicycle’ than of the 
concept ‘bicycle’. We discuss this further in section 4.4. The ‘guppy effect’ is introduced in [40], in which Osherson and 
Smith point out that a guppy, or goldfish, lacks many of the attributes of either a prototypical pet or a prototypical fish, 
whilst nonetheless being a prototypical example of a pet fish. These difficulties may be partly due to the failure of the 
fuzzy approach to account for the intension of concepts in the form of the attributes that the concept possesses. In contrast, 
conceptual space and quantum models are able to represent the intension of concepts, since in each case, a concept is 
viewed as being embedded in a multidimensional space, whose dimensions are, in some sense, the required attributes.

There is an important distinction between being a typical example of and being a member of a concept. It is entirely 
possible for something to be a member of a concept, but not typical of a concept. For example, a duck-billed platypus is 
a mammal, but it is not a typical mammal. This is explained by [45] by saying that concepts have defining and charac-
teristic features, and that this is what determines concept membership. In [24,26] Hampton argues against this hypothesis. 
He argues that membership in a conjunction of concepts may be determined by placing a threshold on a judgement of 
similarity of an item to a composite prototype, so that the two notions of typicality and membership may be attributed 
to one common cause, and furthermore, that judgements of typicality are correlated with probability of categorization. We 
subscribe to Hampton’s view, as will be seen, allowing for the different weighting of particular attributes, which can thereby 
contribute to the typicality of an item to a concept. We do not discuss the similarity threshold at which a judgement of 
membership in a concept should be made. However, we often use the notion of membership in a fuzzy set as a proxy for 
typicality, and in particular we use the terminology ‘membership function’ and ‘membership value’. These should be seen 
as akin to typicality ratings in all that follows.

2.3. Conceptual spaces

Conceptual spaces are proposed in [19] as a framework for representing information at the conceptual level. Gärdenfors 
contrasts his theory with both a symbolic, logical approach to concepts, and an associationist approach where concepts are 
represented as associations between different kinds of basic information elements. Rather, conceptual spaces are geometrical 
structures based on quality dimensions such as weight, height, hue, brightness, etc. It is assumed that conceptual spaces 
are metric spaces, with an associated distance measure. This might be Euclidean distance, or any other appropriate metric. 
The distance measure can be used to formulate a measure of similarity, as needed for prototype theory, according to which 
similar objects are close together in the conceptual space and very different objects are far apart.

To develop the conceptual space framework, Gärdenfors also introduces the notion of integral and separable dimensions. 
Dimensions are integral if assignment of a value in one dimension implies assignment of a value in another, such as depth 
and breadth. Conversely, separable dimensions are those where there is no such implication, such as height and sweetness. 
A domain is then defined as a set of quality dimensions that are separable from all other dimensions, and a conceptual space
is defined as a collection of one or more domains. Gärdenfors goes on to define a property as a convex region of a domain 
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Table 1
(a) Correlation strengths of ‘red’ and ‘round’ in ‘apple’. (b) Corre-
lation strengths of ‘red’ and ‘round’ in ‘cricket ball’.

(a)

C1 Red Round

Red 1 0.5
Round 0.5 1

(b)

C2 Red Round

Red 1 1
Round 1 1

in a conceptual space. Finally, a concept is defined as a set of such regions that are related via a set of salience weights. This 
casting of (at least) properties as convex regions of a domain sits very well with prototype theory, as indeed Gärdenfors 
points out. If properties are convex regions of a space, then we can say that an object is more or less central to that region. 
Because the region is convex, its centroid will lie within the region, and this centroid can be seen as the prototype of the 
property.

There are a few approaches to defining concept composition based on conceptual spaces. Firstly, Gärdenfors proposed 
that when combining a pair of concepts as he defines them, properties in one concept are replaced by properties from the 
other, depending on the salience, or weighting, of each concept and each property. He goes on to introduce the notion of a 
contrast class. This has the effect that a particular property is restricted to a certain area. For example when talking about 
red wine, the concept ‘red’, determined by the contrast class ‘wine’, is a subset of the standard concept red. In order to 
model this, Gärdenfors maps the whole of the colour domain onto the subset of colours that can apply to wine. The formal 
rule for concept combination is then that the combination C D of two concepts C and D is determined by letting the regions 
for the domains of C confined to the contrast class defined by D , replace the values of the corresponding regions for D . 
So in the example of ‘red wine’, the space of colours has been restricted by the noun ‘wine’ to a subset of the full colour 
space with the same geometry. The colour of the wine is then taken to be the colour that is occupied by ‘red’ within the 
restricted colour space.

Consistent with this high level description of concept combination, we now describe below two more formal approaches 
based on conceptual spaces. Adams and Raubal [2] give a fairly straightforward formalisation of Gärdenfors’s account, within 
which a conceptual space consists of a 6-tuple of domains, concepts, instances, contrast classes, contexts, and a similarity 
sensitivity parameter. Each domain is a set of quality dimensions. A concept is defined as a pair consisting of a set of convex 
regions of domains together with a prototypical instance P , and a property as a concept that includes only one domain 
region. A contrast class is defined as a region of a unit hypercube corresponding to a domain. Although it is not entirely 
clear why a unit hypercube is used rather than the domain itself, this is presumably as a way of normalising the dimensions 
of the domain before the contrast is applied. A context is defined as a finite set of salience weights. In [2], Adams and 
Raubal go on to define three types of concept combination: property–concept, concept–concept and contrast–class–concept 
combination and give algorithms for the implementation of each type of combination. However, they do not attempt to 
account for the fuzziness of natural concepts, or give any account of non-compositional features.

Another approach that gives a formal definition of conceptual spaces is described by Rickard et al. in [42]. This views 
concepts as a function from pairs of properties into a unit interval. These properties are defined as fuzzy sets in a domain 
Domi . A concept C is therefore a set of correlations between pairs of properties (a, b) where a, b belong to a set of prop-
erties. Each pair of properties (a, b) has a value Cab in a concept, which gives the strength of the correlation of a and b in 
the concept. For example, consider the concept Banana. The property yellow and the property sweet are highly correlated, 
and the property green and the property bitter are highly correlated. A context is defined as a set of properties, and the 
similarity between two concepts C1 and C2 as the mutual subsethood of C1 and C2 relative to that context. The mutual 
subsethood functions as a way of determining the overlap of two concepts. It is defined by:

s(C1, C2) =
∑

a,b min(C1
ab, C2

ab)∑
a,b max(C1

ab, C2
ab)

where Cab is the value of the correlation between properties a and b on concept C .
For example, suppose our context is the set {red, round} and our objects are C1 = apple, C2 = cricket ball. The strengths 

of the correlations are given in Tables 1a and 1b.
Then

s(C1, C2) =
∑

a,b min(C1
ab, C2

ab)∑
a,b max(C1

ab, C2
ab)

= 1 + 0.5 + 0.5 + 1

1 + 1 + 1 + 1
= 3

4

The role of the context is to determine which properties are relevant in calculating the similarity. The membership 
of an observation in a concept is defined as the similarity of the observation to a given concept, and the label is then 
assigned which has maximum membership for the given observation. Dynamics on the space are also introduced, which 
allow properties to be prioritised for attention. Composition of concepts is carried out by combining properties by taking the 
union of the property sets so that the resulting combined concept has properties that belong to both constituent concepts. 
Whilst Rickard et al. do model fuzziness, they do not attempt to account for non-compositional features of human concept 
use.



208 M. Lewis, J. Lawry / Artificial Intelligence 237 (2016) 204–227

2.4. Computational linguistics and vector space models

Within the field of computational linguistics, vector-based models of word meaning have proved very fruitful. The mean-
ing of a particular word is represented as a vector, where the basis of the vector space might be a chosen set of words 
(usually, the most common, excluding a list of stop-words such as ‘a’, ‘the’, ‘and’, and so on), or some other carefully cho-
sen dimensions, and the entries in the vector are word co-occurrence statistics, or a relation between the words and the 
documents they occur in [10,31,37]. A comprehensive paper by Mitchell and Lapata [38] gives a comparison of various 
techniques for adjective-noun composition. Related approaches are given in [7,11], where adjectives are viewed as matrices, 
and nouns as vectors. Whilst these approaches have considerable merit, the underpinning space cannot be viewed as a 
conceptual space that describes features of the concept. The relationship of individual dimensions to the vectors are not 
attributes, but could be instances, parts of, or any other incidental relationship. The development of a suitable conceptual 
space for these models would be an interesting line of future research.

Another approach within the computational linguistics framework is the development of a family of ‘microtheories’ of 
word meanings. [41] develop a microtheory of adjectives whereby the analysis given in [27] is extended to examine what 
a number of linguists determine to be the taxonomy of adjectives. Words are represented as having syntactic and semantic 
types. The syntactic type describes how the word can be combined with others. The semantic type describes the semantic 
effect of making such a combination. So, for example, the adjective ‘big’ can be applied in the combinations Adj-Noun or 
Noun-Copula-Adj, and has the semantic effect that it can be applied to physical objects and limits the normalised value of 
the size property to greater than 0.75. Adjectives are divided into scalar – based on properties, denominal – based on object, 
and deverbal – based on processes. The distinctions between these types lie in their semantics, namely the different ways 
in which they combine with nouns to form a composite. In the work we present here we focus on intersective adjectives, 
since as pointed out in [27] even these require work to clarify how typicality functions in a composite concept, and therefore 
we do examine the difference in semantic types. Explaining these differences will be an interesting area for further work, 
however.

2.5. Quantum probability models

The quantum probability model introduced by Aerts [3], sees a concept as a quantum entity within a vector space, the 
dimensions of which are the contexts of the concept. When no context is present for the concept, the concept is in its 
ground state. The application of a context then changes this concept into the concept under that context. Typicality of an 
item to a concept changes with context. As such, problems such as the ‘guppy effect’ are accounted for by noting that the 
typicality of a guppy to the concept pet in its ground state differs from the typicality of a guppy to the concept pet in the 
context ‘the pet is a fish’. Aerts et al [5] give a description of how the effects of contextuality, interference, entanglement 
and emergence may be seen in human concept use. Contextuality may be seen in the way that the typicality of an element 
to a concept changes with the context given. The phenomenon of interference in quantum vector spaces allows over- and 
under-extension to be modelled when combining concepts. Briefly, membership in a concept is modelled by the projection 
of the concept onto the subspace representing the item. When evaluating the membership of an item to the composite 
concept ‘A and B ’, it may be the case that an interference term needs to be introduced. This interference term accounts for 
over- or under-extension. This idea is explained in detail in [4], in which data from [23,24] is modelled. The phenomenon 
of entanglement is found to be present in data concerning the applicability of combinations of concept pairs. The concept 
of emergence is explained as the idea that a totally new concept has been introduced by forming a conjunction of concepts. 
To account for this, Aerts et al. propose the use of Fock space. In Fock space, an entity may be in a superposition of 
states. In the case of concept combination, one of these states is the completely new concept, and another is the concept 
as a combination of two concepts. Using these notions, the quantum probability model develops ways of modelling which 
account for both the fuzziness of human concept use and effects of non-compositionality. Within this paper, we aim to show 
that our approach can account for these aspects of human concept use within a simpler and more intuitive framework.

