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ABSTRACT
This article discusses a general framework for smoothing parameter estimation formodels with regular like-
lihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and
parametric terms may also be present. By construction the method is numerically stable and convergent,
and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known
problem with AIC for such models, thereby improving the range of model selection tools available. The
smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penal-
ties measuring function smoothness. Model estimation is by penalized likelihood maximization, where
the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate
marginal likelihood. Themethods cover, for example, generalized additive models for nonexponential fam-
ily responses (e.g., beta, ordered categorical, scaled t distribution, negative binomial and Tweedie distribu-
tions), generalized additive models for location scale and shape (e.g., two stage zero inflation models, and
Gaussian location-scale models), Cox proportional hazards models and multivariate additive models. The
framework reduces the implementation of new model classes to the coding of some standard derivatives
of the log-likelihood. Supplementary materials for this article are available online.

1. Introduction

This article is about smoothing parameter estimation andmodel
selection in statistical models with a smooth regular likelihood,
where the likelihood depends on smooth functions of covari-
ates and these smooth functions are the targets of inference.
Simple Gaussian random effects and parametric dependencies
may also be present.When the likelihood (or a quasi-likelihood)
decomposes into a sum of independent terms each contributed
by a response variable from a single parameter exponential
family distribution, then such a model is a generalized addi-
tive model (GAM, Hastie and Tibshirani 1986, 1990). GAMs
are widely used in practice (see, e.g., Ruppert, Wand, and Car-
roll 2003; Fahrmeir et al. 2013) with their popularity resting in
part on the availability of statistically well founded smoothing
parameter estimationmethods that are numerically efficient and
robust (Wood 2000, 2011) and perform the important task of
estimating how smooth the component functions of a model
should be.

The purpose of this article is to provide a general method
for smoothing parameter estimation when the model likeli-
hood does not have the convenient exponential family (or quasi-
likelihood) form. For the most part we have in mind regres-
sion models of some sort, but the proposed methods are not
limited to this setting. The simplest examples of the extension
are generalized additive models where the response distribution
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Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.
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is not in the single parameter exponential family. For exam-
ple, when the response has a Tweedie, negative binomial, beta,
scaled t, or some sort of ordered categorical or zero inflated
distribution. Examples of models with a less GAM like likeli-
hood structure are Cox proportional hazard and Cox process
models, scale-location models, such as the GAMLSS class of
Rigby and Stasinopoulos (2005), andmultivariate additivemod-
els (e.g., Yee and Wild 1996). Smooth function estimation for
suchmodels is not new: what is new here is the general approach
to smoothing parameter estimation, and the wide variety of
smooth model components that it admits.

The proposed method broadly follows the strategy of Wood
(2011) that has proved successful for theGAMclass. The smooth
functions will be represented using reduced rank spline bases
with associated smoothing penalties that are quadratic in the
spline coefficients. There is now a substantial literature show-
ing that the reduced rank approach is well-founded, and the
basic issues are covered in an online Supplementary Appendix A
(henceforth online “SA A”). More importantly, from an applied
perspective, a wide range of spline and Gaussian process terms
can be included asmodel components by adopting this approach
(Figure 1). We propose to estimate smoothing parameters by
Newton optimization of a Laplace approximate marginal likeli-
hood criterion, with each Newton step requiring an inner New-
ton iteration to findmaximum penalized likelihood estimates of
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Figure . Examples of the rich variety of smooth model components that can be represented as reduced rank basis smoothers, with quadratic penalties and therefore can
routinely be incorporated as components of a GAM. This article developsmethods to allow their routine use in amuch wider class of models. (a) One dimensional smooths
such as cubic, P- and adaptive splines. (b) isotropic smooths of several variables, such as thin plate splines and Duchon splines. (c) Nonisotropic tensor product splines used
to model smooth interactions. (d) Gaussian Markov random fields for data on discrete geographies. (e) Finite area smoothers, such as soap film smoothers. (f ) Splines on
the sphere. Another important class are simple Gaussian random effects.

the model coefficients. Implicit differentiation is used to obtain
derivatives of the coefficients with respect to the smoothing
parameters. This basic strategy works well in the GAM setting,
but is substantially more complex when the simplifications of a
GLM type likelihood no longer apply.

Our aim is to provide a general method that is as numer-
ically efficient and robust as the GAM methods, such that (i)
implementation of a model class requires only the coding of
some standard derivatives of the log-likelihood for that class
and (ii) much of the inferential machinery for working with
such models can reuse GAM methods (e.g., interval estimation
or p-value computations). An important consequence of our
approach is that we are able to compute a simple correction to
the conditional AIC for the models considered, which corrects
for smoothing parameter estimation uncertainty and the con-
sequent deficiencies in a conventionally computed conditional
AIC (see Greven and Kneib 2010). This facilitates the part of
model selection distinct from smoothing parameter estimation.

The article is structured as follows. Section 2 introduces the
general modeling framework. Section 3 then covers smoothness
selection methods for this framework, with Section 3.1 devel-
oping a general method, Section 3.2 illustrating its use for the
special case of distributional regression, and Section 3.3 cover-
ing the simplified methods that can be used in the even more
restricted case of models with a similar structure to generalized
additive models. Section 4 then develops approximate distribu-
tional results accounting for smoothing parameter uncertainty
which are applied in Section 5 to propose a corrected AIC
suitable for the general model class. The remaining sections
present simulation results and examples, while extensive further
background, and details for particular models, are given in the
supplementary appendices (referred to as online “SA A,” “SA
B,” etc., below).

