View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Explore Bristol Research

Enabling Design of Performance-Controlled
Sensor Network Applications Through
Task Allocation and Reallocation

Atis FElsts, Farshid Hassani Bijarbooneh, Martin Jacobsson, and Konstantinos Sagonas
Department of Information Technology, Uppsala University, Sweden

Abstract—Abstract Task Graph (ATaG) is a sensor network ap-
plication development paradigm where the application is visually
described by a graph where the nodes correspond to application-
level tasks and edges correspond to dataflows. We extend ATaG
with the option to add nonfunctional requirements: constraints
on end-to-end delay and packet delivery rate. Setting up these
constraints at the design phase naturally leads to enabling run-
time assurance at the deployment phase, when the conditions
of the constraints are used as network’s performance goals. We
provide both run-time middleware that checks the conditions of
these constraints and a central management unit that dynamically
adapts the system by doing task reallocation and putting task
copies on redundant nodes. Through extensive simulations we
show that the system is efficient enough to enable adaptations
within tens of seconds even in large networks.

I. INTRODUCTION

The currently dominating system-level approach to wireless
sensor network (WSN) software engineering does not provide
ready-to-use tools and libraries for implementing functionality
commonly required by WSN users to increase the dependability
of their applications, such as:

e Given the network model, assumptions about its environ-
ment, and an application with specific quality-of-service (QoS)
requirements, determine the nodes on which the application
should be deployed so that the requirements hold.

e Continuously assure the user that the application is still
doing what it is intended to, and meeting its QoS requirements.

e Make use of redundant hardware nodes in order to improve
data quality and at the same time increase network’s lifetime
and maintenance intervals.

Such functionality is instead implemented on application-
specific basis; an approach that is both tedious and error prone.

Help is offered by high-level WSN macroprogramming
methodologies such as the Abstract Task Graph (ATaG) [1]].
We have implemented ATaG in ProFuN TG|I| [2]], a high-level
sensor network development toolkit. ProFuN TG allows users
to describe the functionality of an application with a task graph,
to macrocompile its code, and to deploy it in real and simulated
networks.

In this paper, we describe how ATaG is extended in our
implementation by allowing to incorporate end-to-end reliability
requirements in descriptions of applications. The requirements
are expressed in form of constraints on packet delivery rate
(PDR) and delay, and are set on dataflows between tasks.

Uhttp://parapluu.github.io/profun/

At the design stage, the tool takes these requirements in
conjunction with a model of the network as the input, and
outputs an optimized, constraint-satisfying task mapping.

The supporting run-time middleware (implemented for
msp430 MCU based sensor nodes) efficiently sets up the task
mapping in the network, manages task-to-task communication,
gathers application performance statistics and determines
whether the conditions of the constraints hold, enabling run-
time assurance. On failures, alert notifications are issued, and
automated maintenance through task remapping is performed.

This work provides a bridge between an existing high-
level WSN programming paradigm, ATaG, and several other
research ideas; specifically, the idea of end-to-end constraints
on dataflows as a useful abstraction for the WSN application
programmer [3] and the idea of run-time assurance [4] as an
important non-functional aspect of WSN applications. We show
how allowing the user to specify high-level constraints in the
design phase naturally leads to enabling run-time assurance in
the deployment phase.

II. CONCEPTUAL FOUNDATIONS
A. Programming model

We adopt the Abstract Task Graph (ATaG) [1] macropro-
gramming model, which builds on the dataflow programming
paradigm. The core concept of this programming model is
the task graph (Fig. [Ta), a user-defined graph where the
vertices correspond to abstract tasks and edges denote dataflows
between these tasks.

An abstract task is a clearly defined chunk of application-
level functionality. Tasks are annotated with properties, such
as their firing rule (periodic or event-based), firing period, and
the number of task copies to instantiate. Each abstract task is
instantiated on one or more sensor nodes.

An abstract dataflow is a link that connects a pair of abstract
tasks. All dataflows have scope: a property that restricts the
maximal distance (number of intermediate hops or network
regions) between the source and destination in a communicating
pair of instantiated tasks. A dataflow may also have several
constraint properties (Section [I-=C), a number of maximal
retransmissions property, a datarate property, and others.

