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Non-equilibrium behaviour in coacervate-based
protocells under electric-field-induced excitation
Yudan Yin1, Lin Niu1, Xiaocui Zhu2, Meiping Zhao2, Zexin Zhang3, Stephen Mann4 & Dehai Liang1

Although numerous strategies are now available to generate rudimentary forms of synthetic

cell-like entities, minimal progress has been made in the sustained excitation of artificial

protocells under non-equilibrium conditions. Here we demonstrate that the electric field

energization of coacervate microdroplets comprising polylysine and short single strands of

DNA generates membrane-free protocells with complex, dynamical behaviours. By confining

the droplets within a microfluidic channel and applying a range of electric field strengths, we

produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in

size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter,

directional capture of solute molecules, and pulsed enhancement of enzyme cascade reac-

tions. Our results highlight new opportunities for the study of non-equilibrium phenomena in

synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically

assembled soft matter microsystems and illustrate how dynamical properties can be acti-

vated and sustained in microcompartmentalized media.
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T
he design and construction of rudimentary forms of
synthetic cell-like entities (protocells) exhibiting controlled
reactivity, internal structuration and adaptive functionality

are providing new approaches to protocell modelling1–3, the
fabrication of integrated materials micro-ensembles4–6, and
mechanisms related to prebiotic organization and the origin
of life on the early Earth7. Functional protocells have been
prepared by membrane self-assembly of amphiphilic organic
molecules (polymer8,9 or lipid10,11 vesicles), surface-function-
alized inorganic nanoparticles (colloidosomes)12,13 and protein–
polymer nano-conjugates (proteinosomes)14; layer-by-layer
membrane assembly of counter-charged polyelectrolytes15,16;
and microphase separation of membrane-free liquid micro-
droplets by complex coacervation17. Hybrid protocells based on
membrane-coated coacervate droplets with homogenous18 or
subdivided interiors19,20, or lipid vesicles containing discrete
polymer-enriched internalized domains21,22, have also been
recently reported. Significantly, these strategies are almost
exclusively based on the static assembly and confinement of
molecular and nanoscale components that operate under close to
equilibrium conditions. As a consequence, even the most highly
integrated protocellular systems are functionally compromised
compared with basic life processes, which occur under a
continuous flux of energy and matter exchange.

Thus, a major challenge in synthetic protocell research involves
the development of methodologies that enable the sustained
activation of chemical micro-ensembles such that they persist and
function under non-equilibrium conditions. While modularized
systems can be locally excited, for example, by light-driven
pumping of protons across a targeted vesicle membrane to induce
gene expression23, energization at a non-local level requires the
maintenance and coupling of chemical fuel gradients to inter-
nalized protometabolic processes, or alternatively, the indiscrimi-
nate excitation of the protocell medium by an externally applied
field. In this regard, protocell models based on coacervate liquid
microdroplets are distinctive for their molecularly crowded,
reduced dielectric constant aqueous interiors that consist
of a highly enriched matrix of electrostatically interacting
counter-charged polyelectrolytes17,24. These protocell models
are established under equilibrium conditions, and therefore
exhibit no complex dynamical properties. However, as charged
macromolecular complexes are sensitive to electrohydrodynamic

forces25,26, coacervates can be globally excited by exposure to an
applied electric field27–29, suggesting that it should be possible to
use electric fields to sustain and control the activation of
coacervate-based protocells under non-equilibrium conditions.
Previous studies on the induced mobility of coacervate
microdroplets prepared from high–molecular-weight (2,000 bp)
double-stranded DNA have been reported29, although no
complex internalized behaviour was observed.

