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Abstract
In the longest common substring problem we are given two strings of length n and must find a
substring of maximal length that occurs in both strings. It is well-known that the problem can be
solved in linear time, but the solution is not robust and can vary greatly when the input strings
are changed even by one letter. To circumvent this, Leimester and Morgenstern introduced the
problem of the longest common substring with k mismatches. Lately, this problem has received a
lot of attention in the literature, and several algorithms have been suggested. The running time
of these algorithms is n2−o(1), and unfortunately, conditional lower bounds have been shown
which imply that there is little hope to improve this bound.

In this paper we study a different but closely related problem of the longest common substring
with approximately k mismatches and use computational geometry techniques to show that it
admits a randomised solution with strongly subquadratic running time.
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1 Introduction

Understanding how similar two strings are and what they share in common is a central task
in stringology, the significance of which is witnessed for example by the 50,000+ citations
of the paper introducing BLAST [3], a heuristic algorithmic tool for comparing biological
sequences. This task can be formalised in many different ways, from the longest common
substring problem to the edit distance problem. The longest common substring problem
can be solved in optimal linear time and space, while the best known algorithms for the edit
distance problem require n2−o(1) time, which makes the longest common substring problem
an attractive choice for many practical applications. On the other hand, the longest common
substring problem is not robust and its solution can vary greatly when the input strings are
changed even by one letter. To overcome this issue, recently there has been introduced a
new problem called the longest common substring with k mismatches. In this paper we
continue this line of research.

1.1 Related work
Let us start with a precise statement of the longest common substring problem.

I Problem 1 (The longest common substring). Given two strings T1, T2 of length n, find
a substring of maximal length that occurs in T1 and T2 exactly.
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The suffix tree of T1 and T2, a data structure containing all suffixes of T1 and T2, allows
to solve this problem in linear time and space [31, 18, 20], which is optimal as any algorithm
needs Ω(n) time to read and Ω(n) space to store the strings. However, if we only account for
“additional” space, the space the algorithm uses apart from the space required to store the
input, then the suffix tree-based solution is not optimal and has been improved in a series
of publications [5, 24, 30].

The major disadvantage of the longest common substring problem is that its solution is
not robust. Consider, for example, two pairs of strings: an, an−1b and a(n−1)/2ba(n−1)/2,
an−1b. (Assume for simplicity that n − 1 ≥ 2 is even.) The longest common substring of
the first pair of strings is twice as long as the longest common substring of the second pair
of strings, although we changed only one letter. This makes the longest common substring
unsuitable to be used as a measure of similarity of two strings: Intuitively, changing one
letter must not change the measure of similarity much. To overcome this issue, it is natural to
allow the substring to occur in T1 and T2 not exactly but with a small number of mismatches.

I Problem 2 (The longest common substring with k mismatches). Given two strings T1, T2
of length n and an integer k, find a substring of maximal length that occurs in T1 and T2
with at most k mismatches.

The problem can be solved in quadratic time and space by a dynamic programming
algorithm, but there have been also shown more efficient solutions. The longest common
substring with one mismatch problem was first considered in [6], where an O(n2)-time and
O(n)-space solution was given. This result was further improved by Flouri et al. who
showed an O(n logn)-time and O(n) space solution to the problem [15]. For a general value
of k, the problem was first considered by Leimeister and Morgenstern [27] who presented a
greedy heuristic algorithm for the problem. Later Flouri et al. showed that the longest com-
mon substring with k mismatches admits a quadratic time and constant (additional) space
algorithm [15]. Apart from that, Grabowski presented two output-dependent algorithms
with running times O(n((k + 1)(`0 + 1))k) and O(n2`k/k), where `0 is the length of the
longest common substring of T1 and T2 and `k is the length of the longest common sub-
string with k mismatches of T1 and T2 [17]. Finally, Aluru et al. gave an O(2kn)-space,
O(n(2 logn)k+1)-time algorithms. Yet, the worst-case running time of all these algorithms
is still quadratic. Very recently, Abboud et al. [1] applied the polynomial method to develop
a k1.5n2/2Ω(