ATaG is a hybrid programming model: the high-level
specification is visual and declarative, while the low-level
code inside the tasks is textual and imperative. ProFuN TG
task code is written in C.

https://core.ac.uk/display/73982584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

L]
ProFuN Task Graph x|+

€ @ localhost ¢ B Q&8 & A =

_ S atooso ol Savog oS Deply l g Sert shwiator E

v ask shoot llocation &

temperature

humidity

gnt
Task palette
accelerometer

"\ Actuator
- tasks

battery

smoke

collect

Constrained
dataflow ame

(a) Task graph view showing tasks and their relationships

[] ProFuN Task Graph - Mozilla Firefox -+ x

PrOFUN Task Graph x\ +

€ @ localhost. ~c| B a8 ¢ A =

network v Allocation +

gene

 room2_sense [sky]

Nodes with
sensors 4?\
I \ 96%

room2_sdnse [sky]

—y $/C s

’
iig
§

m | Nodes with —

actuators CILTE)

(b) Network view showing (a part of) the allocation of tasks to nodes

Fig. 1: The visual interface of ProFuN TG, showing a heating control application with fire detection

ProFuN TG provides a number of predefined task types
in several categories: sensors, actuators, processing tasks,
and other data I/0. Sensors typically produce data, actuators
consume data, and processing tasks take one or more input
data items and convert them to one or more output data items.

B. Network model

ProFuN TG allows the user to interactively create and refine
a model of the network and its environment (Fig. [Tb).

The core of a network model is a set of sensor nodes
connected with radio links. The location of each node is
specified visually, by placing it on a background map. A node
also has a number of other properties, such as its hardware
platform and hardware components. In addition, user-defined
properties can be set using name:value syntax. For example,
the user may specify one or more location properties, such as
the room and the building in which the node is located.

Each radio link has a number of properties that describe its
quality. In the absence of explicit configuration, link existence
and quality parameters are estimated by a network simulator.
They can also be manually entered by the user, or collected from
the network by observing its performance. Examples of such
properties include transmission success probability and delay
value. We do not restrict the descriptions of these properties
to their mathematically expected values (averages), but instead
recognize that they are random variables, best described by
probability distributions.

C. Constraints

One of the key features of ProFuN TG is its support for user
defined, end-to-end constraints between source and destination
tasks. These constraints serve two roles:

o Predictive: the task allocation algorithm takes the constraints
into account and avoids producing mappings that violate them.
e Diagnostic: the runtime system continuously tests whether
constraint conditions are met. In case the test fails on a node,
it notifies the central system, which then re-allocates the tasks.

For each constraint, the user is allowed to specify the minimal
acceptable probability P with which it is predicted to hold in
the task-mapping stage. For example, let us take P = 0.98:

P(Delay < 3000 ms) > 0.98
P(PDR > 90 %) > 0.98

What does the probability P represent at runtime? There
are at least two possible answers. The first is that the user is
willing to tolerate some violations at runtime, as long as their
proportional frequency is not higher than 1 — P. The second
is that P represents just the subjective uncertainty about the
model; for the runtime, the user wants guarantees that all
communication will be within the bounds of the constraints,
irrespective of the probabilities in the model.

The second interpretation leads to a simpler runtime check,
but in some cases it is too restrictive. For example, the user
might not want to remap the source task (and possibly other
tasks) just because a single packet failed to arrive within the
expected delay bounds. Therefore ProFuN TG offers to select
one of the two interpretations as a configuration option. For
the first interpretation, statistically significant run-time tests are
only possible after certain number of values has been gathered.
This minimal-number-of-values is another user-configurable
parameter.

III. DESIGN-TIME FUNCTIONALITY

Consider an example application: an indoor heating control
system extended with fire detection functionality (Fig. [I). This
application has two sensing tasks: temperature and smoke,
two actuation tasks: heater and alarm, and a data processing
task: threshold operation. Fire is detected when either a smoke
sensor is activated or when the temperature in a room exceeds
a predefined threshold. The action taken by the system on fire
is abstracted by the alarm task.