2.6. Experimental studies

Hampton [22] reports results from two experiments. The aim of the first was to generate a list of attributes for each of 
six pairs of concepts and their conjunctions. An example is the pair of concepts Sports and Games. A list of attributes was 
collected for each of these concepts, and for the conjunctions ‘Games which are Sports’ and ‘Sports which are Games’. This 
was repeated for each of the six pairs of concepts. Based on these lists of attributes, the second experiment asked partic-
ipants how useful each attribute was in defining the concept, as measured on the scale shown in Table 2 (the numerical 
value was imposed later rather than given by participants).

Averaging across subjects then gives the mean importance rating for each attribute in each concept. Some attributes 
have similar importance within pairs of concepts, and some differ. For example, the attribute ‘Is used by people’ has a 
mean rating of 3.00 for both Machines and for Vehicles. However, ‘Replaces people’ has a mean rating of 2.00 for Machines, 
and −1.00 for Vehicles. The challenge then is to predict the importance of an attribute for a combined concept such as 
‘Machines which are also Vehicles’ from the attribute weightings of the constituent concepts. Hampton reports that using 
multiple regression to obtain weight coefficients for a weighted sum provides the best predictor of attribute weightings in 
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Table 2
Table of ratings.

Code Importance Numerical value

N Necessarily true of all possible examples of the concept 4
A A very important part of the definition 3
B A fairly important part of the definition 2
C Typically true but not very defining 1
X Not usually true of all examples of the concept −1
XX Necessarily false of all possible examples of the concept −2

the combined concepts, but that noncompositionality is also observed. For example, some attributes with low importance 
in the constituent concepts may have a high importance in the combined concept. This is termed ‘attribute emergence’ – 
the attribute ‘Lives in a cage’ has low importance for ‘Pet’ and for ‘Bird’, but high importance for ‘Pet which is also a Bird’. 
A similar way in which noncompositionality manifests itself is in the preservation of necessary or impossible attributes. 
When an attribute is seen as necessary (or impossible) for one of the constituent concepts, that importance rating is carried 
over into the attributes for the combined concept. Therefore, there is no functional relationship between the importance of 
an attribute in the constituent concepts, and the importance in the combined concept. Rather, this depends on the particular 
concepts involved. Hampton finds that conjunction is not commutative in that the qualifying noun, i.e. the second noun in 
the conjunction, is given more weight. Lastly, dominance effects are also seen, in that concepts which bring more attributes 
to the conjunction tend to dominate.

Hampton therefore reports the following six main results:

• The attribute set for combined concepts is the union of the attribute sets of the constituent concepts
• The importance of attributes in the combined concept is usually a weighted sum of the importance of the attributes in 

each individual concept
• Necessity and impossibility are preserved
• Attribute loss or emergence is observed
• Conjunction is not commutative
• Dominance effects are observed

We will argue that our proposed model of concepts and concept combination can also account for these phenomena. 
Furthermore, our framework is a natural extension of the conceptual spaces model in which the importance of certain 
dimensions is related to their necessity as defined by possibility theory [16].

3. Formal model of concepts

In this section we outline our conceptual spaces based model of concepts which forms the theoretical underpinnings of 
our work. This model of concepts combines a prototype theory approach with random sets, capturing both typicality and 
semantic uncertainty, first outlined by Lawry and Tang in [33]. We will go on to build on this model of concepts to form a 
framework for concept combination.

3.1. A prototype and random set model of concepts

In this framework, agents use a set of labels L = {L1, L2, ..., Ln} to describe an underlying conceptual space � which 
has a distance metric d(x, y) between points.2 If one of x or y is a set then we take the distance to be the minimum 
distance to any point in the set. For example, suppose Y is a set, then d(x, Y ) = min{d(x, y) : y ∈ Y }. Each label Li is 
associated firstly with a set of prototype values Pi ⊆ �, and secondly with a threshold εi , about which the agents are 
uncertain. The thresholds εi are drawn from probability distributions δi . Labels Li are associated with neighbourhoods 
N εi

Li
= {x ∈ � : d(x, Pi) ≤ εi}. The neighbourhood can be seen as the extension of the concept Li . The intuition here is that 

εi captures the idea of being sufficiently close to prototypes Pi . In other words, x ∈ � is sufficiently close to Pi to be 
appropriately labelled as Li providing that d(x, Pi) ≤ εi . This is illustrated in Fig. 1.

Given an element x ∈ �, we can ask how appropriate a given label is to describe it. This is quantified by a membership 
function, denoted μLi (x), corresponding to the probability that the distance from x to Pi , the prototype of Li , is less than 
the threshold εi , as given by:

μLi (x) = P (εi : x ∈ N εi
Li

) = P (εi : d(x, Pi) ≤ εi) =
∞∫

d(x,Pi)

δi(εi)dεi

2 In fact, it is sufficient that d(x, y) be a pseudo distance.



210 M. Lewis, J. Lawry / Artificial Intelligence 237 (2016) 204–227

Fig. 1. Prototype-threshold representation of a concept Li . The conceptual space has dimensions x1 and x2. The concept has prototype Pi and threshold εi . 
The uncertainty about the threshold is represented by the dotted line. Element a in the conceptual space is within the threshold, so we can say that a has 
property Li . Element b is outside the threshold, so b does not have the property Li . The neighbourhood N εi

Li
= {x ∈ � : d(x, Pi) ≤ εi} corresponds to the 

shaded area.

Fig. 2. Conceptual space divided into concepts according to a Voronoi tessellation around prototypes. Each part of the space corresponds to exactly one 
concept.

We also use the notation 
∫ ∞
εi

δεi (εi)dεi = �i(εi), according to which μLi (x) = �i(d(x, Pi)). The above formulation pro-
vides a link to the random set formalisation of fuzzy sets. Random sets are random variables taking sets as values. If we 
view N εi

Li
as a random set from R+ into 2� , then μLi (x) is the single point coverage function of N εi

Li
, as defined in [32].

Each label Li is entirely defined by its prototype Pi , the distance metric in the space d(x, y) and the distribution δi of 
the threshold εi . We can therefore, given a particular conceptual space �, use the notation Li =< Pi, di, δi > to completely 
describe the label Li .

The idea of a membership function presented here may be compared with the similarity relation that Gärdenfors uses. 
A similarity relation between points in a conceptual space may be defined as a decreasing function of distance in the 
space. Gärdenfors gives the example that the similarity s(x, y) between two points x and y in the conceptual space is an 
exponentially decaying function of the distance d(x, y) between the two points, i.e. s(x, y) = exp(−cd(x, y)). In terms of the 
prototype-threshold approach outlined above, the membership of an element x in a concept L may then be defined as the 
similarity to the prototype P of L, where ε ∼ Exp(c). More generally, s(x, y) = �(d(x, y)).

This approach is, however, in contrast to Gärdenfors’ original approach which is to view the space as partitioned by a 
Voronoi tessellation. If this latter approach is taken, each individual point in the conceptual space is allocated to exactly one 
label. With a prototype-threshold approach, it is easy to accommodate the idea of an object being accurately described by 
more than one concept, or conversely, some points within the space not being assigned to any concept. This difference is 
illustrated in Figs. 2 and 3.

The Voronoi diagram approach to describing concepts can be extended to include graded boundaries, and such an ap-
proach is developed in [13,14]. We argue that a drawback to this type of representation is that every single point has been 
categorised. In contrast, in the label semantics approach there can be points which have not been categorised. This is desir-
able: imagine the first Western scientists to encounter a duck-billed platypus. It is not clear how to categorise this animal, 
and it could be modelled as being in a region of space that has not yet been assigned to a category. Another advantage of 
the neighbourhood model is that concepts can overlap which allows us specifically to refer to borderline regions. However, 
a benefit of the Voronoi tessellation approach to concept representation is that the membership of a point in a concept 
depends not only on the prototype of that concept but on the proximity of other prototypes. To integrate this aspect into 
the label semantics approach to concepts would be an interesting area for future research.
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Fig. 3. Conceptual space divided into concepts according to a prototype-threshold approach. Some points in the space correspond to more than one concept, 
and some correspond to none.

Fig. 4. Schematic of a hierarchical conceptual spaces model for combining concepts.

4. A hierarchical model of conjunctive composition

4.1. Background

As described in section 2, Hampton [22] gives a series of results on human understanding of conjunctive concepts, 
such as ‘sports that are games’. It had already been shown [40,46] that standard fuzzy set-theoretical conjunctions and 
disjunctions do not adequately model human understanding of composite concepts. Hampton’s work elicits data that could 
form the basis of a model of conjunction that more accurately reflects how humans understand conjunctive concepts.

4.2. A new approach to concept composition

An initial approach to modelling Hampton’s data within the conceptual spaces framework would be to view individual 
attributes, for example ‘Talks’, ‘Has fur’, ‘Has claws’, as each forming a dimension of the conceptual space. However, these 
attribute dimensions are very different from the usual conceptual space dimensions in two ways. Firstly, they are mostly 
binary, unlike dimensions such as ‘height’, ‘depth’ or ‘breadth’. Secondly, they are very complex in comparison to the types 
of dimensions proposed by Gärdenfors. For instance, having feathers seems to be a multidimensional concept in itself.

This motivates a new hierarchical formulation of conceptual spaces in which we model attributes as labels, each taken 
from individual domains. In Gärdenfors’ terminology, each label would be a property from an integral domain. So an at-
tribute like ‘rounded’ is seen as a label based in a space such as R3, or ‘red’ as based in the CIELab colour space. From this 
perspective, each of the attribute labels can form a binary dimension which are then combined to form the space {0, 1}n

where n is the number of attributes. Within this binary space, we take the value 1 on a particular dimension to mean that 
an object has that particular property. Fig. 4 gives a schematic representation of this model, within which we treat the com-
bination space {0, 1}n itself as a conceptual space with an associated metric. This enables us to apply the neighbour-based 
prototype model of concepts outlined in section 3 to form compound concepts made up of many properties. The motivation 
for treating this combination space itself as a conceptual space is that if we view each label as a property in an integral 
domain, then this is precisely a formalisation of the conceptual spaces that Gärdenfors proposes. Gärdenfors suggests both 
a weighted sum of properties and a weighted Euclidean distance metric in the property space. The formalism we propose 
corresponds to the weighted sum of properties, but generalises it. If we were to use a cube [0, 1]n ∈ R

n , then we might be 
able to give the weighted Euclidean distance as a special case. This is an area for further work, however.

In the sequel we formalise this idea and prove a number of key results concerning conjunctive concepts defined in this 
way. We show that if the threshold of the compound concept in the binary combination space is uniformly distributed, 
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Fig. 5. The prototype for α = L1 ∧ L2 ∧ L3 is �xα = (1,1,1). Each dimension i is weighted by λi .

the membership function for the compound concept is shown to be a weighted sum of the membership functions of 
the individual labels. This result nicely parallels Zadeh’s operation of convex combination, and Gärdenfors’ proposal that 
concepts should be seen as sets of properties related by salience weights. Lastly, we will show that under certain conditions, 
the importance of an attribute in a conjunction of two compound concepts can be calculated as the weighted sum of the 
importances of the individual attributes, directly mirroring Hampton’s results.

A conjunctive label is defined in a binary space as follows. Consider a set of distinct integral domains �1, . . . , �n , such 
as the CIELab colour space, size, and taste. We select a label from each domain for combination. So an apple might be 
described as red and sweet and medium sized. This gives us a set L A = {L1, . . . , Ln} where Li ⊆ �i for i = 1, . . . , n.