Here we demonstrate that the electric-field-induced energiza-
tion of spatially confined coacervate microdroplets containing a
mixture of oppositely charge polypeptides and short single
strands of DNA provides a step towards the design and
construction of synthetic protocells capable of exhibiting a range
of complex behaviours under non-equilibrium conditions. By
confining the droplets within a microfluidic channel and applying
a range of electric field strengths, we produce linear arrays of
membrane-free protocells that undergo cycles of transient
subcompartmentalization, dynamical fluctuations in size and
shape, chaotic processes of growth and fusion, and unidirectional
movement. We show that excitation of the protocells leads to a
continuous exchange of matter with the environment via
repetitive cycles of vacuole nucleation, growth and expulsion,
spontaneous ejection and sequestration of microdomains of the
coacervate matrix, directional capture of solute molecules, and
pulsed enhancement of enzyme cascade reactions. Switching off
the electric field immediately arrests the dynamical behaviour,
and recapitulates the equilibrium structure and form of the
protocells. Taken together, our results highlight new opportu-
nities for the study of non-equilibrium phenomena in synthetic
protocell research, provide a novel strategy for inducing complex
behaviour in electrostatically assembled soft matter microsystems
and illustrate how dynamical properties can be activated and
sustained in microcompartmentalized media.

Results
Electric field excitation of coacervate-based protocells. We
prepare coacervate microdroplets within a microfluidic channel
by flow-induced mixing of cationic poly-L-lysine (PLL,
MW¼ 30,000–70,000) and a negatively charged single-stranded
oligodeoxynucleotide (ss-oligo, MW¼ 6,387, 21 nt) in 0.01 M
phosphate buffer, and then apply an electric field of variable
strength along the microfluidic channel (Fig. 1a). The PLL and
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FITC-labelled poly(L-lysine)

Cy5-labelled ss-oligo

Figure 1 | Experimental set-up. (a) Schematic showing microfluidic chip layout and flow of solutions. The microchannels were 80� 25mm in width and

depth, respectively, and etched on a glass chip. FITC–PLL and Cy5–ss-oligo were placed in the opposite sample reservoirs and allowed to mix under flow at

room temperature to produce an array of fluorescent PLL/ss-oligo coacervate microdroplets along the central channel. The electric field was then applied

along the microfluidic channel. (b) 3D confocal fluorescence microscopy reconstruction showing linear array of discrete PLL/ss-oligo droplets prepared at a

charge ratio of 1:1 in a microfluidic channel in the absence of an electric field. Adherence of the coacervate droplets to the channel wall due to gravity gives

rise to the observed hemispherical morphology. Scale bar, 20mm.
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ss-oligo are fluorescently labelled with fluorescein isothiocyanate
(FITC) and 1,1-bis(3-hydroxypropyl)-3,3,3,3-tetramethylindo-
dicarbocyanine (Cy5), respectively, to assist imaging of the droplets
within the microfluidic channel. In the absence of an electric field,
room temperature mixing of the PLL and ss-oligo at a charge ratio
of E1:1 produces a linear array of discrete coacervate micro-
droplets that are typically 20mm in diameter and stable with
respect to coalescence. Three-dimensional (3D) confocal fluores-
cence microscopy images reveal uniform fluorescence intensity
throughout the droplets, indicating that the complex coacervates
are structurally homogeneous in the absence of an electric field
(Fig. 1b).

Switching on the electric field (E) above a critical value has a
remarkable influence on the structure and dynamics of the
preformed PLL/ss-oligo coacervate microdroplets. While the
microdroplets remain essentially unchanged at Eo20 V cm� 1