√
log n

k )-time randomised solution to the problem.
The best algorithms for the edit distance problem and its variations (we do not give

their precise statements here as it is not essential for the paper) also have n2−o(1) running
time [29, 11, 28], and these bounds are tight under the Strong Exponential Time Hypothesis
(SETH) of Impagliazzo, Paturi and Zane: [7, 10]:

I Hypothesis 1. (SETH). For every δ > 0 there exists an integer m such that SAT on
m-CNF formulas on n variables cannot be solved in mO(1)2(1−δ)n time.

1.2 Our contribution
In this paper we introduce a new problem called the longest common substring with ap-
proximately k mismatches, inspired by the work of Andoni and Indyk [4].

I Problem 3 (The longest common substring with approximately k mismatches). Given
two strings T1, T2 of length n, an integer k, and a constant ε > 0. If `k is the length of the
longest common substring with k mismatches of T1 and T2, return a substring of length at
least `k that occurs in T1 and T2 with at most (1 + ε) · k mismatches.
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In their work Andoni and Indyk used the technique of locality-sensitive hashing to de-
velop a space-efficient randomised index for a variant of the approximate pattern matching
problem. We build up on their work with several new ideas in the construction and the
analysis to develop a randomised subquadratic-time solution to Problem 3. Assume binary
alphabet and let 0 < ε < 2 be an arbitrary constant.

I Theorem 1. The longest common substring with approximately k mismatches can be solved
in O(n1+1/(1+ε)) space and O(n1+1/(1+ε) log2 n) time correctly with constant probability.

If the alphabet is of constant size σ > 2, we can use a standard trick and encode T1
and T2 by replacing each letter a in them with a binary vector 0a−110σ−a. The Hamming
distance (i.e. the number of mismatches) between any two substrings of T1 and T2 in the
encoded form will be exactly twice as large as the Hamming distance between the original
substrings, which allows to extend our solution naturally to this case as well at a cost of an
additional constant factor.

We note that although the problem statement is not standard for stringology, it makes
perfect sense from the practical point of view. Indeed, for most applications it is not import-
ant whether a returned substring occurs in T1 and T2 with for example 10 or (1+ 1

5 ) ·10 = 12
mismatches. The result is also important from the theoretical point of view as it improves
our understanding of the big picture of string comparison.

2 Overview

In this section we give an overview of the main ideas needed to prove Theorem 1. The
classic solution to the longest common substring problem is based on two observations. The
first observation is that the longest common substring of T1 and T2 is in fact the longest
common prefix of some suffix of T1 and some suffix of T2. The second observation is that
the maximal length of the longest common prefix of a fixed suffix S of T1 and suffixes of
T2 is reached on the two suffixes of T2 that are closest to S in the lexicographic order.
This suggests the following algorithm: First, we build a suffix tree of T1 and T2, which
contains all suffixes of T1 and T2 and orders them lexicographically. Secondly, we compute
the longest common prefix of each suffix of T1 and the two suffixes of T2 closest to S in the
lexicographic order, one from the left and one from the right. The problem of computing
the longest common prefix has been extensively studied in the literature and a number of
very efficient deterministic and randomised solutions exist [8, 9, 13, 21, 19], for example,
one can use a Lowest Common Ancestor (LCA) data structure, which can be constructed
in linear time and space and maintains longest common prefix queries in O(1) time [13, 19].