Each label Li is defined by the triple < Pi, di, δi >, as described in section 3, where the prototype Pi ⊆ �i , di is the 
distance metric in �i , the threshold εi is a random variable into R+ and δi is a probability density on εi . We can then 
define a Boolean variable Xi into {0, 1} with reference to a point Yi ∈ �i for i = 1, . . . , n as follows:

Xi =
{

1 : di(Yi, Pi) ≤ εi

0 : otherwise

Here Xi = 1 means that the object being described has the property Li , i.e., Xi = 1 iff Yi ∈ N εi
Li

, where N εi
Li

is the 
neighbourhood of Li , as described in section 3. Also, P (Xi = 1|Yi) = P (d(Yi, Pi) ≤ εi) = μLi (Yi).

A vector �Y ∈ �1 × . . . × �n generates a Boolean vector �X into {0, 1}n . In this case, the probability distribution for Xi is 
determined by δi .

Now consider a conjunctive concept as being defined by a conjunction of labels or their negations, covering all labels 
in L A. It is therefore of the following form:

α =
n∧

i=1

±Li

where +Li = Li and −Li = ¬Li . Expressions of this type are referred to as atoms.
Each atom then naturally defines a point in {0, 1}n as follows:

�xα =< x1,α, x2,α, ..., xn,α > such that xi,α =
{

1 : if Li appears in α

0 : if ¬Li appears in α

We think of the space {0, 1}n as the binary conjunction space, and of �xα as the prototype of the conjunctive concept α. 
We also allow some deviation from the prototype by taking into account the different levels of importance of each label Li . 
The differing importance of the labels is characterised by a weight vector �λ which weights each dimension in the binary 
space. These ideas are illustrated in Fig. 5.

We can now consider membership in the conjunctive concept within the binary space. A conjunctive concept is defined 
by the triple α =< �xα, d, δ > where α is an atom of L A, d is a distance on {0, 1}n , ε is a random variable in R+ and δ
is a probability distribution on ε. We say that an element �X ∈ {0, 1}n can be appropriately described by the concept α iff 
d(�xα, �X) ≤ ε with the membership function defined by:

μα( �X) = δ({ε : d( �X, �xα) ≤ ε}) = �(d( �X, �xα))

We can then relate membership in �1 × �2 × ... × �n to membership in the binary space {0, 1}n as follows.
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Fig. 6. Prototype for α = L1 ∧ L2 and weighted dimensions in a two dimensional binary space, together with the threshold ε for α. The point (0, 1), 
indicated by an open circle, can be considered to be an instance of the concept for which xα is the prototype.

We define a binary random variable Z into {0, 1} such that:

Z =
{

1 : d( �X, �xα) ≤ ε

0 : otherwise

Clearly in this case P (Z = 1| �X) = μα( �X). Now by total probability we have that:

P (Z | �Y ) =
∑

�X
P (Z | �X, �Y )P ( �X | �Y ) =

∑
�X

P (Z | �X)P ( �X | �Y )

We may assume that �Z and �Y are conditionally independent given �X , since �Z is defined purely in terms of �X .
Letting μα(�Y ) denote P (Z = 1| �Y ) and assuming independence of the dimensions i = 1...n we then have that:

μα(�Y ) =
∑

�X
μα( �X)P ( �X | �Y ) =

∑
�X

μα( �X)

n∏
i=1

P (Xi|Yi)

More generally, we can define a compound concept with prototypical case θ = ∧
I ±Li , where I ⊆ {1, ..., n}, as a triple 

θ =< P , d, δ > where:

P = {�x =< x1, x2, ..., xn >∈ {0,1}n : xi = 1, if Li appears in θ, xi = 0, if ¬Li appears in θ}
P is therefore a set of points which all have the same values on the dimension specified by the index set I , and cover all 
remaining possibilities across the dimensions not in I . This implies that where I = {1, ..., n}, P is a singleton.

In this case we have that:

μθ( �X) = δ({ε : d( �X, P ) ≤ ε}) where d(�X, P ) = min{d( �X, �x) : �x ∈ P } and

μθ(�Y ) =
∑

�X
μθ( �X)

n∏
i=1

P (Xi|Yi)

We now define a distance metric in the binary space {0, 1}n based on Hamming distance and a weight vector.

Definition 1 (One dimensional Hamming distance).

∀x, x′ ∈ {0,1}, H1(x, x′) =
{

1 : x = x′

0 : otherwise

Definition 2 (Weighted Hamming distance). For �λ ∈ (R+)n ,

∀�x, �x′ ∈ {0,1}n, H�λ(�x, �x′) =
n∑

i=1

λi H1(xi, x′
i)

The effect of this distance metric on membership in the binary space is illustrated in Fig. 6. Suppose that the concept 
‘bird’ is characterised, for illustrative purposes, by two properties L1 = ‘flies’, L2 = ‘has feathers’. The property L1 may be 
relaxed, since there are birds which do not fly. So animals which have feathers, but do not fly, are still considered birds but 
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not typical birds. We characterise this using the weights in the binary space. Therefore in this case, the weight on the first 
dimension, λ1 will be smaller than λ2. The effect this has is to create elliptical neighbourhoods in the space.

We now outline a correspondence between our idea of a compound concept as a conjunction of attribute labels or their 
negations, and Hampton’s account of concepts as combinations of attributes with individual weights. Firstly, as stated above, 
we model individual attributes as labels from conceptual spaces such as the colour space, or the taste space. We have a 
vector of weights, �λ, attached to the binary space which loosely corresponds to Hampton’s attribute weights. However, the 
weights in Hampton’s account range from 4, being necessary, to −2, being impossible. In contrast, our weight vector �λ is 
always positive, and the idea of an attribute Li being atypical or impossible is captured by the notion that the conjunction ∧n

i=1 ±Li includes ¬Li . The extent of the atypicality of the attribute Li is then given by the weight λi of the corresponding 
dimension.

4.3. Properties of the hierarchical model

We now give a series of results concerning the formulation and properties of compound concepts. We firstly give an 
example of how two properties may be combined. In section 4.3.1 we show that as a special case, the membership function 
of a compound concept reduces to a weighted sum of the membership functions of the individual constituent concepts, 
thereby giving a mathematical grounding to the ideas proposed in [19] of seeing a concept as a weighted combination of 
properties, or in [50] of forming complex concepts via a mechanism of convex combination. Lastly, section 4.3.2 shows how 
the conjunction of two compound concepts can again be modelled as a weighted sum. This result models Hampton’s results 
[22], outlined in 4.1.

Example 3 (Property–property combination). Suppose we are combining the labels ‘tall’ and ‘thin’. Let Ptall = {Y1 ∈ R
+ :

x1 > 175} and Pthin = {Y2 ∈ R
+ : x < 24}. Define ‘tall’ =< Ptall, || • ||, δtall > and ‘thin’ =< Pthin, || • ||, δthin >, where the 

distributions δtall and δthin are defined piecewise as Beta distributions on normalised variables for height and waist size 
within boundaries that we have chosen, and 0 otherwise, i.e.:

δtall(d(x, Ptall)/20) =
{

Beta(1,5) if d(x, Ptall)/20 ≤ 1

0 : otherwise

δthin(d(x, Pthin)/4) =
{

Beta(3,1) if d(x, Pthin)/4 ≤ 1

0 : otherwise

We use Beta distributions in this example, since this distribution produces various different shapes depending on the 
parameters used.

Suppose α = ‘tall and thin’ is mapped into {0, 1}2 with λ1 = 0.4, λ2 = 1 −λ1 = 0.6, and that the threshold ε is distributed 
according to δ = Beta(2, 1).

Then α =< (1, 1), H�λ, δ >, and

μtall and thin(�Y ) = �α(0)μtall(Y1)μthin(Y2) + �α(1 − λ1)μtall(Y1)(1 − μthin(Y2))

+ �α(λ1)(1 − μtall(Y1))μthin(Y2) + �α(1)(1 − μtall(Y1))(1 − μthin(Y2))

where �Y = (Y1, Y2) ∈ R
2.

This membership function is illustrated in Fig. 7.

4.3.1. Results for compound concepts using hamming distance
The example above shows that the membership functions generated within this framework can be very flexible. However, 

we show that by restricting the type of membership function used in the binary combination space, we can derive an 
expression for the membership function μθ (�Y ) of the compound concept θ = ∧k

i=1 ±Li , k ≤ n as a weighted sum of the 
membership functions for individual domains μ±Li (Yi). This grounds proposals in [19,30,50] that complex concepts can be 
built up as sums of weighted properties.

Theorem 4. Let α = ∧n
i=1 ±Li and λT = ∑n

i=1 λi . Let δ be the uniform distribution on the interval (0, λT ). If d is the weighted 
Hamming distance H�λ then:

μα(�Y ) =
n∑

i=1

λi

λT
μ±Li (Yi)

Proof. W.l.o.g assume α = ∧n
i=1 Li . Notice that �(u) = λT −u

λT
for u ∈ [0, λT ], and therefore:
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Fig. 7. μtall and thin(�Y ).

μα( �X) = �(H�λ((1, . . . ,1), �X)) = �(
∑

i:Xi=0

λi) = λT − ∑
i:Xi=0 λi

λT
=

∑
i:Xi=1 λi

λT

From this we have that:

μα(�Y ) =
∑

�X
(

∑
i:Xi=1 λi

λT
)

n∏
j=1

P (X j|Y j) = 1

λT

∑
�X

∑
i:Xi=1

λi

n∏
j=1

P (X j|Y j)

= 1

λT

n∑
i=1

∑
�X :Xi=1

λi

n∏
j=1

P (X j|Y j) = 1

λT

n∑
i=1

∑
�X :Xi=1

λiμLi (Yi)
∏
j �=i

P (X j|Y j)

= 1

λT

n∑
i=1

λiμLi (Yi)
∑

�X :Xi=1

∏
j �=i

P (X j|Y j) = 1

λT

n∑
i=1

λiμLi (Yi) =
n∑

i=1

λi

λT
μLi (Yi) �

Theorem 4 grounds the idea that properties can be combined via a set of weights to form a concept, as proposed by 
Gärdenfors in [19], or the operation of convex combination proposed by Zadeh in [50]. The model sits particularly well 
with Gärdenfors’s proposal since it uses a binary conceptual space as the mechanism for combination. Furthermore, the fact 
that we require specific conditions for the distribution of the threshold of the concept in the binary space is an advantage, 
since relaxing these conditions allows us to explain some of the characteristics of concept combination seen in psychological 
experiments, such as overextension or non-commutativity. We will discuss this further in section 4.3.3.

A key aspect of concepts in Gärdenfors’s conceptual spaces is that they should be convex. In a space Rn with the 
Euclidean distance metric, convexity of a set S is defined by the property that ∀x, y ∈ S , every point on the line segment 
connecting x and y is also in S . A detailed discussion is given [19] citing experimental evidence for the fact that concepts 
as used by humans tend to be convex, and that the use of convex concepts requires less cognitive load. We give a definition 
of convexity for the binary combination spaces {0, 1}n .

Definition 5 (Betweenness). ∀x, y, z ∈ {0, 1}n with distance metric H�λ , z is between x and y, B(x, y, z) iff H�λ(x, y) =
H�λ(x, z) + H�λ(z, y).