We assume the application is deployed in a building with
several rooms, each of which has several sensor nodes. We
require that each heater task should receive input from at least
two temperature tasks located in the same room, and each

alarm task should receive data from a smoke sensor in the
same room, with delay smaller than 30 seconds with at least
99.5 % probability.

ProFuN TG allows to configure high-level relations between
tasks easily (i.e., once per network, not once per each pair of
nodes), as well as to enforce the fact that these relations are
met everywhere in the network. Furthermore, it allows to map
tasks only to nodes with a specific configuration. The user can
write a binary predicate for a task (i.e., a logical expression on
node properties) which is evaluated at design-time and operates
as a filter on the set of nodes eligible to host the task.

The user may require certain task-to-task reliability guar-
antees. In the general case, it is not possible to reduce these
guarantees to a simple metric such as the number of hops
between nodes, because there are situations when a single
bad link fails to deliver acceptable PDR, whereas a multihop
path consisting of several good links succeeds. ProFuN TG
combines the user-defined constraints with the user-defined
network model to automatically determine optimal mappings
of task pairs that are within bounds of these constraints.

The network model used by ProFuN TG supports random
variables, such as delay and PDR, defined on each link of the
network. The variables are described by probability distribution
functions. Both sums and mixtures of arbitrary distributions
are supported. For example, a network link may have a delay
distribution that is sufficiently well approximated by a single
sharp peak at 0.5 sec with 60 % probability and a log-normally
distributed tail of larger delays with 40 % probability and
parameters p = 0.6, 0 = 1. ProFuN TG supports the following
syntax for writing down this example mixture distribution:

Normal (0.5,0.0): 0.6, LogNormal(0.6,1): 0.4

Given the probability distribution functions (PDF) of individ-
ual links, the task allocator estimates the cumulative distribution
functions (CDF) between each pairs of nodes in the network.
Given a particular constraint, it uses the path CDF to check
which mappings satisfy the condition of the constraint (Fig. [2)).

As an example consider a constraint on maximal delay. The
constraint has two user-configured parameters: delay bound
C and minimal probability P. A path from source node s to
destination node d satisfies the constraint iff:

P(DelaYpath(s,d) < C) 2 P
By definition,
P(Delay,,,n(s,4) <) = CDFpatn(s,a) (C)

C
CDFpath(s,d) (C) = / PDFpath(s,d) (t)dt
Delay of a packet in a sensor network is heavily dependent
on the number and quality of the links it has to cross. Therefore
the delay distribution of a path can be approximated as the
sum of its link delay distributions:

>

link € path(s,d)

PDFpath(s,d) ~ PDFlink

where the sum is calculated as convolution of the link PDFs.

o

o
©

Probability
o
)

o
~

o
[N}

0.0
0

Delay, sec

Fig. 2: Probabilistic constraints on a log-normal delay
distribution. Given minimal probability P = 0.9, constraints
with delay value of C' = 4 s are not satisfiable, while constraints
with delay value C' = 4.5 s are satisfiable (in the model).

Therefore to determine whether the path from s to d supports
dataflows with the specific constraint, ProFuN TG evaluates:

C
CDFpath(s,d)(O) Q"// Z

> link € path(s,d)

PDFy;,,1,(1)dt

Since in the general case the resulting multiple integral
cannot be solved analytically, ProFuN TG uses numerical
integration by Monte Carlo sampling to approximate its value.

In the case when the number of maximal retranmissions is
finite, there is a non-zero probability that the packet is never
delivered. To handle this case, the user should include an
additional term as a part of the mixture description of the delay
distribution of a link. The term can be a single point at a very
large ¢ coordinate. For example, if the “infinity” floating point
value defined by IEEE 754 standard is used for this purpose,
the path CDF is guaranteed to be above any finite constant C
if a least one of the links drops the packet.