Our solution to the longest common substring with approximately k mismatches prob-
lem is somewhat similar. We will consider θ(n1+1/(1+ε) logn) orderings on the suffixes of T1
and T2 and will show that with high probability the length of the longest common substring
with approximately k mismatches is the answer to a longest common prefix with approxim-
ately k mismatches (LCPk̃) query for some pair of suffixes that are close to each other in
one of the orderings. In an LCPk̃ query we are given two suffixes S1, S2 of T1 and T2 and
must output any integer in the interval [`k, `(1+ε)·k], where `k and `(1+ε)·k are the lengths
of the longest common prefixes of S1 and S2 with k and (1 + ε) · k mismatches respectively.
Note that LCPk̃ queries can be answered deterministically in O(k) time using the kangaroo
method [26, 16], but for the purposes of this paper we give a faster randomised solution.

I Theorem 2. After O(n log3 n) time and O(n log2 n) space preprocessing of T1 and T2, an
LCPk̃ query can be answered in O(log2 n) time. The answer is correct with probability at
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least 1− 1
n2 .

The key idea is to compute sketches for all power-of-two length substrings of T1 and T2.
The sketches will have logarithmic length (i.e., we will be able to compare them very fast)
and the Hamming distance between them will be roughly equal to the Hamming distance
between the original substrings. Once the sketches are computed, we can use a simple binary
search to answer LCPk̃ queries in polylogarithmic time.

To define the orderings on suffixes of T1 and T2 we will use the locality-sensitive hashing
technique, which was initially introduced for the needs of computational geometry [22]. In
more detail, we will choose θ(n1+1/(1+ε) logn) hash functions, where each function can be
considered as a projection of a string of length n onto a random subset of its positions. By
choosing the size of the subset appropriately, we will be able to guarantee that the hash
function is locality-sensitive: For any two strings at the Hamming distance at most k, the
values of the hash functions on them will be equal with high probability, while the values of
the hash functions on any pair of strings at the Hamming distance bigger than (1+ε) ·k will
be different with high probability. For each hash function we will sort the suffixes of T1 and
T2 by the lexicographic order on their hash values. As a corollary of the locality-sensitive
property, if two suffixes of T1 and T2 have a long common prefix with at most k mismatches,
with high probability they will be close to each other in the ordering.

3 Proof of Theorem 2

In this section we show Theorem 2. During the preprocessing stage, we compute sketches [25]
of all substrings of the strings T1 and T2 of lengths ` = 1, 2, . . . , 2blognc, which can be defined
in the following way. For a fixed ` choose λ = 1.5 lnn/γ2 binary vectors ri`, where γ is a
constant to be defined later and let

ri`[j] =
{

1 with probability 1
4k

0 with probability 1− 1
4k

for all i = 1, 2, . . . , λ and j = 1, 2, . . . , `

For a string x of length ` ∈ {1, 2, . . . , 2blognc} we define a sketch sk(x) to be a vector
of length λ, where sk(x)[i] = ri` · x (mod 2). In other words, to obtain sk(x) we sample
each position of x with probability 1

4k and then sum the letters in the sampled positions
modulo 2. All sketches can be computed in O(n log3 n) time by independently running the
Fast Fourier Transform (FFT) algorithm for each of the vectors ri`, and occupy O(n log2 n)
space [14]. Each substring S can be decomposed uniquely as x1x2 . . . xr, where r ∈ O(logn)
and |x1| > |x2| > . . . > |xr| are powers of two. We define a sketch sk(S) =

∑
q sk(xq). Let

δ1 = 1
2 (1− (1− 1

4k )k), δ2 = 1
2 (1− (1− 1

4k )(1+ε)·k), and ∆ = (δ1+δ2)
2 · λ.

I Lemma 3 ([25]). For any i if the Hamming distance between S1 and S2 is at most k, then
sk(S1)[i] 6= sk(S2)[i] with probability at most δ1. If the Hamming distance between S1 and
S2 is at least (1 + ε) · k, then sk(S1)[i] 6= sk(S2)[i] with probability at least δ2.