Definition 6 (Convexity). A set S ⊆ {0, 1}n is convex if ∀x, y ∈ S , every point z lying between x and y also belongs to S, i.e. 
{z : B(x, y, z)} ⊆ S .

We can now generalise Theorem 4 to the case where θ = ∧k
i=1 ±Li , k ≤ n. In this case, the prototype P does not specify 

all values of i = 1...n. We firstly introduce some notation allowing us to talk about the set of dimensions in a prototype that 
remain invariant. We argue that if P does not specify all dimensions of {0, 1}n , then the weight vector �λ must be such that 
only those dimensions contributing to the concept are weighted. For example, suppose n = 3, P = {(1, 1, 1), (1, 1, 0)}. Then 
�λ = (0.4, 0.3, 0). We go on to prove that a similar result to that shown in Theorem 4 holds for θ .

We now introduce some notation to enable us to talk about the dimensions of a set of points S ⊆ {0, 1}n that take a 
fixed value across the subset.
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Definition 7 (Fixed dimensions).

• For S ⊆ {0, 1}n , Z(S) ⊆ {1, . . . , n} such that Z(S) = {i : ∀�x ∈ S, xi = 0} (the zeros of S)
• For S ⊆ {0, 1}n , O (S) ⊆ {1, . . . , n} such that O (S) = {i : ∀�x ∈ S, xi = 1} (the ones of S)
• For S ⊆ {0, 1}n , E(S) ⊆ {1, . . . , n} such that E(S) = {i : ∀�x, �y ∈ S, xi = yi}. Note that E(S) = Z(S) ∪ O (S) (the set of points 

in S that take fixed values)

Theorem 8. Let θ =< P , H�λ, δ > where P is convex with respect to H�λ. Furthermore, let θ ′ =< P , H �λ′ , δ > such that:

λ′
i =

{
λi : i ∈ E(P )

0 : otherwise

Then μθ( �X) = μθ ′ ( �X)

Proof. Since P is convex we have that:

H�λ(P , �X) =
∑

i∈E(P )

λi =
∑

i∈E(P )

λ′
i = H�λ′(P , �X)

Therefore,

μθ( �X) = �(H�λ(P , �X)) = �(H�λ′(P , �X)) = μθ ′( �X) �
So with respect to membership in θ in the binary space, the weight vector λ′ produces the same results as the weight 

vector λ. We now show that an analogue to Theorem 4 holds.

Theorem 9. Let θ =< P , H�λ, δ > with δ = U (0, λT ), where λT = ∑n
i=1 λi , and θ ′ =< P , H �λ′ , δ′ > such that:

λ′
i =

{
λi : i ∈ E(P )

0 : otherwise

λ′
T = ∑n

i=1 λ′
i and δ′ = U (0, λ′

T ) = λT
λ′

T
δ. Then μθ( �X) = λ′

T
λT

μθ ′ ( �X), and μθ(�Y ) = λ′
T

λT
μθ ′ (�Y ).

Proof. Since P is convex, H�λ(P , �X) = H�λ′ (P , �X).
So

μθ( �X) = �(H�λ(P , �X)) = �(
λ′

T

λT
H�λ′(P , �X))

= λ′
T

λT
�′(H�λ′(P , �X))

= λ′
T

λT
μθ ′( �X)

Now,

μθ(�Y ) =
∑

�X
μθ( �X)

n∏
i=1

P (Xi |Yi)

=
∑

�X

λ′
T

λT
μθ ′( �X)

n∏
i=1

P (Xi|Yi)

= λ′
T

λT

n∑
i=1

λ′
i

λ′
T

μLi (Yi) by Theorem 4

= λ′
T

λT
μθ ′(�Y ) �

We can therefore convert any θ =< P , H�λ, δ > with δ = U (0, λT ) into θ ′ , such that i /∈ E(P ) → λi = 0 via a suitable 
scaling of μθ( �X) and μθ(�Y ).

These results show that a compound concept can be built up out of the weighted sum of individual concepts, provided 
that certain key conditions hold. We now go on to look at the behaviour of the conjunction of two such concepts.
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Fig. 8. Schematic illustration of the second level binary space.

4.3.2. Conjunctions of compound concepts
Up to now we have discussed how properties from integral domains may be combined to form concepts. The results in 

[22] concern how the weighting of these properties change under the conjunction of two such concepts. We extend our 
framework to take into account the conjunction of two compound concepts. To do this, we introduce a second level binary 
space, illustrated in Fig. 8, and combine the two concepts within the second level space using the same approach as in 
section 4.2, i.e. as if they are themselves properties.

Let θ =< P1, d1, δ1 > and ϕ =< P2, d2, δ2 > be two compound concepts consisting of a conjunction of attribute labels 
from individual conceptual spaces �i . As in section 4.2 we define the following two binary variables:

Z1 =
{

1 : d( �X, P1) ≤ ε1

0 : otherwise
and Z2 =

{
1 : d( �X, P2) ≤ ε2

0 : otherwise

Hence �X naturally generates �Z = (Z1, Z2) ∈ {0, 1}2. We now define the conjunction of compound concepts as the triple 
θ ∧ ϕ = ({(1, 1)}, d, δ) where d is a distance metric on {0, 1}2. In this case we can define a binary random variable C such 
that:

C =
{

1 : d((1,1), �Z) ≤ ε

0 : otherwise

We also define the membership function for θ ∧ ϕ as follows:

μθ∧ϕ(�Z) = δ({ε : d((1,1), �Z) ≤ ε})
So that μθ∧ϕ(�Z) = P (C = 1| �Z). Now by applying the theorem of total probability we have that:

μθ∧ϕ( �X) = P (C | �X) =
∑

�Z
μθ∧ϕ(�Z) × P (�Z | �X) =

∑
�Z

μθ∧ϕ(�Z)P (Z1| �X)P (Z2| �X)

Then by a second application of the theorem of total probability we have that:

μθ∧ϕ(�Y ) = P (C | �Y ) =
∑

�X
μθ∧ϕ( �X)P ( �X | �Y ) =

∑
�X

P ( �X | �Y )
∑

�Z
μθ∧ϕ(�Z)P (Z1| �X)P (Z2| �X)

=
∑

�X

n∏
i=1

P (Xi|Yi)
∑

�Z
μθ∧ϕ(�Z)P (Z1| �X)P (Z2| �X)

We can now look at the behaviour of the weights in a conjunction of compound concepts.
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Theorem 10. Let θ =< Pθ , H�λθ
, δθ >, ϕ =< Pϕ, H�λϕ

, δϕ >, where 
∑n

i=1 λθ,i = λθ,T , 
∑n

i=1 λϕ,i = λϕ,T and δθ = Uni f orm(0, λθ,T ), 
δϕ = U (0, λϕ,T ). Let θ ∧ ϕ =< {(1, 1)}, H �w , δ > where w1 + w2 = w T and δ = U (0, w T ). Suppose that if i ∈ E(Pθ ) ∩ E(Pϕ) then 
Pθ,i = Pϕ,i , i.e. that the prototypes have no directly contradictory attributes. Then

μθ∧ϕ(�Y ) =
n∑

i=1

(
w1λϕ,T λθ,i + w2λθ,T λϕ,i

w T λθ,T λϕ,T
)μ±Li (

�Y )

So θ ∧ ϕ =< Pθ∧ϕ, H�λθ∧ϕ
, δθ∧ϕ > where Pθ∧ϕ = Pθ ∩ Pϕ , λθ∧ϕ i

= w1λϕ,T λθ,i + w2λθ,T λϕ,i and δθ∧ϕ = U (0, w T λθ,T λϕ,T ).

Proof. Suppose w.l.o.g. by Theorem 9 that i /∈ E(Pθ ) =⇒ λθ,i = 0, i /∈ E(Pϕ) =⇒ λϕ,i = 0

μθ∧ϕ(�Y ) =
∑

�X

n∏
i=1

P (Xi|Yi)
∑

�Z
μθ∧ϕ(�Z)

2∏
i=1

P (Zi | �X)

=
∑

�X

n∏
i=1

P (Xi|Yi)(
w1

w T
μθ( �X) + w2

w T
μϕ( �X))

= w1

w T

∑
�X

n∏
i=1

μθ( �X)P (Xi |Yi) + w2

w T

∑
�X

n∏
i=1

μϕ( �X)P (Xi |Yi)

= w1

w T

∑
i∈O (Pθ )

λθ,i

λθ,T
μLi (Yi) + w1

w T

∑
i∈Z(Pθ )

λθ,i

λθ,T
μ¬Li (Yi)

+ w2

w T

∑
i∈O (Pϕ)

λϕ,i

λϕ,T
μLi (Yi) + w2

w T

∑
i∈Z(Pϕ)

λϕ,i

λϕ,T
μ¬Li (Yi)

Now, since if i ∈ E(Pθ ) ∩ E(Pϕ) then Pθ,i = Pϕ,i and i /∈ E(Pθ ) =⇒ λθ,i = 0, i /∈ E(Pϕ) =⇒ λϕ,i = 0, we have that

μθ∧ϕ(�Y ) =
n∑

i=1

(
w1λϕ,T λθ,i + w2λθ,T λϕ,i

w T λθ,T λϕ,T
)μ±Li (

�Y ) �

So under certain conditions, the attribute weights in the conjunctive concept are a weighted sum of the attribute weights 
of the constituent concepts, which models one of Hampton’s key findings as stated in section 4.1. Further, since Pθ∧ϕ =
Pθ ∩ Pϕ , E(Pθ∧ϕ) = E(Pθ ) ∪ E(Pϕ), i.e. the attribute set for the conjunctive concept is a union of the attribute sets for the 
constituent concepts, modelling another aspect of Hampton’s results.

Example 11 (Concept–concept combination). Suppose one concept, SU CC E S S , is defined as a conjunction of labels L1 = ‘rich’, 
L2 = ‘healthy’, and suppose H A P P Y is defined as a conjunction of labels L2 = ‘healthy’ and L3 = ‘busy’. Furthermore, sup-
pose SU CC E S S is formed in the binary space {0, 1}2 with prototype set P s = {(1, 1)}, weighting �λs = (0.75, 0.25) and δs =
U (0, 1), i.e. SU CC E S S =< {(1, 1)}, H(0.75,0.25), U (0, 1) > and similarly suppose H A P P Y =< {(1, 1)}, H(0.5,0.5), U (0, 1) >. To 
combine these two concepts, we firstly expand the prototypes and weight vectors for each to encompass the dimensions 
of the other, i.e. they are embedded in the space {0, 1}3, where each dimension i indicates the presence or absence of the 
label Li . So, for example, the point (1, 0, 1) corresponds to ‘rich and not healthy and busy’. Within this expanded space, 
P s = {(1, 1, x3) : x3 ∈ {0, 1}}, i.e., {(1, 1, 0), (1, 1, 1)} and �λs = (0.75, 0.25, 0). Similarly, Ph = {(x1, 1, 1) : x1 ∈ {0, 1}}, and 
�λh = (0, 0.5, 0.5). Now, according to Theorems 4 and 9, μS (�Y ) = 0.75μL1 (Y1) + 0.25μL2 (Y2), and μH (�Y ) = 0.5μL2 (Y2) +
0.5μL3 (Y3).