field, increasing the electric field to 30 or 40 V cm� 1 results in the
cyclical appearance and disappearance of non-fluorescent
vacuoles within the interior of the coacervate phase (Fig. 2a–c;
Supplementary Movies 1–3). Under these conditions, subcom-
partmentalization is repeatedly initiated at a small number
(typically n¼ 1–3) of randomly located sites in droplets that
remain effectively unchanged in overall size and shape, and
immobile within the microfluidic channel. In contrast, major
fluctuations in droplet morphology and dynamics occur at E¼ 50
and 70 V cm� 1 due to an increased intensity in the growth and
expulsion of the vacuoles, which are associated, respectively, with
cycles of expansion and contraction of the coacervate droplets. As
a consequence, the energized droplets often undergo fusion to
produce larger membrane-free protocells with co-existing multi-
ple subcompartments (Fig. 2d). The structural and morphological
fluctuations are sufficiently intense that fluorescent microparticles
of the coacervate medium are ejected from and then consumed by
the larger droplets during contraction and swelling, respectively
(Fig. 2e). Phenomenologically, the energized protocells exhibit
‘life-like’ chaotic behaviour involving unidirectional movement
(electric field induced), morphogenesis (rapid fluctuations in size
and shape), transient subcompartmentalization, fusion and
growth, and continuous exchange of matter with the environment
(vacuole growth/expulsion, matrix ejection/sequestration)
(Supplementary Movies 4 and 5). Furthermore, at 100 V cm� 1,
the electrohydrodynamic force is strong enough to stretch the
subdivided droplets in a direction normal to the electric field
(Fig. 2f; Supplementary Movie 6). Significantly, the repetitive
formation of the vacuoles is stopped immediately the electric field
is switched off.

Vacuole formation and protocell dynamics. We use fluores-
cence microscopy to investigate the nature of vacuole formation
within the PLL/ss-oligo protocells. 3D confocal fluorescence
microscopy images confirm the presence of internal cavities in the
subdivided droplets (Fig. 3a). The vacuoles nucleate randomly
inside the protocells, rapidly grow in size, fuse if in the presence
of more than one subcompartment and then disappear on contact
with the surface of the coacervate microdroplet (Fig. 3b). Release
of the vacuole contents into the bulk aqueous phase is followed by
a further cycle of nucleation, growth and ejection of the sub-
compartments, which continue without loss of droplet integrity
until the electric field is switched off. The lifetime associated with
vacuole growth and expulsion is determined within individual
droplets from the video recordings. As the fluorescence intensity
associated with the vacuoles is close to the background level,
fluorescence line scans across subdivided droplets give a series of
peaks corresponding to the edges of the coacervate-rich areas
(Supplementary Fig. 1). The size of the vacuoles is determined by

measuring the distance between the fluorescence intensity peaks
at various time intervals. As shown in Fig. 3c, the vacuole lifetime
is of the order of around 5 s in an electric field of 80 V cm� 1.

Changes in the composition of the coacervate matrix during
repeated cycles of swelling and contraction accompanying
vacuole growth and expulsion at electric fields of 10–70 V cm� 1

are investigated by fluorescence microscopy measurements on
individual droplets. Time-dependent measurements of the
relative fluorescence intensity, Ir¼ IPLL/Ioligo, are used as an
approximate index of how the PLL/ss-oligo ratio in the droplets
changes over a period of 50 s (Fig. 3d). No significant change in
the normalized ratio is observed at 10 V cm� 1, indicating that the
coacervate matrix is compositional stable in the vacuole-free
protocells. In contrast, onset of subcompartmentalization in
droplets at E430 V cm� 1 results in a time-dependent reduction
in Ir that fluctuates probably due to matter exchange with the
external environment during the swelling/contraction cycles, and
becomes more pronounced as the electric field is increased. For
example, a 10% drop in the value of Ir is observed after 50 s at
70 V cm� 1, indicating that a considerable amount of PLL is
released as the protocells undergo rapid fluctuations in size and
shape. To determine when and how the PLL is released, we
measure the Ir values associated with the fluorescent micro-
particles produced in situ by ejection from a neighbouring parent
droplet at 70 V cm� 1 (Fig. 3e). The average Ir value for the
ejected particles (region 2 in Fig. 3e and Supplementary Fig. 2) is
B40% higher than that of the parent droplet (region 1 in Fig. 3e),

a

d e

b c

f

10 V cm–1 30 V cm–1 40 V cm–1

100 V cm–170 V cm–150 V cm–1

E

–

+

Figure 2 | Electric field excitation of coacervate-based protocells. Video

images showing PLL/ss-oligo coacervate droplets prepared in a microfluidic

channel and then exposed to an applied electric field (E) of varying strength.