Proof. Let m be the Hamming distance between S1 and S2 and let p1, p2, . . . , pm be the po-
sitions of the mismatches between them. If none of the positions p1, p2, . . . , pm are sampled,
then sk(S1)[i] = sk(S2)[i], and otherwise for each way of sampling p1, p2, . . . , pm−1 exactly
one of the two choices for pm will give sk(S1)[i] = sk(S2)[i]. (Recall that the alphabet is
binary.) Hence, the probability that sk(S1)[i] 6= sk(S2)[i] is equal to 1

2 (1− (1− 1
4k )m), which

is at most δ1 if the Hamming distance between S1 and S2 is at most k, and at least δ2 if the
Hamming distance is greater than (1 + ε) · k. J
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I Lemma 4. If the Hamming distance between sketches sk(S1) and sk(S2) is bigger than ∆,
then the Hamming distance between S1 and S2 is bigger than k. If the Hamming distance
between sketches sk(S1) and sk(S2) is at most ∆, then the Hamming distance between S1
and S2 is at most (1 + ε) · k. Both claims are correct with probability at least 1− 1

n3 .

Proof. Let χi be an indicator random variable that is equal to one if and only if sk(S1)[i] =
sk(S2)[i]. The claim follows immediately from Lemma 3 and the following Chernoff bounds
(see [2, Appendix A]). For λ independently and identically distributed binary variables
χ1, χ2, . . . , χλ, Pr[

∑
i χi ≥ (p + γ)] ≤ e−2λγ2 and Pr[

∑
i χi < (p − γ)] ≤ e−2λγ2 , where

p = Pr[χi = 1]. We put γ = (δ2−δ1)
2 and obtain that the error probability is at most

e−2λγ2
< 1

n3 . (Note that γ = Θ(1− eε/4) is a constant depending on ε.) J

Suppose we wish to answer an LCPk̃ query on two suffixes S1, S2. It suffices to find
the longest prefixes of S1, S2 such that the Hamming distance between their sketches is at
most ∆. As mentioned above, these prefixes can be represented uniquely as a concatenation
of strings of power-of-two lengths `1 > `2 > . . . > `r. To compute `1, we initialise it with
the biggest power of two not exceeding n and compute the Hamming distance between the
sketches of corresponding substrings. If it is smaller than ∆, we have found `1, otherwise we
divide `1 by two and continue. Suppose that we already know `1, `2, . . . , `i and let hi be the
Hamming distance between the sketches of prefixes of S1 and S2 of lengths `1 + `2 + . . .+ `i.
To compute `i+1, we initialise it with `i and then divide it by two until the Hamming
distance between the corresponding substrings of length `i+1 is at most ∆−hi. From above
it follows that the algorithm is correct with probability at least 1 − 1

n2 (we estimate error
probability by the union bound) and that the query time is O(log2 n). This completes the
proof of Theorem 2.

4 Proof of Theorem 1

Recall that we are given two strings T1, T2 of length n, and if `k is the length of the longest
common substring with k mismatches of T1 and T2, the objective is to return a substring of
length at least `k that occurs in T1 and T2 with at most (1 + ε) · k mismatches.

4.1 Algorithm
We start by preprocessing T1 and T2 as described in Theorem 2. The main phase of the
algorithm is defined by three parameters t, w, and m to be specified later, and consists of
θ(t! logn) independent steps.

At each step we choose
(
w
t

)
hash functions, where each hash function can be considered

as a t-tuple of projections of strings of length n onto subsets of their positions of size m.
Let H be a set of all projections of strings of length n onto a single position, i.e. the value
of the i-th projection on a string of length n is simply its i-th letter. We start by choosing a
set of w functions ur ∈ Hm, r = 1, 2, . . . , w, uniformly at random. Each hash function h is
defined to be a t-tuple of distinct functions ur. More formally, h = (ur1 , ur2 , . . . , urt

) ∈ Hmt,
where 1 ≤ r1 < r2 < . . . < rt ≤ w. The fact that the hash functions are constructed from a
small set of functions uj will ensure faster running time for the algorithm.