We combine the expanded θ = SU CC E S S ∧ H A P P Y in the second level binary space {0, 1}2 with prototype Pθ = (1, 1), 
�λθ = (0.5, 0.5), δθ = U (0, 1). Now, according to Theorem 10

μθ(�Y ) = 0.5μSU CC E S S(�Y ) + 0.5μH A P P Y (�Y )

= 0.5(0.75μL1(Y1) + 0.25μL2(Y2)) + 0.5(0.5μL2(Y2) + 0.5μL3(Y3))

= 0.375μL1(Y1) + 0.375μL2(Y2) + 0.25μL3(Y3)

In many cases, we want to combine a concept with a property, such as ‘red car’, illustrated in Fig. 9. This can be 
implemented as a special instance of the concept–concept combination illustrated in Example 11, where the first concept 
has just one label.
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Fig. 9. Schematic illustration of property–concept combination.

Example 12 (Property–concept combination). Suppose R E D = L1, C AR = L2 ∧ L3 ∧ L4, where C AR =< (1, 1), H�λC
, U (0, 1) >

with �λC = (0.33, 0.33, 0.33) so that μC (�Y ) = 0.33μL2 (Y2) + 0.33μL3 (Y3) + 0.33μL4 (Y4). We may combine θ = R E D ∧ C AR
in the space {0, 1}2 with prototype (1, 1), weight vector λ = (0.5, 0.5) and boundary distribution δ = U (0, 1). Then

μθ(�Y ) = 0.5μR E D(�Y ) + 0.5μC AR(�Y )

= 0.5μL1(Y1) + 0.5(0.33μL2(Y2)) + 0.33μL3(Y3) + 0.33μL3(Y4))

= 0.5μL1(Y1) + 0.167μL2(Y2)) + 0.167μL3(Y3) + 0.167μL3(Y4)

Two objections might be made to this approach. Firstly, the combination could be of the form ‘apple green’, where the 
resulting concept should be a colour, rather than an apple. The combination mechanism given in the example would return 
a green apple, rather than a colour. Secondly, as described here, this approach does not take into account cases like ‘red 
wine’, where the meaning of ‘red’ has been changed by the concept it is attached to. To answer the first objection, note 
that the resulting concept from a combination like ‘apple green’, or ‘green apple’ is indicated by the part of speech that 
each word belongs to. In English, this is indicated by word order, so we know that in the first case the resulting concept 
should be a colour, and in the second case the resulting concept should be a fruit. In the combination of properties and 
concepts, the resulting concept will be the original concept modified in the specific domain to which the property applies. 
So, in the case of ‘green apple’, the resulting concept is an apple in which the colour domain has been modified. In the case 
of ‘apple green’, we would choose just the domains from ‘apple’ that are relevant to the domains of ‘green’, i.e. colour, and 
form the combination ‘apple green’ using the approach outlined in Example 12. This approach is similar to that outlined by 
Gärdenfors [19].

In the second objection, the property ‘red’ in the combination ‘red wine’ refers to a particular set of shades of red 
which are not at all prototypical. Gärdenfors [19] has again addressed this, using the idea of contrast classes, which map 
the whole domain onto a subset of the domain determined by the that class. So in the case of wine, there is a range of 
distinctive shades of wine. When the whole colour domain is mapped down to this range, the places that the ‘red’ and the 
‘white’ labels inhabited in the original labelling should now map onto the ‘red’ and the ‘white’ areas in the range of wine 
colours. Our approach is slightly different. As explained in the first objection, the concept ‘wine red’ can be obtained by 
forming a combination of ‘wine coloured’ and ‘red’. The ‘red’ in ‘red wine’ is then understood to be an instance of ‘wine 
red’, rather than every day ‘red’. Although this argument might appear to be circular, we argue that it is not, since the first 
time someone encounters the concept ‘red wine’, a mistake could be made about what colour the drink would be. Only 
after learning that the label ‘red’ in ‘red wine’ refers to the darkest colour of wine can they use it properly. This can be 
seen as an instance where the meaning of the term red, when applied to wine, is determined by convention rather than a 
systematic combination.

Furthermore, although when introducing this framework we have made a distinction between properties and concepts, 
this distinction is not really important in actually carrying out a combination. Increasingly complex concepts can be created 
and combined with other complex concepts or alternatively with simple properties utilising a single domain. The novelty of 
this approach is that the combination mechanism is itself characterised by a conceptual space. As a special case our frame-
work entails that concepts may be characterised as weighted sums of properties, a characterisation of concepts proposed 
in [19,51]. Hampton shows that a majority of his data may be explained by a simple multilinear regression, which can be 
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modelled as in the example above. However, he also notes other non-compositional behaviours, which are key aspects of 
how humans use concepts. We show how our framework can model some of these non-compositional behaviours in the 
next section.

4.3.3. Non-compositional behaviours
In addition to the general rule that the importance of attributes in the conjunction is the weighted sum of the importance 

of attributes in the constituent concepts, Hampton identifies four additional behaviours: necessity and impossibility are 
preserved; attribute loss or emergence is observed; conjunction is not commutative; and dominance effects are observed. 
This section will discuss the capability of our model to capture these behaviours.

We consider firstly the ideas of necessity and impossibility. Hampton finds that necessity of dimensions is preserved, 
so that if an attribute is deemed necessary in a constituent concept, it is also deemed necessary in the conjunction. As 
outlined in section 4.2, necessity and impossibility are essentially the highest and lowest weights that can be assigned to an 
attribute in Hampton’s experiments. Recall that we view the impossibility of an attribute Li as equivalent to the necessity 
of ¬Li , and we measure the necessity of an attribute or its negation using the notion of necessity from possibility theory as 
outlined in Definition 13.

We also introduce an alternative definition of the importance of an attribute, consistent with our random set based 
conceptual models. Rather than simply consider the weight �λ to be the importance of the attribute, we use the idea of 
necessity from possibility theory [16]. Within possibility theory, the possibility π(s) of a state of affairs s indicates to what 
extent this state of affairs is possible. π(s) is a measure on the interval [0, 1]. The possibility of a set of states A is then 
defined in [16] to be:

�(A) = sup
s∈A

π(s)

The necessity of an event A is then N(A) = 1 − �(Ac), i.e. 1 − the possibility that A does not occur.
Within our model, a state s is considered to be a particular point �X in the binary combination space {0, 1}n and π( �X) :=

μθ( �X). To compute the necessity of a dimension i to a concept θ =< P , H�λ, δ >, where P ⊆ {0, 1}n , we consider the 
necessity of set Si = {�X : Xi = pi}, i.e. the set of all points that have equal value to the prototype on dimension i.

N(Si) = 1 − �(Sc
i ) = 1 − sup

�X∈Sc
i

μθ( �X) = inf
�X∈Sc

i

(1 − μθ( �X))

= inf
�X∈Sc

i

P (d(x, P ) > ε) = P (N ε
θ ⊆ Si) = δ({ε : N ε

θ ⊆ Si})

where N ε
θ is the neighbourhood of θ as defined in section 3. It may be the case that P contains both points with value 0

on dimension i and points with value 1 on dimension i. In this case we say that Si = ∅, since Si must satisfy Si = {�X : Xi =
0 ∧ Xi = 1}.

Definition 13 (Necessity of a dimension). Given θ =< P , H�λ, δ >, the necessity of a dimension i to θ is defined as the necessity 
of the set Si = {�X : Xi = pi}, where pi is the ith dimension of {0, 1}n , by N(Si) = δ({ε :N ε

θ ⊆ Si}).

If P contains both vectors with value 0 on dimension i and vectors with value 1 on dimension i, then N(Si) = 0, since 
Si = ∅ and therefore N(Si) = δ({ε :N ε

θ ⊆ Si}) = P (N ε
θ ⊆ ∅) = 0.

Theorem 14. For α =< P , H�λ, δ >, N(Si) = 1 − �(λi).

Proof. N(Si) = P (N ε
α ⊆ Si) = P (ε < λi) = 1 − �(λi). �

In particular, when ε ∼ U (0, λT ), N(Si) = λi
λT

.
We have introduced the concept of the necessity of a dimension in order to account for some of the non-compositional 

aspects of conjunctive combinations of concepts. To examine the necessity of a dimension in a conjunction of two compound 
concepts, we relate the distribution of the threshold ε in the higher level binary space to the neighbourhood in the first 
level binary space.

We begin by defining the neighbourhood of a conjunction of two concepts. Suppose that two concepts θ and ϕ are 
combined in the second level space {0, 1}2, with weight vector �w = (w1, w2) where w1 is associated with θ and w2
with ϕ . Suppose w2 ≤ w1. Now, if the threshold ε in the second level space is less than w2, then an element �X of the first 
level binary space must belong to the neighbourhoods of both concepts θ and ϕ , i.e. �X ∈ N εθ

θ ∩N εϕ
ϕ . When w2 ≤ ε ≤ w1, 

the points within ε in the second level space are {(1, 1), (1, 0)}, so �X must belong to N εθ

θ , but does not have to belong 
to N εϕ

ϕ . When w1 ≤ ε ≤ w T , where w T = w1 + w2, �X may belong to either neighbourhood, i.e. �X ∈ N εθ

θ ∪ N εϕ
ϕ . This is 

summarised in the following definition:
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Definition 15. For a conjunction θ ∧ ϕ =< {(1, 1)}, H �w , δ >, where �w = (w1, w2) and w2 ≤ w1, the neighbourhood R of 
θ ∧ ϕ is:

R =

⎧⎪⎨
⎪⎩
N εθ

θ ∩N εϕ
ϕ : ε ≤ w2

N εθ

θ : w2 ≤ ε ≤ w1

N εθ

θ ∪N εϕ
ϕ : w1 ≤ ε ≤ w T

This allows us to relate the necessity of a dimension to the concept θ ∧ ϕ to the necessity of the dimension to the 
constituent concepts θ , ϕ since Nθ∧ϕ(Si) = δθ∧ϕ(εθ , εϕ : R ⊂ Si).

Theorem 16. For a conjunction of compound concepts θ ∧ ϕ =< {(1, 1)}, H �w , δ >, where θ , ϕ are defined as for Theorem 10

Nθ∧ϕ(Si) = (1 − �(w1))Nθ (Si) + (1 − �(w2))Nϕ(Si) − (1 − �(w1) − �(w2) + �(w T ))Nθ (Si)Nϕ(Si)

Proof.

Nθ∧ϕ(Si) = δθ × δϕ({εθ , εϕ : Rε,εθ ,εϕ ⊂ Si}
= (1 − �(w2))δθ × δϕ({εθ , εϕ : N εθ

θ ∩N εϕ
ϕ ⊂ Si})

+ (�(w2) − �(w1))δθ × δϕ({εθ , εϕ : N εθ

θ ⊂ Si})
+ (�(w1) − �(w T ))δθ × δϕ({εθ , εϕ : N εθ

θ ∪N εϕ
ϕ ⊂ Si})

= (1 − �(w2))(Nθ (Si) + Nϕ(Si) + Nθ (Si)Nϕ(Si))

+ (�(w2) − �(w1))Nθ (Si) + (�(w1) − �(w T ))Nθ (Si)Nϕ(Si)

= (1 − �(w1))Nθ (Si) + (1 − �(w2))Nϕ(Si) − (1 − �(w1) − �(w2) + �(w T ))Nθ (Si)Nϕ(Si) �
Corollary 17. If δ = Uniform(0, w T ) then Nθ∧ϕ(Si) = w1

w T
Nθ (Si) + w2

w T
Nϕ(Si).