(a) At E¼ 10 Vcm� 1, showing a stable array of fluorescent coacervate

droplets with homogeneous size, structure and morphology. (b,c) At E¼ 30

or 40 Vcm� 1, showing immobile arrays of coacervate microdroplets

containing small numbers of subcompartments (localized non-fluorescent

regions). The vacuoles nucleate, grow and disappear in a cyclical process of

matter exchange with the environment without significantly influencing

droplet size and shape (see Supplementary Movies 1–3 for more details).

(d,e) At E¼ 50 or 70 Vcm� 1, showing a destabilized array of motile

protocells with co-existing multiple vacuoles and increased polydispersity

due to droplet fusion. Corresponding videos (Supplementary Movies 4 and

5) show rapidly fluctuating changes in the shape and size of individual

droplets as they move towards the negative electrode. Arrow in e highlights

the presence of fluorescent ejectiles that were released in the direction of

the electric field from the adjacent multi-compartmentalized droplet; the

ejectiles were subsequently sequestered by the same droplet at a later time

interval. (f) At 100 Vcm� 1, showing transversely stretched multi-vacuole-

containing protocells and extensive amounts of ejected coacervate matrix

due to the high electrohydrodynamic forces. Scale bar, 50mm.
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indicating that PLL is preferentially released from the coacervate
matrix during repeated cycles of vacuolization. As the PLL chain
length is considerably greater than that for the ss-oligo,
uncomplexed loops of PLL within the coacervate matrix will be
subjected to higher dragging forces, and therefore preferentially
expelled during the excessive fluctuations in droplet morphology
observed at relatively high electric fields.

Molecular uptake during vacuolarization. Other studies indicate
that not only are components of the droplet selectively expelled
but also solute molecules in the external medium can be taken up
directionally and accumulated inside the droplets in the presence
of an electric field. Using a water-soluble fluorescent dye (calcein)
as a model molecule, we monitor the migration behaviour and
spatial distribution of the solute during the vacuolarization pro-
cess. Negligible uptake of calcein into the coacervate matrix of the
microdroplets is observed by confocal fluorescence microscopy in
the absence of an electric field (Fig. 4a,b), consistent with the

relative hydrophobic nature of the PLL/ss-oligo phase. In con-
trast, calcein is observed in the vacuoles but not in the coacervate
matrix when the droplet is exposed to an electric field (Fig. 4c,d).
As the vacuolization process is cyclical, transportation of the
external aqueous phase into and out of the droplet occurs as long
as the electric field is switched on. Moreover, once the electric
field is applied, calcein molecules migrate into the coacervate
phase from one end of the droplet along the direction of electric
field (Fig. 4e–i; Supplementary Movie 7). A linear time-dependent
relationship is observed for the advancing wave front of
dye molecules, indicating an almost constant velocity for calcein
uptake (Fig. 4e). The calculated mobility within the droplets
(� 3.2� 10� 10 m2 s� 1 V� 1) is significantly lower than the
value observed in free solution (� 6.0� 10� 8 m2 s� 1 V� 1)30. As
a consequence, the concentration of calcein in the droplet
as indicated by the fluorescence intensity is considerably higher
than that in the surrounding phase.

Transport of the external aqueous phase during vacuolization
is driven by osmotic pressure generated by an elevated local
ion concentration in the droplets exposed to an electric field.
Droplets prepared at PLL and ss-oligo at higher concentrations
(PLL: 4.0 mg ml� 1, ss-oligo: 6.0 mg ml� 1) contain domains rich
in ions due to incomplete complexation31. Indeed, under these
conditions, vacuolization is observed in the absence of an electric
field when the continuous phase is replaced by a buffer solution
(Supplementary Fig. 3). The vacuoles are mainly located in the
PLL-enriched domain of the forming droplets due to the longer
chain length of the cationic polymer, which gives rise to
an increased number of unneutralized loops31, and higher ionic
concentration. Significantly, enhanced dissociation of the
polyelectrolyte complex occurs in the presence of an electric
field, which in turn increases the local concentration of free ions
within the droplets, enabling vacuolization in the droplet at lower
polymer concentrations. As the imbibed water does not mix with
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Figure 3 | Vacuole formation and protocell dynamics in applied electric