Consider the set of all suffixes S1, S2, . . . , S2n of T1 and T2. We append each suffix in
the set with an appropriate number of letters $ /∈ Σ so that all suffixes have length n and
build a trie on strings h(S1), h(S2), . . . , h(S2n).
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Algorithm 1 Longest common substring with approximately k mismatches.
1: Preprocess T1, T2 for LCPk̃ queries
2: for i = 1, 2, . . . , θ(t! logn) do
3: for r = 1, 2, . . . , w do
4: Choose a function ur ∈ Hm uniformly at random
5: Preprocess ur
6: end for
7: for all h = (ur1 , ur2 , . . . , urt) do
8: Build a trie on h(S1), h(S2), . . . , h(S2n)
9: Augment the trie with an LCA data structure

10: end for
11: for all suffixes S of T1 do
12: Find the largest ` s.t. the total size of the `-neighbourhoods of S is ≥ 2

(
w
t

)
13: Select a set S of 2

(
w
t

)
suffixes from the `-neighbourhoods of S

14: for all suffixes S′ ∈ S do
15: Compute LCPk̃(S, S′)
16: Update the longest common substring with approximately k mismatches
17: end for
18: end for
19: end for

I Theorem 5. After O(wn4/3 log4/3 n)-time and O(wn)-space preprocessing of functions ur,
r = 1, 2, . . . , w, for any hash function h = (ur1 , ur2 , . . . , urt

) a trie on h(S1), h(S2), . . . , h(S2n)
can be built in O(tn logn) time and linear space.

Let us defer the proof of the theorem until we complete the description of the algorithm
and show Theorem 1. The algorithm preprocesses u1, u2, . . . , uw, and for each hash func-
tion h builds a trie on h(S1), h(S2), . . . , h(S2n). It then augments the trie with an LCA data
structure, which can be done in linear time and space [13, 19]. Given two strings h(Si), h(Sj)
the LCA data structure can find the length of their longest common prefix in constant time.

Consider a suffix S of T1 and let h be a hash function projecting a string of length n

onto a subset P ⊆ [1, n] of its positions. We define h
∣∣
[`] to be a projection onto a subset

P ∩ [1, `] of positions. (In other words, h
∣∣
[`] is a function h applied to a prefix of a string

of length `.) We further say that the `-neighbourhood of S is the set of all suffixes S′ of T2
such that h

∣∣
[`](S) = h

∣∣
[`](S

′). Note that for a fixed h and ` the size of the `-neighbourhood
of S is equal to the number of suffixes S′ of T2 such that the length of the longest common
prefix of h(S) and h(S′) is at least |P ∩ [1, `]|. From the properties of the lexicographic
order it follows that if S′, S′′ are two suffixes of T2 and h(S′′) is located between h(S′) and
h(S) in the trie for h, then the longest common prefix of h(S′) and h(S) is no longer than
the longest common prefix of h(S′′) and h(S). Therefore, the larger ` is, the smaller the
neighbourhood is. We use a simple binary search and the LCA data structures to find the
largest ` such that the total size of `-neighbourhoods for all hash functions is at least 2

(
w
t

)
in O(

(
w
t

)
· log2 n) time. From the union of the `-neighbourhoods we select a multiset S of

2
(
w
t

)
suffixes ensuring that all suffixes S′ such that the longest common prefix of h(S′) and

h(S) has length at least |P ∩ [1, `]|+ 1 are included. For each suffix S′ ∈ S we compute the
longest common prefix with approximately k mismatches of S′ and S by one LCPk̃ query
(Theorem 2). The longest of all retrieved prefixes, over all suffixes S of T1, is returned as
an answer. The algorithm is summarised in the figure above. We will now proceed to its
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complexity and correctness.