Proof. δ = Uni f orm(0, w T ) =⇒ �(w1) = w2
w T

and �(w1) = w1
w T

Nθ∧ϕ(Si) = (1 − �(w1))Nθ (Si) + (1 − �(w2))Nϕ(Si) − (1 − �(w1) − �(w2) + �(w T ))Nθ (Si)Nϕ(Si)

= (1 − w2

w T
)Nθ (Si) + (1 − w1

w T
)Nϕ(Si) − (1 − w2

w T
− w1

w T
+ 0)Nθ (Si)Nϕ(Si)

= w1

w T
Nθ (Si) + w2

w T
Nϕ(Si) �

This allows us to choose a boundary distribution δ which gives us the property that high necessity is carried through 
into the conjunction. This is illustrated in the following example.

Example 18. Suppose that Nθ (Si) = 0.9, Nϕ(Si) = 0.6, w1 = 0.2, w2 = 0.8. The weighted sum of the necessity of attribute i
is then 0.2 × 0.9 + 0.8 × 0.6 = 0.66. Now, if δ = Uniform(0, w T ) then Nθ∧ϕ(Si) is equal to the weighted sum as shown in 
Corollary 17 and as reported by Hampton. However, if ε is distributed over a narrower range than the whole binary space, 
for example ε ∼ Uniform(0, 0.5) then:

Nθ∧ϕ(Si) = (1 − 0.6) × 0.9 + (1 − 0) × 0.6 − (1 − 0.6 − 0 + 0) × 0.9 × 0.6 = 0.96 − 0.144 = 0.744

which is closer to 0.9, even though less weight is given to that part of the conjunction. The necessity of this attribute has 
therefore been, if not entirely preserved, at least emphasised in this model.

The fourth aspect Hampton notes is that attribute loss or emergence is observed. When the distribution of ε is defined 
over a narrower range than [0, w T ], the importance of attributes in the combined concept is higher than the importance 
of attributes in either constituent concept, as seen in Fig. 10. If the distribution of ε is over a wider range than the whole 
space, the importance can be lower. However, this does not account for how both phenomena can be observed together. In 
the example discussed and in Fig. 10, ε has a uniform distribution. Further work to investigate the behaviour of Nθ∧ϕ(Si)

is needed.
A further aspect uncovered in Hampton’s results is that in general, the qualifying noun, i.e. the second concept in the 

conjunction, is given more weight than the first. Within our model, we can easily take account of this by setting weights in 
the binary combination space appropriately.

Lastly, Hampton finds that concepts with more attributes tend to have higher weightings. This can also be accounted for 
by weighting concepts θ relative to the cardinality of E(Pθ ).
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(a) Nθ∧ϕ(Si) as a function of Nθ (Si) and Nϕ(Si) when w1 = w2 =
0.5, ε ∼ U (0, 0.5). Notice that when either Nθ (Si) = 1 or Nϕ(Si) = 1, 
so is Nθ∧ϕ(Si).

(b) Nθ∧ϕ(Si) as a function of Nθ (Si) and Nϕ(Si) when w1 = w2 =
0.5, ε ∼ U (0, 0.75). Notice that high necessity is preserved to a cer-
tain extent, but not as high as that in Fig. 10.

Fig. 10. Surfaces capturing the value of Nθ∧ϕ(Si) as a function of Nθ (Si) and Nϕ(Si). It is possible for values of Nθ∧ϕ(Si) to be higher than either Nθ (Si)

or Nϕ(Si), modelling the phenomenon of attribute emergence.

4.4. Other aspects of human concept use

We give here some examples of how other cases of non-compositionality can be accounted for within our framework. 
A key example is the conjunction fallacy, in which the probability of an entity belonging to a conjunction of concepts is 
judged greater than the probability of that entity belonging to just one of the concepts. The example often cited is that of 
Linda the feminist bank teller, introduced by Tversky and Kahneman [47]. Linda is characterised as follows:

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply 
concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

When asked to rank the probability of the statements 1) ‘Linda is a bank teller’ and 2) ‘Linda is a bank teller and is active 
in the feminist movement’, the majority of people rank 2) as more probable than 1), in violation of classical probability. This 
fallacy has been shown to dissolve when posed in frequentist terms [12]. The frequentist terms are given in the following 
way. Rather than being asked to rank the probability of Linda being a bank teller, participants are asked to consider 100 
people who can be described as above, and decide how many of that number are bank tellers, and then how many of 
the 100 are feminist bank tellers. When described in this way, participants no longer give contradictory answers. However, 
the fallacy remains when asked for probability judgements. Within our framework we can consider the membership in a 
concept as the probability that a person would assert that concept to describe an object. As we see in the example below, 
our approach to membership in a conjunctive concept does not entail that membership in the conjunction is always less 
than or equal to membership in each of the constituent concepts.

Example 19. Suppose T = ‘bank teller’ is defined as a conjunction of L1 = ‘good with numbers’, L2 = ‘medium intelligence’, 
with P T = (1, 1), �λT = (0.5, 0.5), εT ∼ U (0, 1) and F = ‘feminist’ is defined as a conjunction of L3 = ‘outspoken’, L4 =
‘concerned with issues of discrimination and social justice’ P F = (1, 1), �λF = (0.5, 0.5), εF ∼ U (0, 1). Suppose we combine 
T and F in the space {0, 1}2 with prototype P = (1, 1), weight vector �λ = (0.5, 0.5), threshold ε ∼ U (0, 1). Say μL1 (Linda) =
0.5 μL2(Linda) = 0.25, μL3 (Linda) = 1, μL4(Linda) = 1 Then:

μT (Linda) = 0.5μL1(Linda) + 0.5μL2(Linda) = 0.375

μT F (Linda) = 0.5μT (Linda) + 0.5μF (Linda)

= 0.5(0.5μL1(Linda) + 0.5μL2(Linda)) + 0.5(0.5μL3(Linda) + 0.5μL4(Linda))

= 0.6875

We argue here that rather than committing a fallacy, the participants are generating a new concept ‘feminist bank teller’ 
with a new prototype. So here the additional characteristics associated with being a feminist increase the membership of 
Linda in the conjunctive concept.
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Another of the classic counterexamples relates to the fact that a goldfish, or a guppy, is a better example of a pet fish 
than it is of either a pet or of a fish, as introduced by Osherson and Smith [40]. The following example shows how we 
begin to address this.

Example 20. Suppose concept P E T = ‘pet’ is defined by the conjunction of properties L1 = ‘lives in house’, L2 = ‘furry’, 
and F I S H = ‘fish’ is defined by the conjunction of properties L3 = ‘lives in water’, L4 = ‘scaly’. We firstly form two binary 
combination spaces �P ET = {0, 1}2 for pet and �F I S H = {0, 1}2 for fish, and give each a weight vector, with say �λP ET =
[0.6, 0.4] and �λF I S H = [0.5, 0.5].

In each case the threshold in the binary space is distributed according to ε = U (0, 1) so that P E T =< [1, 1], H[0.6,0.4],
U (0, 1) > and μP ET (�Y ) = 0.6μL1 (Y1) + 0.4μL2 (Y2). Also F I S H =< [1, 1], H[0.5,0.5], U (0, 1) > and μF I S H (�Y ) = 0.5μL3 (Y3) +
0.5μL4 (Y4). We then expand each of the spaces �P ET and �F I S H to {0, 1}4 and expand the prototypes accordingly, setting 
the additional dimension weights to zero as described in Theorem 8. Suppose a goldfish (g) has membership values in the 
individual labels as follows: μL1 (g) = 1, μL2(g) = 0, μL3(g) = 1, μL4(g) = 0.25. This gives:

μP E T (g) = 0.6 × 1 + 0.4 × 0 = 0.6

μF I S H (g) = 0.5 × 1 + 0.5 × 0.25 = 0.625

Suppose the two concepts P E T and F I S H are combined in a higher level binary combination space with prototype 
P = (1, 1), dimension weights �λ = [0.5, 0.5] and ε ∼ U (0, 1.25). Now, from section 4.3.2 we have

μP E T ∧F I S H (g) =
∑

�X

n∏
i=1

P (Xi|gi)
∑

�Z
μP E T ∧F I S H (�Z)

2∏
i=1

P (Zi| �X)

where �X ∈ {0, 1}4, i.e. the combination space at Level 1 in Fig. 8, �Z ∈ {0, 1}2, i.e. the combination space at Level 2 in Fig. 8, 
and gi refers to the ith dimension of ‘goldfish’, i = 1, ..., 4. Recall that P (Xi |gi) = μLi (g) if Xi = 1 and P (Xi |gi) = 1 −μLi (g)

if Xi = 0. Looking at the values of μLi (g), we see that we only need to sum over two values of �X , namely �X0 = (1, 0, 1, 0)

and �X1 = (1, 0, 1, 1) (since in all other cases 
∏n

i=1 P (Xi |gi) = 0). We consider each of these two vectors in turn, firstly 
�X = �X0. The product over individual labels, 

∏n
i=1 P (X0,i|gi) = ∏

j:X0, j=1 μL j (g) 
∏

k:X0,k=0(1 − μLk (g)) = 0.75. Also,

μP E T ( �X0) = P (HλP E T (P P E T , �X0) ≤ εP E T ) = 1 − 0.4 = 0.6

μF I S H ( �X0) = P (HλF I S H (P F I S H , �X0) ≤ εF I S H ) = 1 − 0.5 = 0.5

Now consider the sum over �Z in the Level 2 space:

∑
�Z

μP E T ∧F I S H (�Z)

2∏
i=1

P (Zi| �X0) = μP E T ∧F I S H ((1,1))μP ET ( �X0)μF I S H ( �X0)

+ μP E T ∧F I S H ((1,0))μP E T ( �X0)(1 − μF I S H ( �X0))

+ μP E T ∧F I S H ((0,1))(1 − μP E T ( �X0))μF I S H ( �X0)

+ μP E T ∧F I S H ((0,0))(1 − μP E T ( �X0))(1 − μF I S H ( �X0))

= 1 × 0.6 × 0.5 + 0.6 × 0.6 × 0.5 + 0.6 × 0.4 × 0.5 + 0.2 × 0.4 × 0.5

= 0.64

Similarly, 
∏n

i=1 P (X1,i|gi) = 0.25 and 
∑

�Z μP ET ∧F I S H (�Z) 
∏2

i=1 P (Zi | �X1) = 0.84, giving

μP E T ∧F I S H (g) = 0.75 × 0.64 + 0.25 × 0.84 = 0.69 > min(μP E T (g),μF I S H (g))

Also, consider a cat, for whom μL1 (cat) = 1, μL2(cat) = 1, μL3(cat) = 0, μL4(cat) = 0. We want a cat to be a worse 
example of a pet fish than a goldfish is. Then μP ET ∧F I S H (cat) = 0.6 < μP ET ∧F I S H (g). Similarly a cod with μL1 (cod) = 0, 
μL2(cod) = 0, μL3(cod) = 1, μL4(cod) = 1 has membership μP ET ∧F I S H (cod) = 0.6 < μP ET ∧F I S H (g).