What happens when there are no satisfying mappings for a
particular pair of communicating tasks? In this case, ProFuN
TG is capable of automatically creating duplicate copies of the
source task of the pair. Continuing with the delay constraint
example, it is easy to see that this increases the probability that
the destination task d will receive data with acceptable delay
from at least one source task s; (assuming the probabilities
are independently and identically distributed):

Pt (C, 5,d) = 1 — CDFp,u4p(5,a)(C)
Pfail(C7 {817 82,4, S’n}v d) = HPfail(Ca Siy d)
i=1

where Pg;(C, s, d) is the probability that the path from s to d
does not satisfy the delay bound C.

The tool estimates & — the required number of source task’s
copies to satisfy C' with probability P — by using the equation:

(Pt (Cy 51,d)* >1— P

As k must be an integer, the estimate is given by:

B log (1 — P)
b= {(log (Prair) >—‘

Once the set of nodes suitable for a task and the number of
copies have been decided, that abstract task is mapped on one
or more of these nodes — in other words, it is instantiated in
the model.

By allowing to re-run the mapping algorithm when updated
perfomance statistics and alarms are received from the network,
ProFuN TG enables automated maintenance and adaptive
optimization of the network.

IV. RUN-TIME FUNCTIONALITY

When all abstract tasks have been mapped on the network
model in a way that satisfies the user, the next step is to issue
the “Deploy” command. On this command, the frontend of the

tool sends the current task mapping to active gateway servers.

Each gateway server then sends out commands in the WSN
to create runtime state for the mapped tasks on the network
nodes. This is done both for nodes connected by a cable and
wirelessly; it is automated by the ProFuN TG middleware.

The middleware is a C library we built on top of Contiki OS.

It manages the runtime state of the task graph and also includes
msp430-specific implementations of predefined tasks. The
middleware initially used Contiki Rime protocol stack. There
are three distinct traffic patterns it handles:

1) gateway to nodes (mesh protocol);

2) nodes to gateway (collect protocol);

3) task to task (mesh protocol, easily replaceable with

application-specific protocols).

The first pattern is used to set up tasks and other dynamic state
on network nodes. The second pattern is used to send data and
status messages from the network to the gateway node. The
third pattern is used by application-specific dataflows described
by the task graph.

We extended the Rime mesh protocol by adding reliability
support in form of retransmissions. Nevertheless, we discovered
that the mesh protocol suffers from severe scalability problems
in the task-setup stage. Setting up a task on a remote
node requires reliable end-to-end transport both for the task
message and its middleware-level acknowledgement. Setting up
another task on a neighboring node requires almost completely
repeating the process. The default CSMA-based MAC protocol
leads to severely reduced performance if many end-to-end
messages have to be exchanged within a short time period.
This scenario is very typical for the initial setup of the whole

task graph on the network, as well as for complete remapping.

A network flooding protocol such as Trickle [5] would
lead to more efficient communications. However, using it
would require keeping a copy of the complete task graph
on the flash memory of each node. It would lead to increased
implementation complexity, require energy for accessing the

flash, and could wear it out in short time in dynamic networks.

The solution implemented in the current version of ProFuN
TG is a Glossy [6]] based scheduler, which replaces Rime
for the first two traffic patterns. The gateway-controlled
scheduler has support for two phases: a periodic schedule
phase, in which all nodes can originate messages to the gateway
periodically, and a farget-specific traffic phase, in which only

the gateway originates messages periodically, while nodes
originate messages only if they have data to send and the
gateway has explicitly scheduled them to do so. The periodic
schedule phase is suitable for the initial setup of the task graph
and for collection of alert and data messages coming from
nodes en masse. The target-specific phase is suitable for making
minor adjustments in the task graph, and is significantly more
energy efficient and faster: the node sends an ACK immediately,
without waiting up to several seconds for its periodic schedule
slot.

To assure that the application is working correctly, the
middleware gathers application performance statistics and
determines whether the conditions of the constraints hold,
enabling maintenance alert notifications in case of link-level
and node-level faults, as well as automated maintenance through
task remapping. To do that, it keeps track of the performance
history for each constraint on each active data flow at its
destination node. The history is kept either as bit-buffer marking
which packets have been received, or as a scalar EWMA value
of past performance, depending on a configuration option.