4.2 Complexity and correctness

To ensure the complexity bounds and correctness of the algorithm, we must carefully choose
the parameters t, w, and m. Let p1 = 1 − k/n, and p2 = 1 − (1 + ε) · k/n. The intuition
behind p1 and p2 is that if S1, S2 are two suffixes of length n and the Hamming distance
between S1 and S2 is at most k, then p1 is a lower bound for the probability of two letters
S1[i], S2[i] to be equal. On the other hand, p2 is an upper bound for the probability of
two letters S1[i], S2[i] to be equal if the Hamming distance between S1 and S2 is at least
(1 + ε) · k. Let ρ = log p1/ log p2, and define

t =
⌈√

ρ logn
ln logn

⌉
+ 1, w = dnρ/te, and m =

⌈
1
t

logp2

1
n2

⌉
.

4.2.1 Complexity

To show the time complexity of the algorithm, we will start from the following simple
observation.

I Observation 6. ρ ≤ 1/(1 + ε) and 2 ≤ t ≤
√

logn.

Proof. By Bernoulli’s inequality (1 − k/n)1+ε ≥ 1 − (1 + ε) · k/n. Hence, we obtain that
ρ = log(1−k/n)

log(1−(1+ε)k/n) ≤
1

1+ε . The second part of the lemma follows. J

I Lemma 7. One step of the algorithm takes O(wn4/3 log4/3 n+
(
w
t

)
· n log2 n) time.

Proof. By Theorem 5, after O(wn4/3 log4/3 n)-time preprocessing we can build a trie and an
LCA data structure on strings h(S1), h(S2), . . . , h(S2n) for a hash function h inO(tn logn) =
O(n log3/2 n) time and there are

(
w
t

)
hash functions in total. For each suffix of T1 we then

run 2
(
w
t

)
LCPk̃ queries, which takes O(

(
w
t

)
· n log2 n) time. J

I Corollary 8. The running time of the algorithm is O(n1+1/(1+ε) log2 n).

Proof. Preprocessing T1, T2 for LCPk̃ queries takes O(n log3 n/ε2) time (see Theorem 2).
Each step of the algorithm takes O(wn4/3 log4/3 n +

(
w
t

)
· n log2 n) time, and there are

θ(t! logn) steps in total. To estimate the total running time of the algorithm we notice that
wt! = O(e

√
ρ logn ln logn) = O(no(1)) and

(
w
t

)
· t! ≤ wt

t! t! = nρ ≤ n1/(1+ε). Plugging these
inequalities into the time bound for one step and recalling that 0 < ε < 2, we obtain the
claim. J

I Lemma 9. The space complexity of the algorithm is O(n1+1/(1+ε)).

Proof. The data structure for LCPk̃ queries requires O(n log3 n) space. At each step of
the algorithm, preprocessing functions uj requires O(wn) = O(n1+o(1)) space and the tries
occupy O(

(
w
t

)
· n) = O(n1+1/(1+ε)) space. J
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4.2.2 Correctness
Let S be a suffix of T1. Consider a set of the longest common prefixes with k mismatches
of S and suffixes of T2 and let `k be the maximal length of a prefix in this set achieved on
some suffix S′ of T2.

I Lemma 10. For each step with probability ≥ θ(1/t!) there exists a hash function h such
that h

∣∣
[`k](S) = h

∣∣
[`k](S

′).

Proof. Consider strings S[1, `k]$n−`k and S′[1, `k]$n−`k . The Hamming distance between
them is equal to the Hamming distance between S[1, `k] and S′[1, `k], which is k. Moreover,
for any hash function h we have that h(S[1, `k]$n−`k ) = h(S′[1, `k]$n−`k ) if and only if
h
∣∣
[`k](S) = h

∣∣
[`k](S

′). Remember that each hash function is a t-tuple of functions uj . Con-
sequently, if h(S[1, `k]$n−`k ) 6= h(S′[1, `k]$n−`k ) for all hash functions h, the strings collide
on at most t−1 functions uj . By [4, Lemma A.1] the probability of this event for two strings
at the Hamming distance k is at most 1− θ(1/t!). J