fields. (a) 3D confocal fluorescence microscopy reconstruction of a PLL/

ss-oligo coacervate microdroplet exposed to an electric field of 70 Vcm� 1

showing the presence of a single 18-mm-sized vacuole (solid arrow). Scale

bar, 20mm. (b) Fluorescence microscopy images showing a time sequence

of events leading to vacuole nucleation, fusion and growth within a single

PLL/ss-oligo microdroplet placed in an electric field of 80 Vcm� 1. Contact

of the vacuole with the droplet surface releases the subcompartment into

the external medium and initiates a new cycle of matter transfer. Scale bar,

10mm. (c) Plot of droplet size against time for three cycles of vacuole

growth within and expulsion from an individual protocell at E¼ 80 V.

(d) Plots of relative fluorescence intensity (IPLL/Iss-oligo) against time for

individual PLL/ss-oligo microdroplets exposed to electric fields ranging

from 10 to 70 Vcm� 1. Values for IPLL and Ioligo were normalized to their

initial values recorded before the electric field was switched on (t¼0).

Error bar: s.e. mean. (e) Confocal fluorescence microscopy image showing

large multi-compartmentalized PLL/ss-oligo protocell (region 1) and ejected

microparticles (region 2) at 70 Vcm� 1. Fluorescence channels for FITC–PLL

(green) and Cy5-tagged ss-oligo (red) are combined in the images.

Analyses of the relative fluorescence intensities indicate that the

concentration of PLL is highest in the expelled particles. Scale bar, 20mm.
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Figure 4 | Molecular uptake during vacuolarization. (a–d) Confocal

fluorescence microscopy images showing a single PLL/Cy5-labelled

ss-oligo coacervate microdroplet prepared in a microfluidic channel with

addition of the water-soluble, green fluorescent dye, calcein (20 mM) before

(a,b) and after (c,d) activation in an applied electric field at 30 Vcm� 1. No

uptake of calcein is observed in the microdroplet before excitation (a),

which shows only homogeneous red fluorescence associated with the Cy5–

ssDNA component (b). In contrast, calcein is observed in the vacuoles but

not in the coacervate matrix when the droplet is exposed to an electric field

(c,d), indicating that the vacuoles are formed by water ingress from the

external environment. (e–i) Time-dependent uptake of calcein in the

microdroplets under energization after 1 (f), 15 (g), 30 (h) and 45 s (i).

Positions of the calcein wave front (e) were used to calculate dye mobility

in the droplets. Scale bar, 10mm.
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the viscoelastic coacervate phase, the vacuole grows under a
compressive force, but because there is no restraining membrane
at the droplet surface is stochastically released back into the
continuous phase, contracting the droplet and initiating the
next cycle of matter transfer. The presence of elevated salt
concentrations in the continuous phase or substitution of the ss-
oligo for a more strongly bonded double-stranded oligo-DNA
counterpart suppresses vacuole formation (data not shown) by
offsetting the osmotic pressure or curtailing disassociation of the
complex, respectively.

Electric-field-mediated enhancement of enzyme reactions.
Inspired by the directional movement, accumulation and
throughput of molecules observed for microdroplets under elec-
tric field energization, we explore the possibility of undertaking
enzyme-mediated chemical transformations19 in the activated
medium. Glucose oxidase (GOx) and horseradish peroxidase
(HRP) are encapsulated in the coacervate droplets during
preparation, and a mixture of o-phenylenediamine (oPD,
substrate for HRP) and b-D-glucose (substrate for GOx) is
injected into the microfluidic channel to replace the original
buffer. Diffusion of oPD and b-D-glucose into the coacervate
droplets initiates the enzyme-mediated tandem reaction to
produce a fluorescent final product, 2,3-diaminophenazine (2,3-
DAP) that is monitored in individual droplets over time
(Supplementary Table 1). A steady increase in the 2,3-DAP
fluorescence intensity followed by a slow decrease after 35 min is
observed for enzyme-containing droplets in the absence of an
electric field (Fig. 5a–d; Fig. 5e (blue curve)). We attribute the fall
off in intensity to the formation of a quasi-steady state between