There is also a compile-time option to store hop-by-hop
performance (time-series average of PDR and delay) on all
network links used by task-to-task traffic. If this is enabled,
these statistics are collected in the network and periodically
sent to the gateway, so that they can be used to update the
network model.

V. EVALUATION

The runtime system is feasible on low-power msp430
MCU based sensor nodes: the middleware with the default
configuration settings uses 1.4 KB of RAM and 6.6 KB of flash
memory. The runtime state of a single task uses 30 bytes of
RAM, so up to approximately hundred tasks can be instantiated
in a single Tmote Sky-like node. Additionally, each outgoing
connection to a local task uses 6 bytes of RAM, to a remote
task: 16 bytes, each constraint: 26 bytes.

To evaluate dynamic performance we compare Rime mesh-
based and Glossy-based implementations of the task manage-
ment protocol. We use the Cooja simulator and report the
average performance of 10 runs.

For Rime mesh, we compare the performance of two cases:
(1) all nodes start with empty routing tables, and (2) static
routes are pre-installed along the forwarding path. The second
approach leads to higher performance, but it is not going to
scale, as sensor nodes do not have enough RAM to hold the
complete network routing table in memory. For Glossy, we
compare 4-second (“default”) and 1-second (“fast”) round time.
The default Glossy round length is selected to give similar
radio duty cycle to Rime for these tests. Each Glossy round
has a maximum of 14 flooding slots: 6 for the gateway, 8 for
maximum of 4 nodes.

To minimize the number of random variables for which to
control, we use a simple and fixed network topology: N x N
grids, where all radio links have 80 % Rx success probability.

First, we measure the time to setup a single task on a node
D that is N hops away from the gateway (Fig.). Then we

- -
Rime stack

Rime stack, static routes

Rime stack, tasks on all nodes

Glossy-based scheduler, default periodic schedule
Glossy-based scheduler, target-specific schedule
Glossy-based scheduler, tasks on all nodes
Glossy-based scheduler, fast periodic schedule
Glossy-based scheduler, fast target-specific schedule ®
Glossy-based scheduler, fast, tasks on all nodes o

140H]

120H

REEKSERRL,

o
S
T

®
=]
T

o]
=]
T

Convergence time, seconds

401

0 20 40 60 80 100
Number of nodes

(a) Task setup

Rime stack B
Rime stack, static routes

Glossy-based scheduler, default periodic schedule
Glossy-based scheduler, target-specific schedule
Glossy-based scheduler, fast periodic schedule
Glossy-based scheduler, fast target-specific schedule [z i

Fheetd

150+

Convergence time, seconds

BOf e

i i
0 20 40 60 80 100
Number of nodes

(b) Task reallocation

Fig. 3: Performance of the task management protocol. Error bars show standard deviation divided by 2.

node radio
coverage

Fig. 4: Example of a 16-node grid network with uniform
radio coverage. The numbers on nodes describe number of
hops to gateway. GW: gateway node, D: destination node, S1:
initial source node of a dataflow, Ss: source node after task
remapping. Straight arrows: task setup message path for node
D; curved arrows: task-to-task dataflows.

also measure the time to set up a single, but unique task
on each of the nodes. For a single task, the default periodic
Glossy-based scheduler shows (Fig. Ba) better performance
than Rime in almost all networks, as well as more predictable
delivery times. However, Glossy is also capable of setting up
a task on each of nodes in less than 2 minutes on all networks,
showing much better scalability. Rime, in constrast, is already
not able to do this task within our 10 minute cutoff time on

49-node networks, so we do not evaluate it on larger networks.

Furthermore, when Glossy with target-specific schedule is used,
the time-to-setup becomes independent of the network size
and diameter: the flooding protocol causes all nodes to receive
all messages in any case. Finally, reducing the period of the
flooding protocol leads to proportional performance increase,
while the performance of Rime is known not to scale linearly

with increased duty cycle.

We also measure the time to reallocate a single task, moving
it from S to Sy after a failure detection (Fig. @) This scenario
is harder for the Glossy-based protocol, but nevertheless, target-
specific schedule is competitive with Rime & static routing,
and schedule with the fast period is significantly better.