As a corollary, we can choose the constant in the number of steps so that with probability
≥ 1 − 1/n2 there will exist a step of algorithm such that for at least one hash function we
will have h

∣∣
[`k](S) = h

∣∣
[`k](S

′). The set S of 2
(
w
t

)
suffixes that we sample from the `-

neighbourhoods of S might or might not include the suffix S′. If it does, then the LCPk̃
query for S′ and S will return a substring of length ≥ `k with high probability. If it does
not, then by the definition of neighbourhoods for each suffix S′′ ∈ S belonging to the
neighbourhood for a hash function g we have g

∣∣
[`k](S) = g

∣∣
[`k](S

′′). We will show that only
for a small number of such suffixes an LCPk̃ query can return a substring of length smaller
than `k.

I Lemma 11. With probability ≥ 1 − 2/n2 there are at most
(
w
t

)
suffixes S′′ such that

g
∣∣
[`k](S) = g

∣∣
[`k](S

′′) but the LCPk̃ query returns a substring shorter than `k.

Proof. If the LCPk̃ query for S and S′′ returns a substring shorter than `k, then with
high probability the Hamming distance between S[1, `k] and S′′[1, `k] is at least (1 + ε) · k.
Remember that a hash function g can be considered as a projection onto a random subset
of positions of size mt, and therefore we obtain

Pr[g
∣∣
[`k](S) = g

∣∣
[`k](S

′′)] = Pr[g(S[1, `k]$n−`k ) = g(S′′)[1, `k]$n−`k ] ≤ (p2)mt = 1
n2

We can consider an indicator random variable that is equal to one if for a suffix S′′ such
that g

∣∣
[`k](S) = g

∣∣
[`k](S

′′) the LCPk̃ query returns a substring shorter than `k, and to zero
otherwise. By linearity, the expectation of their sum is at most 2

n2 ·
(
w
t

)
. The claim follows

from Markov’s inequality. J

From Lemmas 10 and 11 and Theorem 2 it follows that the algorithm correctly finds the
value of ` for the suffix S of T1 with error probability ≤ 3/n2. Applying the union bound,
we obtain that the error probability of the algorithm is constant.

4.3 Proof of Theorem 5
Recall that h is a t-tuple of functions ur, i.e h = (ur1 , ur2 , . . . , urt), where 1 ≤ r1 < r2 <

. . . < rt ≤ w. Below we will show that after the preprocessing of functions ur we will be
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able to compute the longest common prefix of any two strings ur(Si), ur(Sj) in O(1) time.
As a result, we will be able to compute the longest common prefix of h(Si), h(Sj) in O(t)
time. It also follows that we will be able to compare any two strings h(Si), h(Sj) in O(t)
time as their order is defined by the letter following the longest common prefix. Therefore,
we can sort strings h(S1), h(S2), . . . , h(S2n) in O(tn logn) time and O(n) space and then
compute the longest common prefix of each two adjacent strings in O(tn) time. The trie on
h(S1), h(S2), . . . , h(S2n) can then be built in O(n) time by imitating its depth-first traverse.

It remains to explain how we preprocess functions ur, r = 1, 2, . . . , w. For each function
ur it suffices to build a trie on strings ur(S1), ur(S2), . . . , ur(S2n) and to augment it with
an LCA data structure [13, 19]. We will consider two different methods for constructing the
trie with time dependent on m. No matter what the value of m is, one of these methods will
have O(n4/3 log1/3 n) running time. Let ur be a projection along a subset P of positions
1 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ n and denote T = T1$nT2$n.

I Lemma 12. The trie can be built in O(
√
mn logn) time and O(n) space correctly with

error probability at most 1/n3.

Proof. We partition P into disjoint subsets B1, B2, . . . , B√m, where

B` = {p`,1, p`,2, . . . , p`,√m} = {p(`−1)
√
m+q | q ∈ [1,

√
m]}.