2,3-DAP production within the droplet and release of the product
to the external environment. This behaviour is not observed for
cascade reactions undertaken in bulk solution; in this case, a
continuous increase in intensity is observed over a time period of
60 min. Significantly, a sharp increase in 2,3-DAP fluorescence
intensity in the droplets is observed when an electric field of
50 V cm� 1 is applied for 1 min (Fig. 5e (red curve); Fig. 5f–i).
The electric field also redistributes the positively charged
2,3-DAP molecules towards one region of the droplet (Fig. 5g;
Supplementary Fig. 4), and the fluorescence intensity decreases to
a steady state value within a few minutes after the electric field
(50 V cm� 1) is switched off (Fig. 5e), such that the enzyme
reaction can be pulsed by intermittent switching on and off of the
electric field (Fig. 5e). Control experiments undertaken in the
absence of the enzymes show negligible changes in fluorescence,
indicating that the observed increase in fluorescence intensity
originates specifically from the formation of 2,3-DAP
(Supplementary Fig. 5).

We attribute the electric-field-mediated enhancement of the
enzyme cascade reaction rate to the triggered rapid uptake and
accumulation of oPD and b-D-glucose within the droplets due to
electric-field-induced vacuolization. Interestingly, at a higher
voltage of 80 V cm� 1, where dynamic fluctuations in the size and
shape of the droplet occur, the overall instantaneous intensity
of 2,3-DAP is considerably higher than at 50 V cm� 1 after the
droplets are energized for 1 min. Moreover, the 2,3-DAP product
is mainly distributed outside the substrate-containing aqueous
vacuole and within the enzyme-containing coacervate matrix
(Fig. 5f–i). Overall, these experiments demonstrate that electric
field energization of the microdroplets can be used to trigger
immediate rate enhancements in spatially confined enzyme
reactions, and that vacuolization offers a transient means to
partially separate reactants and product molecules associated with
the biocatalytic cascade.

Discussion
Our results highlight a novel experimental protocol for the
controlled electric field excitation of coacervate-based micro-
droplets that offers new opportunities for the study of non-
equilibrium phenomena in synthetic protocells. The ability to
study protocells under sustained energization is in marked
contrast to current models that are limited by their design and
function under close to equilibrium conditions. Our studies
therefore offer a step towards a better representation of minimal
life processes operating under a continuous flux of energy and
exchange of matter with the environment. In particular, the
possibility of controlling the onset, duration and termination of
complex dynamical behaviour such as morphogenesis, transient
subcompartmentalization (vacuolization), growth and fusion,
spontaneous ejection and sequestration of matter, directional
capture of solute molecules, and pulsed enhancement of enzyme
cascades should provide an interesting context in which to study
chemical reactivity and signalling in protocell communities. For
example, coacervate microdroplets exhibit key biomimetic
characteristics such as high levels of chemical enrichment17,24,
uptake and retention of enzymes and DNA without droplet
transfer or exchange32,33, increased rates of enzymatic
transformations17,24,34 and surface properties compatible with
facilitating membrane assembly18–20. The exploitation of these
properties in energized protocells should provide a route towards
increased complexity and functionality that could have
implications for new developments in activated microstorage
and delivery, and non-equilibrium microreactor technologies.