To summarize the radio duty cycle measurements, for the
representative 25-node test case the 10-run averaged average
and maximal radio-on proportion is 3.22 %/6.82 % for Rime for
a single task, 2.47 %/5.43 % for Rime all tasks, 2.79 %/5.43 %
for Glossy for a single task, 3.80 %/4.61 % for Glossy all
tasks, and 8.4 %/22.4% & 13.0%/15.0% for Glossy with
fast schedule, respectively. However, since the all-task setup
duration is 13.7 times smaller for Glossy (with default round
period) compared to Rime, the actual average radio-on time is

1373247 — 8 9 times smaller for Glossy!

VI. RELATED WORK

There is a large body of work on high-level programming for
sensor networks; however, tolerance to failures has been noted
[7] as an open research issue. We chose ATaG as the underlying
formalism because it naturally allows to increase dependability
of sensornet applications: at runtime, by remapping tasks to
other nodes in case of failure, and at design time, by allowing
the programmer to use redundant hardware nodes for additional
copies of tasks.

We took the general idea of user-defined probabilistic end-
to-end constraints from Bijarbooneh er al. [3]]. However, their
model does not include probabilistic properties on network
links, and their design-time constraint satisfaction checker
cannot differentiate between single-hop and multihop dataflows.

Furthermore, their automated reasoning about performance of
the system is severely limited by the capabilities of symbolic
integration: only normally distributed random variables are
supported. This is insufficient to model sensors networks
accurately, as a distribution that describes e.g. a delay on
a link is likely to be: (1) skewed, (2) with a long-tail, and
(3) multimodal. We use numerical integration, and therefore
are able to support arbitrary mixtures of sums of distributions
from the exponential family (i.e. normal, log-normal, Pareto),
as well as the uniform distribution.

Similarly to our work, Srijan toolkit [8] is a graphical ATaG
macroprogramming system. However, it is missing the features
introduced by the constraints: both the predictive aspect at
design time and the diagnostic aspect at runtime. Furthermore,
in Srijan, tasks must be implemented in Java programming
language and require the presence of JVM at runtime.

There are other tools with functionality that overlaps with
ours to some extent. makeSense [9]]) is a high-level WSN pro-
gramming toolkit that includes dynamic run-time adaptation to
application goals. The adaptations are relevant to specific parts
of the system, and based on performance annotations expressed
by users in the application code. Dynamic information about
the state of the network is collected in a central system, which
then attempts to maximize an objective function defined on the
network. However, makeSense does not use constraint solving,
but instead relies on Monte Carlo reinforcement learning [9]
through repeated simulations. Therefore, it is a black-box
approach in which integration of expert knowledge is not
easily possible. Furthermore, the makeSense runtime system
requires more extensive information about the network state
to enable adaptations, while our solution in the typical case of
periodic task-to-task traffic adds overhead only for sending a
single alarm message from the network to the gateway.

pTunes [10] is an approach for network-wide parameter
adaptation. However, pTunes is designed specifically for
collection tree based periodic sense-only applications, and
adds non-negligible overhead due to frequent and continuos
network-wide link-state information gathering: constant 0.07 %
to 0.35 % radio duty cycle overhead [10].

Both in makeSense and pTunes, the result of the optimiza-
tion procedure is a set of new parameters for the network; these
tools are unable to use our methods to increase robustness,
i.e. reallocate tasks on different nodes and to duplicate them
for redundancy. Similarly, deployment and experimentation
support systems such as DREAMS [11] and MakeSense [12],
and runtime assurance systems such as the ones developed by
Wu et al. [13] and Fairbairn et al. [4]] all lack the capabilities
of task allocation and reallocation.

Redundancy is heavily exploited by the two competing
standards in the area of WSN for industrial monitoring and
automation: WirelessHART [14] and ISA100.11a [[15]. Both
enable dynamic application-level adaptations, and in both,
routing and scheduling information is dynamically calculated by
the central network manager based on topology information it
continuously collects from the network. However, this approach
adds up to high implementation and management complexity,

and significant operational overhead for the collection of the
required information.