Now ur can be represented as a
√
m-tuple of projections b1, b2, . . . , b√m onto the subsets

B1, B2, . . . , B√m respectively. We will build the trie by layers to avoid space overhead.
Suppose that we have built the trie for a function (b1, b2, . . . , b`−1) and we want to extend
it to the trie for (b1, b2, . . . , b`−1, b`).

Let p be a random prime of value at most nO(1). We create a vector χ of length n, where
χ[p`,q] = 2

√
m−1−q and zero for all positions not in B`. We then run the FFT algorithm for

χ and T in the field Zp [14]. The output of the FFT algorithm will contain convolutions of
χ and all suffixes S1, S2, . . . , S2n. The convolution of χ and a suffix Si is the Karp-Rabin
fingerprint [23] ϕ`,i of b`(Si), where

ϕ`,i =

√
m∑

q=1
Si[p`,q] · 2

√
m−1−q (mod p)

If the fingerprints of b`(Si) and b`(Sj) are equal, then b`(Si) and b`(Sj) are equal with
probability at least 1 − 1

n4 , and otherwise they differ. For a fixed leaf of the trie for
(b1, b2, . . . , b`−1) we sort all suffixes that end in it by fingerprints ϕ`,i, which takes O(n logn)
time in total. For each two suffixes Si, Sj that end in the same leaf, adjacent and have
ϕ`,i 6= ϕ`,j , we compare b`(Si) and b`(Sj) letter-by-letter in O(

√
m) time to find their

longest common prefix. Note that this letter-by-letter comparison step will be executed at
most n times, and therefore will take O(

√
mn) time in total. We then append each leaf with

a trie on strings b`(Si) that can be built by imitating its depth-first traverse, which takes
O(n) time for a layer. J

The second method builds the trie in O(n2 log2 n/m) time by the algorithm described
in the first paragraph of this section, and we only need to give a method for comparing the
longest common prefix of ur(Si) and ur(Sj) (or, equivalently, the first position where ur(Si)
and ur(Sj) differ.)

I Lemma 13 ([4]). After O(n)-time and space preprocessing the first position where two
strings ur(Si) and ur(Sj) differ can be found in O(n logn/m) time correctly with error
probability at most 1/n3.
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Proof. We start by building the suffix tree for the string T . The suffix tree can be built in
O(n) time and space [31, 12, 18]. Furthermore, we augment the suffix tree with an LCA
data structure in O(n) time [13, 19].

Let ` = 3n logn/m. We can find the first ` positions q1 < q2 < . . . < q` where Si
and Sj differ in O(n logn/m) time using the kangaroo method [26, 16]. The idea of the
kangaroo method is as follows. We can find q1 by one query to the LCA data structure in
O(1) time. After removing the first q1 positions of Si, Sj , we obtain suffixes Si+q1 , Sj+q1

and find q2 by another query to the LCA data structure, and so on. If at least one of the
positions q1, q2, . . . , q` belongs to P, then we return the first such position as an answer, and
otherwise we say that ur(Si) = ur(Sj).

Let us show that if p is the first position where ur(Si) and ur(Sj) differ, then p belongs
to {q1, q2, . . . , q`} with high probability. Because q1 < q2 < . . . < q` are the first ` positions
where Si and Sj differ, it suffices to show that at least one of these positions belongs to
P. We rely on the fact P is a random subset of [1, n]. We have Pr[q1, q2, . . . , q` /∈ P] =
(1− `/n)m = (1− 3 logn/m)m ≤ n−3. J

As a corollary of Lemmas 12 and 13, the trie on strings ur(S1), ur(S2), . . . , ur(S2n) can be
built in O(min{

√
m,n logn/m} · n logn) = O(n4/3 log4/3 n) time and O(n) space correctly

with high probability which implies Theorem 5 as explained in the beginning of this section.
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