The demonstration of diverse non-equilibrium phenomena in
coacervate microdroplets exposed to an electric field offers a step
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Figure 5 | Electric-field-mediated enhancement of an enzyme cascade

reaction. (a–d) Confocal fluorescence microscopy images of a single PLL/

ss-oligo coacervate microdroplet containing GOx/HRP enzymes and

showing 2,3-DAP fluorescence in the absence of an electric field 10 (a), 20

(b), 30 (c) and 50 min (d) after addition of oPD and b-D-glucose substrates;

scale bar, 10mm. (e) Relative intensities of 2,3-DAP produced in droplets

subjected to intermittent energization (red squares) or without energization

(blue dots). An electric field of 50 Vcm� 1 was applied at 35 and 42 min for

a period of 1 min, and at 49 min using a field of 80 Vcm� 1 for 1 min

(arrows). (f–i) Confocal fluorescence microscopy images of 2,3-DAP

fluorescence intensity just before energization (f), immediately after

energization in an electric field of 50 Vcm� 1 showing increase in

fluorescence intensity and redistribution of 2,3-DAP (upper region of the

droplet) (g), 2 min after the 50 Vcm� 1 electric field is switched off showing

decrease in fluorescence intensity (h), and immediately after energization

in an electric field of 80 Vcm� 1 showing high-intensity 2,3-DAP

fluorescence in the coacervate matrix but not in the vacuole (i). Scale bar,

5 mm.
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towards novel examples of reactive soft matter. Electrohydrody-
namic forces within the molecularly crowded interior of the
protocells facilitate disassociation the PLL/ss-oligo complex to
produce a charge-activated matrix and osmotic gradient at the
droplet surface that drive a cyclical exchange of matter with the
environment. Our results suggest that loosely associated poly-
electrolytes are particularly sensitive to the electric field, and that
the composition and structural heterogeneity of the coacervate
matrix are important criteria in determining their non-equili-
brium behaviour. As coacervate microdroplets can be prepared
across a range of polyelectrolyte charge ratios24, and kinetically
trapped structural states29,35, changes in experimental
methodology (non-stoichiometric mixtures, ageing times) need
to be considered in detail when investigating their dynamical
properties.

Finally, we speculate that our results could be of interest to
areas of origin of life research, particularly in stimulating new
ideas concerning the activation and subdivision of prebiotic
assemblies on the early Earth. The spontaneous microphase
separation and chemical enrichment in water of counter-charged
biologically relevant molecules such as ATP, DNA, RNA and
polypeptides17,18,33 to produce coacervate droplets is consistent
with a possible mechanism of membrane-free prebiotic compart-
mentalization17,36. Condensates of these charged components are
prevalent in extant organisms37–39, and electric fields exist both
extracellularly and intracellularly40,41, and play a role in dyna-
mical processes such as tissue morphogenesis and regeneration42.
However, although electric discharges (lightning) have been
considered a plausible mechanism for the synthesis of certain
prebiotic molecules43,44, the possibility that electric fields
generated in the ground from earthquake activity45, or stream-
ing potentials in porous rocks46 could facilitate the energization
of early cells, or influence their dynamical behaviour and
trafficking of matter remains unknown.

Methods
Experimental set-up. A ss-oligo (MW¼ 6,387) with a 21 nt random sequence and a
Cy5 fluorescent tag linked at the 50-terminus was purchased from Invitrogen Inc.
FITC-labelled PLL (MW¼ 30,000–70,000) was purchased from Sigma-Aldrich
(St Louis, MI, USA) and used as received. Microchannels with a double-cross layout
were etched on a glass chips by soft lithography. The ss-oligo (1.5 mg ml� 1) and PLL
(1.0 mg ml� 1) were dissolved in phosphate buffer (0.01 M, pH 6.86) and loaded into
the opposite wells of a microfluidic channel device (channel dimensions; 80-mm
width� 25-mm depth) that was previously washed in sequence with NaCl (1 M),
NaOH (1 M), HCl (1 M), deionized water and 1% (w/w) phosphate-buffered poly-
vinylpyrrolidone (MW¼ 30,000; 0.01 M KH2PO4–Na2HPO4, pH 6.86, 2 h) to mini-
mize electro-osmosis flow and to prevent adsorption of analytes. The flow of the
solution was driven by gravity. At the same height, the flow rates of ss-oligo and PLL
were similar. They were thus mixed in the central channel of the chip with equal
volume. Discrete coacervate microdroplets with 1:1 charge ratio were formed by
mixing ss-oligo and PLL at 1.5 and 1.0 mg ml� 1, respectively. (Varying the charge
ratio or aging time after mixing of the polyelectrolytes was used to change the mean
droplet diameter if required.) After 3 min, residual aqueous oligoDNA and PLL were
replaced in the channel by phosphate buffer. An electric field, typically between 10
and 200 V cm� 1, was then applied along the microfluidic channel by using a
ZDMCI6-1 Microfluidic Chip Detection System (Hang-zhou Syltech Technology
Co., Ltd). The changes in droplet morphology, organization and dynamics were
recorded by using an Inverted Fluorescence Microscope (IX71, Olympus, USA) with
a U-MWIBA module (excitation filter BP460–495, emission filter BA510–550)
equipped with an EMCCD (Evolve512, Photometric, USA), or a Laser Scanning
Confocal Microscope (LSCM, A1R-si, Nikon, Japan) for video imaging or 3D image
reconstruction, respectively. The excitation and emission wavelengths were 638 and
700 nm (ss-oligo), and 488 and 515 nm (PLL), respectively.