There are a couple of points to mention regarding this treatment of the pet fish problem. Firstly, the result is reliant on 
the values chosen for e.g. �λP ET . Choosing �λP ET = [0.75, 0.25] with the other values the same does not produce the same 
set of inequalities. Further analysis of the model is needed to elucidate these limitations, and modelling with actual data 
would be useful. Secondly, consider an entity for which μLi (Yi) = 0 ∀i, i.e. all attributes for either pet or fish are lacking. 
This might be a tree, for example. With the choice of ε ∼ U (0, 1.25), the membership μP ET ∧F I S H (tree) = 0.2, when this 
value should clearly be 0, since a tree is not a pet fish in any way. This objection may be dealt with, however, by choosing 
a distribution for ε for which �(1) = 0. This could be done piecewise, or by choosing a distribution that has this property 
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such as a Beta(2, 1) distribution. Lastly, an entity for which μLi (Yi) = 1 ∀i will have a higher membership in ‘pet fish’ than 
the goldfish, since the prototype for a pet fish which we have specified here is something that lives in the house and is 
furry and lives in water and is scaly. The issue here is of interaction between dimensions, such as ‘furry’ and ‘scaly’. We 
have not touched upon this type of interaction between dimensions in any examples thus far, and this is an area for further 
research.

5. Discussion and future directions

We have proposed here a formalism extending Gärdenfors’ conceptual spaces theory, so as to incorporate the vagueness 
of natural language using a random set based prototype model. The framework we propose gives a mechanism for forming 
concepts as a combination of properties from integral domains. The innovation we have introduced here is that these 
properties are mapped into a binary combination space which itself is treated as a conceptual space. We have shown that 
the idea of concepts as weighted sums of properties, proposed by Gärdenfors and Zadeh, arises naturally as a special case of 
our framework, namely when the threshold of the concept in the binary combination space is uniformly distributed across 
the whole space (Theorem 4). We also characterise the combination weights as the necessity of a property to the concept, 
using the technical definition of necessity from possibility theory.

The framework we propose is hierarchical. Therefore, combinations may consist of multiple properties, as described 
above, or, as we describe in section 4.3.2, of two or more concepts which are themselves defined as combinations of 
properties. Again, under certain specific conditions, we can recover the results reported in [22] that the importance of 
properties in a conjunction of concepts is a weighted sum of the importance of the properties to the individual concepts. We 
also show how our framework can be applied to property–concept combination. In fact, the distinction between properties 
and concepts is somewhat artificial, and the conjunctive combination of any sort of concept can be performed within this 
framework.

A key element of human concept use, however, is that there are various instances where concepts cannot be adequately 
characterised as a simple weighted sum of properties. We can account for this by using our more general model, in which 
the threshold in the binary combination space does not have to be distributed according to the uniform distribution. A key 
result is that necessity and impossibility are carried through from constituent concepts into the combined concept. We have 
shown in Example 18 how our characterisation of the importance of an attribute in terms of the concept of necessity from 
possibility theory allows us to take account of this phenomenon. We have further shown how attribute loss and emergence, 
characterised as the diminished or increased importance of an attribute to a combined concept, may occur, as illustrated in 
Fig. 10.

We have also explained how non-commutativity and dominance effects may be modelled, by setting the weights used 
in the binary combination space. Hampton finds that in general, the second noun in the conjunction is given more weight 
than the first. This aspect could simply be built in to the weighting. Dominance effects are seen when one concept has 
more features than the other. Again, weightings could take this into account. We have given examples to show how two of 
the key problems in this area may be accounted for. These are the conjunction fallacy and the guppy effect, illustrated in 
Examples 19 and 20 respectively.

We therefore argue that our framework is better able to account for key aspects of human use of concepts than standard 
conceptual spaces approaches [2,6], which do not attempt to account for these non-compositional features. In contrast, the 
quantum approach has shown examples of how to account for this type of problem, and has done so successfully. We argue, 
however, that our approach is more conceptually straightforward than the quantum approach, with the formulation of the 
latter requiring high dimensional Hilbert spaces and the mathematics of quantum mechanics.

At present, our model does not distinguish between membership in and typicality to a concept. There is certainly a 
difference between these two notions, and an effective model of concepts should elucidate how these two ideas can be 
unified, or accounted for. Hampton [24] argues that membership and typicality may be subsumed within one approach, 
on the basis that membership may be decided by applying a suitable threshold to typicality. This type of approach could 
easily be incorporated into our model. We might ask where the threshold should be placed. However, we could simply place 
the threshold at 0.5 everywhere and then tune the weights of the model, rather than having separate thresholds for each 
concept.

The approach we have proposed here is particularly well-suited to concepts that can be described via a collection of 
attributes. However, some types of concepts are less well-suited to this type of description. For example, some concepts 
may be defined crisply in terms of necessary and sufficient conditions, such as the concept of even numbers. Another 
example, given by Barsalou [8] is that of goal-derived categories. These are defined by the extent to which they allow a 
goal to be reached. So attributes for ‘things to eat on a diet’ has as an ideal ‘foods with zero calories’. These tend not to be 
central to a concept, although they could still be seen as prototypical in some way. Another example given is that of ‘ad-hoc 
categories’, in particular ‘things to sell at a garage sale’. Barsalou argues that these cannot really be defined by a specific set 
of attributes.

With regard to goal-derived categories, we argue that to a certain extent, we can view the ideals as attributes to be 
achieved. Therefore, these could still be used as dimension in a conceptual space. Ideals may not be central tendencies, 
however, we do not require this in our model, since typicality to a concept is defined via a probability distribution based 
on distance to a prototype. Simply setting the probability to 0 on one side of the prototype allows for non-central ideals. 
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However, the example of ad-hoc categories does suggest further work. We may view categories defined via attributes as 
conjunctive in some sense: we use conjunctions of attributes. However ad-hoc categories are defined disjunctively: this old 
bicycle or these tins of paint etc. A movement from disjunctive to conjunctively defined categories might be viewed as a 
type of learning: children might see the concept ‘cat’ as defined by ‘Tibbles or Patch’, but later extract the attributes that 
allow generalisation. This would be an interesting area for further work. In particular, when using a semantic vector space 
approach, for example in statistical analysis of text corpora, the vectors created are formed of a mixture of instances of 
the concept, that would go into a disjunctive definition of the concept, and attributes, that would go into a conjunctive 
definition. An analysis of when a disjunctive or conjunctive definition is more appropriate, and the interaction between the 
two in, for example, learning concepts, would be of interest.

A further area for investigation would be to look at the questions raised by [1,27] concerning privative adjectives, i.e., 
those where the application of the adjective entails that the adjective-noun combination is no longer an instance of the 
noun. Examples are ‘artificial’, ‘former’, ‘fake’, and so on. Using the combination of the conjunctive and the hedged approach 
given in [36] might be of use here, to develop these more complex ‘type 2’ hedges, as Lakoff calls them [30]. An analysis of 
the effects of the hedges might be to say, for example, that the hedge ‘fake’ increases the weight of those attributes that are 
visually important, and decreases the weight of the other most important attributes. An alternative approach would be to 
tag ‘definitional’ attributes that the hedge ‘fake’ can then negate. More generally, the semantic differences between different 
types of adjectives that [41] discuss should be considered in further work. Adjectives that consist of modifying one property 
of a concept are well described by our model. Some of the more complicated adjectives such as ‘abusive’ may be more 
difficult to describe. Part of the work must be done by giving such an adjective an adequate representation in a conceptual 
space. Then the application of the adjective may consist of adding domains to its noun, or modifying existing domains.

The potential for application of this model should be discussed. As presented here, in its full generality, the model has 
a large number of free parameters, and a number of these need to be pinned down before they can be used. Various 
choices must be made before the model can be applied. For example, the type of threshold distribution is likely to be very 
dependent on the type of concept or property that is being described. Further, the type of normalisation that we might 
want to apply to the dimensions must be carefully chosen or learned from the data. We give here a number of possible 
applications of the model and describe how the parameters can be limited in those cases.

Firstly, the model can be applied as a model of concept combination in examining psychological data. In [34] the model 
is applied to a range of data from [24,23,22]. An example of the type of data is as follows. Participants were asked to rate 
the membership of instances such as ‘Penguin’, ‘Dog’, ‘Cockatoo’, and so on in concepts and their combinations – in this 
example, the concepts would be ‘Birds’, ‘Pets’, ‘Birds which are Pets’, and ‘Pets which are Birds’.

Hampton’s original analysis finds that mean typicality ratings can be systematically predicted using a multilinear re-
gression. We apply the same analysis to the mean membership ratings of the items. The model we use maps each of the 
constituent concepts into a binary combination space {0, 1}2. Each dimension of this space is weighted, with the weights 
summing to 1, resulting in weight vector (λ, 1 −λ). The threshold ε in the binary space is distributed uniformly, ε ∼ U (0, b). 
We therefore fit just two parameters λ and b. This gives us the expression

μθ∧ϕ(x) = μθ(x)μϕ(x) + �(λ)(1 − μθ(x))μϕ(x) + �(1 − λ)μθ (x)(1 − μϕ(x))

+ �(1)(1 − μθ(x))(1 − μϕ(x))

Hampton uses a multilinear regression given by:

μθ∧ϕ(x) = k1μθ(x) + k2μϕ(x) + k3μθ(x)μϕ(x) + k4

We therefore use fewer parameters than does Hampton to fit this data. The fit we achieve is comparable to Hampton’s 
when using Akaike’s ‘An Information Criterion’ for small samples (AICc ).

Another way to reduce the number of parameters is to make the simplifying assumption that the threshold in the higher 
level space is distributed according to the assumptions of Theorem 4, i.e., that the combination of concepts is simply a 
weighted sum of membership values. This assumption was used in investigating the adoption of conjunctive concepts in a 
multi-agent simulation of language evolution [34,35]. In this application, agents are equipped with a range of basic concepts 
which they use to communicate about points in a conceptual space. Via iterated dialogues, agents converge onto a shared set 
of dimension weights that characterise the space. The weights to which agents converge is determined by the distribution 
of objects within the conceptual space.

Applications of the theory might also be possible in online classification tasks, for example in film. In an analogue to 
the ‘pet fish’ phenomenon, a film might not have typical characteristics of a horror film, nor of a comedy film, but be 
prototypical of a ‘comedy horror’. In this cases, a weighted sum formulation on its own is not able to account for these 
phenomena. The fact that comedies and horror do not share many characteristics might be taken to be diagnostic of the 
fact that ‘non-compositional’ effects may be seen here. Further, we have not yet developed a theory for how to deal with 
contradictory attributes. These will be key to how non-compositional effects arise, and a simple weighted sum combination 
does not explain these in a satisfactory manner.

Within the framework we have discussed conjunction and disjunction of nouns and adjectives. There are, of course, many 
other operators and word types that should be captured in a full account of concepts. Gärdenfors and Warglien have started 
to develop conceptual spaces for verbs [21,48], and Gärdenfors has begun the development of a semantics for conceptual 
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spaces [20]. Other approaches to developing a full semantics use the notion of a semantic vector space, based on text 
corpora [11,38]. Our model could be extended to include other word types and composition types. Within our framework 
we have explicitly avoided the problem of conflicting prototypes. However, this is an area which must be developed. One 
important aspect of conflicting prototypes is that having conflicting attributes allows interesting phenomena to emerge. This 
goes hand in hand with another aspect that we have not discussed: the need for some sort of inference system.