VII. CONCLUDING REMARKS

ProFuN TG enables design of task graph applications that
are aware of performance requirements. It achieves that by
allowing the user to write PDR and delay constraints on
dataflows between tasks. The tool also enables deployment
and maintenance of these applications in WSN by providing
a middleware that manages the runtime state of tasks and
constraint conditions, and triggers reallocation in case a
constraint violation is detected.

Our evaluation shows that the task setup protocol can
instantiate runtime tasks on tens of nodes within a minute,
making the reallocation approach feasible in hard-to-predict,
constantly changing real-world environments.

ACKNOWLEDGMENTS

The authors acknowledge support from SSF, the Swedish
Foundation for Strategic Research. Thanks to UU IT department
students for the initial implementation of the middleware.

REFERENCES

[1]1 A. Bakshi, V. Prasanna, J. Reich, and D. Larner, “The Abstract Task
Graph: a methodology for architecture-independent programming of
networked sensor systems,” in Proceedings of the 2005 workshop on End-
to-end, sense-and-respond systems, applications and services. USENIX
Association, 2005, pp. 19-24.

A. Elsts and K. Sagonas, “ProFuN TG: A Tool for Programming and

Managing Dependable Sensor Network Applications,” Technical Report,

http://www.it.uu.se/research/profun/tools/tg-2015.pdf.

[3] F. H. Bijarbooneh, A. Pathak, J. Pearson, V. Issarny, and B. Jonsson, “A
constraint programming approach for managing end-to-end requirements
in sensor network macroprogramming,” in SENSORNETS, 2014.

[4] Y. Wu, K. Kapitanova, J. Li, J. A. Stankovic, S. H. Son, and K. White-
house, “Run time assurance of application-level requirements in wireless
sensor networks,” in ACM/IEEE IPSN, 2010, pp. 197-208.

[5] P. A. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self regulating

algorithm for code propagation and maintenance in wireless sensor

networks. Computer Science Division, University of California, 2003.

F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network

flooding and time synchronization with Glossy,” in ACM/IEEE IPSN,

2011, pp. 73-84.

[7] L. Mottola and G. Picco, “Programming wireless sensor networks:

Fundamental concepts and state of the art,” ACM Comput. Surv., vol. 43,

no. 3, pp. 19:1-19:51, Apr. 2011.

A. Pathak, Q. Zhou, and V. Prasanna, “Srijan: A graphical toolkit for

wsn application development,” in /[EEE DCOSS, 2008, pp. 34-39.

[9] F. Casati, F. Daniel, G. Dantchev et al., “Towards business processes

orchestrating the physical enterprise with wireless sensor networks,” in

Software Engineering (ICSE), 34th International Conference on. I1EEE,

2012, pp. 1357-1360.

M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes:

Runtime parameter adaptation for low-power MAC protocols,” in

ACM/IEEE IPSN, 2012, pp. 173-184.

R. Figura, M. Ceriotti et al., “Iris: Efficient visualization, data analysis

and experiment management for wireless sensor networks,” EAI Endorsed

Transactions on Ubiquitous Environments, vol. 14, no. 3, 11 2014.

R. Leone, J. Leguay, P. Medagliani, C. Chaudet et al., “MakeSense:

Managing Reproducible WSNs Experiments,” RealWSN, 2013.

M. L. Fairbairn, I. Bate, and J. A. Stankovic, “Improving the dependability

of sensornets,” in IEEE DCOSS, 2013, pp. 274-282.

D. Chen, M. Nixon, and A. Mok, WirelessHART(TM): Real-Time Mesh

Network for Industrial Automation. Springer, 2010, ISBN: 1441960465.

“ISA-100 Wireless Compliance Institute: Official Site of ISA100 Wireless

Standard,” http://www.isal00wci.org/.

[2

—

[6

)

[8

—

[10]

[11]

[12]
[13]
[14]

[15]

	Introduction
	Conceptual foundations
	Programming model
	Network model
	Constraints

	Design-time functionality
	Run-time functionality
	Evaluation
	Related work
	Concluding remarks
	References