Similar experiments were undertaken using coacervate droplets prepared
from a mixture of PLL and a double-stranded oligodeoxynucleotide. The
latter was prepared by mixing two ss-oligos with complementary sequences
(50-CTTACGCTGAGTACTTCGATT-30 and 50-AATCGAAGTACTCAGCGT
AAG-30; Invitrogen Inc) at equal molar ratio, followed by heating at 95 �C for
5 min and slow cooling to room temperature.

Monitoring of dynamical behaviour. Cyclical changes in the size of the internal
compartments produced within individual coacervate microdroplets exposed to an

electric field of 80 V cm� 1 were determined by time-dependent video measure-
ments of the distance between the two inner edges of selected vacuoles. As the
fluorescence intensity associated with the vacuoles was close to the background
level, fluorescence line scans across subdivided droplets gave a series of peaks
corresponding to the edges of the coacervate-rich areas. The size of the vacuoles
was determined by measuring the distance between the fluorescence intensity peaks
at various time intervals.

Experiments to confirm the aqueous content of the vacuoles formed by the
excitation of electric field were carried out with PLL/ss-oligo (Cy5 labelled)
coacervate microdroplets produced as described above but in the presence of
20 mM calcein. Uptake experiments were undertaken using a similar procedure.

Time-dependent changes in the macromolecular composition of individual
coacervate microdroplets exposed to electric fields ranging from 10 to 70 V cm� 1

were monitored by determining the relative fluorescence intensity, Ir¼ IPLL/Ioligo as
an index of the PLL/ss-oligo ratio, where IPLL and Ioligo were the fluorescence
intensities of FITC-labelled PLL and Cy5-labelled DNA, respectively. Both
intensities were normalized to their initial values recorded before the electric field
was switched on (t¼ 0). Changes in fluorescence for more than five droplets were
determined, and the average values used for comparison.

Enzyme cascade experiments. Experiments to study the influence of electric field
energization of the coacervate microdroplets on spatially confined enzyme-medi-
ated reactions were undertaken as follows. Coacervate droplets co-mixed with GOx
(GOx from Aspergillus niger) and HRP (FITC-labelled GOx or rhodamine iso-
thiocyanate (RITC)-labelled HRP were used in some experiments) were prepared
from PLL (1.0 mg ml� 1) and a mixture of ss-oligo (1.5 mg ml� 1), GOx
(20 mg ml� 1) and HRP (10 mg ml� 1). A double-component mixture of oPD
(1 mM) and b-D-glucose (2 mM) (substrates for HRP and GOx) in 20 mM MES
buffer (pH 6) was injected into the channel replacing the buffer and initiating the
enzyme-mediated tandem reaction in
the coacervate droplets. The intensity of the fluorescent product 2,3-DAP was
measured using laser scanning confocal microscope (405 nm excitation and
530 (±30) nm emission). Unlabelled GOx or HRP was used in some experiments
to avoid fluorescence resonance energy transfer.
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