A key element of our framework is the weights given to dimensions in the combination space. Results in [35] and 
ongoing work show that within a multi-agent model of language users, these weights can be related to the distribution of 
elements in the conceptual space, explaining why and how different dimensions should have different weights.

Further research will investigate how attributes may affect one another. For instance, in the pet fish example, the at-
tributes ‘furry’ and ‘scaly’ might interact since they are, to some extent, incompatible. This is not examined so far, and 
indeed we require that the constituent concepts may not have contradictory prototypes. Further developing the framework 
for these cases is likely to allow even more effective modelling of non-compositional effects.

Acknowledgements

Martha Lewis was supported by EPSRC Grant No. EP/E501214/1. Due to the nature of the research described in the paper 
there is no associated data.

References

[1] Nabil Abdullah, Richard A. Frost, Adjectives: a uniform semantic approach, in: Advances in Artificial Intelligence, Springer, 2005, pp. 330–341.
[2] Benjamin Adams, Martin Raubal, A metric conceptual space algebra, in: Spatial Information Theory, Springer, 2009, pp. 51–68.
[3] D. Aerts, L. Gabora, A theory of concepts and their combinations I: the structure of the sets of contexts and properties, Kybernetes 34 (1/2) (2005) 

167–191.
[4] Diederik Aerts, Quantum structure in cognition, J. Math. Psychol. 53 (5) (2009) 314–348.
[5] Diederik Aerts, Liane Gabora, Sandro Sozzo, Concepts and their dynamics: a quantum-theoretic modeling of human thought, Top. Cogn. Sci. 5 (4) 

(2013) 737–772.
[6] Janet Aisbett, Greg Gibbon, A general formulation of conceptual spaces as a meso level representation, Artif. Intell. 133 (1) (2001) 189–232.
[7] Marco Baroni, Roberto Zamparelli, Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space, in: Proceed-

ings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics, 2010, pp. 1183–1193.
[8] Lawrence W. Barsalou, Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories, J. Exp. Psychol. Learn. 

Mem. Cogn. 11 (4) (1985) 629.
[9] Peter D. Bruza, Kirsty Kitto, B. Ramm, Laurianne Sitbon, D. Song, S. Blomberg, Quantum-like non-separability of concept combinations, emergent 

associates and abduction, Log. J. IGPL 20 (2) (2012) 445–457.
[10] John A. Bullinaria, Joseph P. Levy, Extracting semantic representations from word co-occurrence statistics: a computational study, Behav. Res. Methods 

39 (3) (2007) 510–526.
[11] Bob Coecke, Mehrnoosh Sadrzadeh, Stephen Clark, Mathematical foundations for a compositional distributional model of meaning, arXiv preprint, 

arXiv:1003.4394, 2010.
[12] Leda Cosmides, John Tooby, Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under 

uncertainty, Cognition 58 (1) (1996) 1–73.
[13] Lieven Decock, Igor Douven, What is graded membership?, Noûs 48 (4) (2014) 653–682.
[14] Igor Douven, Lieven Decock, What verities may be, Mind (2015), in press.
[15] D. Dubois, H. Prade, The three semantics of fuzzy sets, Fuzzy Sets Syst. 90 (2) (1997) 141–150.
[16] Didier Dubois, Henri Prade, Possibility Theory, Springer, 1988.
[17] Kit Fine, Vagueness, truth and logic, Synthese 30 (3) (1975) 265–300.
[18] M. Freund, On the notion of concept I, Artif. Intell. 172 (4–5) (2008) 570–590.
[19] P. Gärdenfors, Conceptual Spaces: The Geometry of Thought, The MIT Press, 2004.
[20] Peter Gärdenfors, The Geometry of Meaning: Semantics Based on Conceptual Spaces, MIT Press, 2014.
[21] Peter Gärdenfors, Massimo Warglien, Using conceptual spaces to model actions and events, J. Semant. (2012) ffs007.
[22] J. Hampton, Inheritance of attributes in natural concept conjunctions, Mem. Cogn. 15 (1) (1987) 55–71.
[23] J. Hampton, Disjunction of natural concepts, Mem. Cogn. 16 (6) (1988) 579–591.
[24] J. Hampton, Overextension of conjunctive concepts: evidence for a unitary model of concept typicality and class inclusion, J. Exp. Psychol. Learn. Mem. 

Cogn. 14 (1) (1988) 12.
[25] J. Hampton, Conceptual combinations and fuzzy logic, in: R. Belohlavek, G.J. Klir (Eds.), Concepts and Fuzzy Logic, The MIT Press, 2011.
[26] James A. Hampton, Testing the prototype theory of concepts, J. Mem. Lang. 34 (5) (1995) 686–708.
[27] H. Kamp, B. Partee, Prototype theory and compositionality, Cognition 57 (2) (1995) 129–191.
[28] J.A.W. Kamp, Two theories about adjectives, in: Edward Keenan (Ed.), Formal Semantics of Natural Language, Cambridge University Press, Cambridge, 

1975, pp. 123–155.
[29] Sarit Kraus, Daniel Lehmann, Menachem Magidor, Nonmonotonic reasoning, preferential models and cumulative logics, Artif. Intell. 44 (1) (1990) 

167–207.
[30] G. Lakoff, Hedges: a study in meaning criteria and the logic of fuzzy concepts, J. Philos. Log. 2 (4) (1973) 458–508.
[31] Thomas K. Landauer, Susan T. Dumais, A solution to plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation 

of knowledge, Psychol. Rev. 104 (2) (1997) 211.
[32] J. Lawry, Modelling and Reasoning with Vague Concepts, vol. 12, Springer, 2006.
[33] J. Lawry, Y. Tang, Uncertainty modelling for vague concepts: a prototype theory approach, Artif. Intell. 173 (18) (2009) 1539–1558.
[34] Martha Lewis, Modelling compositionality of vague concepts, PhD thesis, University of Bristol, 2015.
[35] Martha Lewis, Jonathan Lawry, Emerging dimension weights in a conceptual spaces model of concept combination, in: Proceedings of the 50th An-

niversary Convention of the AISB, Society for the Study of Artificial Intelligence and the Simulation of Behaviour, 2014.
[36] Martha Lewis, Jonathan Lawry, A label semantics approach to linguistic hedges, Int. J. Approx. Reason. 55 (5) (2014) 1147–1163.
[37] Kevin Lund, Curt Burgess, Producing high-dimensional semantic spaces from lexical co-occurrence, Behav. Res. Methods Instrum. Comput. 28 (2) (1996) 

203–208.

http://refhub.elsevier.com/S0004-3702(16)30049-2/bib616264756C6C616832303035s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6164616D7372617562616Cs1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6165727473s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6165727473s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib616572747332303039s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib616572747332303133s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib616572747332303133s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib61697362657474676962626F6Es1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6261727A616D70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6261727A616D70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib62617273616C6F75s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib62617273616C6F75s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6272757A61s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6272757A61s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib62756C6C696E6172696132303037s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib62756C6C696E6172696132303037s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib636F65636B6532303130s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib636F65636B6532303130s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib636F736D69646573s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib636F736D69646573s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6465636F636B32303134s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib646F7576656E32303135s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib647073656D66757As1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6475626F697331393838s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib66696E65s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib667265756E64s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6761726432303034s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6761726432303134s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib676172647665726273s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D7031393837s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D703139383862s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D703139383861s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D703139383861s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib68616D7031393935s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6B70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6B616D70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6B616D70s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6B7261757331393930s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6B7261757331393930s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C616B6F6666686564676573s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C616E646175657231393937s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C616E646175657231393937s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C61777279626F6F6Bs1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C6177727932303039s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C657769735F706864746865736973s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C65776973656D657267696E67s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C65776973656D657267696E67s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C6577697332303134s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C756E6431393936s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6C756E6431393936s1


M. Lewis, J. Lawry / Artificial Intelligence 237 (2016) 204–227 227

[38] Jeff Mitchell, Mirella Lapata, Composition in distributional models of semantics, Cogn. Sci. 34 (8) (2010) 1388–1429.
[39] Richard Montague, The Proper Treatment of Quantification in Ordinary English, Springer, 1973.
[40] D.N. Osherson, E.E. Smith, On the adequacy of prototype theory as a theory of concepts, Cognition 9 (1) (1981) 35–58.
[41] Victor Raskin, Sergei Nirenburg, Lexical semantics of adjectives, New Mexico State University, Computing Research Laboratory Technical Report, MCCS-

95-288, 1995.
[42] John T. Rickard, Janet Aisbett, Greg Gibbon, Reformulation of the theory of conceptual spaces, Inf. Sci. 177 (21) (2007) 4539–4565.
[43] E. Rosch, Cognitive representations of semantic categories, J. Exp. Psychol. Gen. 104 (3) (1975) 192.
[44] Steven Schockaert, Henri Prade, Interpolative and extrapolative reasoning in propositional theories using qualitative knowledge about conceptual 

spaces, Artif. Intell. 202 (0) (2013) 86–131.
[45] Edward E. Smith, Edward J. Shoben, Lance J. Rips, Structure and process in semantic memory: a featural model for semantic decisions, Psychol. Rev. 

81 (3) (1974) 214.
[46] E.E. Smith, D.N. Osherson, Conceptual combination with prototype concepts, Cogn. Sci. 8 (4) (1984) 337–361.
[47] Amos Tversky, Daniel Kahneman, Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment, Psychol. Rev. 90 (4) (1983) 

293.
[48] Massimo Warglien, Peter Gärdenfors, Matthijs Westera, Event structure, conceptual spaces and the semantics of verbs, 2012.
[49] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353.
[50] L.A. Zadeh, A fuzzy-set-theoretic interpretation of linguistic hedges, J. Cybern. (1972).
[51] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning – I, Inf. Sci. 8 (3) (1975) 199–249.

http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6D69746368656C6C6C6170617461s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6D6F6E74s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib6F736831393831s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7261736B696E31393935s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7261736B696E31393935s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7269636B6172646574616Cs1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib726F736368s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7363686F636B7072616465s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7363686F636B7072616465s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib736D69746831393734s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib736D69746831393734s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib736D697468s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib74766572736B7931393833s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib74766572736B7931393833s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7A6164656831393635s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7A61646568686564676573s1
http://refhub.elsevier.com/S0004-3702(16)30049-2/bib7A61646568s1

	Hierarchical conceptual spaces for concept combination
	1 Introduction
	2 Background
	2.1 Set-theoretic approaches
	2.2 Fuzzy set theory and prototype theory
	2.3 Conceptual spaces
	2.4 Computational linguistics and vector space models
	2.5 Quantum probability models
	2.6 Experimental studies

	3 Formal model of concepts
	3.1 A prototype and random set model of concepts

	4 A hierarchical model of conjunctive composition
	4.1 Background
	4.2 A new approach to concept composition
	4.3 Properties of the hierarchical model
	4.3.1 Results for compound concepts using hamming distance
	4.3.2 Conjunctions of compound concepts
	4.3.3 Non-compositional behaviours

	4.4 Other aspects of human concept use

	5 Discussion and future directions
	Acknowledgements
	References