2. The General Framework

Consider a model for an n-vector of data, y, constructed in
terms of unknown parameters, θ, and some unknown functions,
g j, of covariates, x j. Suppose that the log-likelihood for this
model satisfies the Fisher regularity conditions, has four con-
tinuous derivatives, and can be written l(θ, g1, g2, . . . , gM ) =
log f (y|θ, g1, g2, . . . , gM ). In contrast to the usual GAM case,
the likelihood need not be based on a single parameter expo-
nential family distribution, and we do not assume that the log-
likelihood can be written in terms of a single additive linear pre-
dictor. Now let the g j(x j) be represented via basis expansions of
modest rank (k j),

g j(x) =
k j∑
i=1

β jib ji(x),

where the β ji are unknown coefficients and the b ji(x) are known
basis functions such as splines, usually chosen to have good
approximation theoretical properties. With each g j is associated
a smoothing penalty, which is quadratic in the basis coefficients
and measures the complexity of g j. Writing all the basis coeffi-
cients and θ in one p-vector β, then the jth smoothing penalty
can be written as βTS jβ, where S j is a matrix of known coeffi-
cients, but generally has only a small nonzero block. The esti-
mated model coefficients are then

β̂ = argmax
β

⎧⎨⎩l(β)− 1
2

M∑
j

λ jβ
TS jβ

⎫⎬⎭ (1)

given M smoothing parameters, λ j, controlling the extent of
penalization. A slight extension is that the smoothing penalties
may be such that several λiβTSiβ are associated with one g j, for
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example when g j is a nonisotropic function of several variables.
Note also that the framework can incorporate Gaussian random
effects, provided the corresponding precision matrices can be
written as

∑
λiβ

TSiβ (where the Si are known).
From a Bayesian viewpoint β̂ is a posterior mode for

β. The Bayesian approach views the smooth functions as
intrinsic Gaussian random fields with prior fλ given by
N(0, Sλ−) where Sλ− is a Moore–Penrose (or other suit-
able) pseudoinverse of

∑
j λ jS j. Then the posterior modes

are β̂ from (1), and in the large sample limit, assuming fixed
smoothing parameter vector, λ, we have β|y ∼ N(β̂, (I +
Sλ)−1), where I is the expected negative Hessian of the
log-likelihood (or its observed version) at β̂. An empirical
Bayesian approach is appealing here as it gives well calibrated
inference for the g j (Wahba 1983; Silverman 1985; Nychka 1988;
Marra andWood 2012) in a GAM context. Appropriate summa-
tions of the elements of diag{(I + Sλ)−1I} provide estimates of
the “effective degrees of freedom” of the wholemodel, or of indi-
vidual smooths.

Under this Bayesian view, smoothing parameters can be esti-
mated to maximize the log marginal likelihood

V r(λ) = log
∫

f (y|β) fλ(β)dβ, (2)

or a Laplace approximate version of this (e.g., Wood 2011). In
practice optimization is with respect to ρ where ρi = log λi.
Marginal likelihood estimation of smoothing parameters in a
Gaussian context goes back to Anderssen and Bloomfield (1974)
and Wahba (1985), while Shun and McCullagh (1995) showed
that Laplace approximation of more general likelihoods is the-
oretically well founded. That marginal likelihood is equivalent
to REML (in the sense of Laird and Ware 1982) supports its
use when the model contains Gaussian random effects. The-
oretical work by Reiss and Ogden (2009) also suggests prac-
tical advantages at finite sample sizes, in that marginal like-
lihood is less prone to multiple local minima than GCV (or
AIC). Supplementary Appendix B (SA B) also demonstrates
how Laplace approximate marginal likelihood (LAML) estima-
tion of smoothing parameters maintains statistical consistency
of reduced rank spline estimates. The use of Laplace approxi-
mation and demonstration of statistical consistency requires the
assumption that dim(β) = O(nα ) where α < 1/3.

3. Smoothness SelectionMethods

This section describes the general smoothness selection
method, and a simplified method for the special case in which
the likelihood is a simple sum of terms for each observation
of a univariate response, and there is a single GAM like linear
predictor.

The nonlinear dependencies implied by employing a gen-
eral smooth likelihood result in unwieldy expressions unless
some care is taken to establish a compact notation. In the
rest of this article, Greek subscripts denote partial differenti-
ation with respect to the given variable, while Roman super-
scripts are indices associated with the derivatives. Hence,Di j

βθ =
∂2D/∂βi∂θ j. Similarly Di j

βθ = ∂2D/∂βi∂θ j|β̂ . Roman subscripts
denote vector or array element indices. For matrices the first

Roman sub- or superscript denotes rows, the second columns.
Roman superscripts without a corresponding Greek subscript
are labels, for example β1 and β2 denote two separate vectors
β. For Hessian matrices only, Dβi

θ
j is element i, j of the inverse

of the matrix with elements Di
β

j
θ . If any Roman index appears

in two or more multiplied terms, but the index is absent on the
other side of the equation, then a summation over the product
of the corresponding terms is indicated (the usual Einstein sum-
mation convention being somewhat unwieldy in this context).
To aid readability, in this article summation indices will be high-
lighted in bold. For example, the equation ai jbikcil + d jkl = 0 is
equivalent to

∑
i ai jbikc

il + d jkl = 0. An indexed expression not
in an equation is treated like an equation with no indices on the
other side (so ai jb j is interpreted as

∑
j ai jb j).

3.1. General Model Estimation

Consider the general case in which the log-likelihood depends
on several smooth functions of predictor variables, each repre-
sented via a basis expansion and each with one or more associ-
ated penalties. The likelihood may also depend on some strictly
parametric model components. The log-likelihood is assumed
to satisfy the Fisher regularity conditions and in addition we
usually assume that it has 4 bounded continuous derivatives
with respect to the parameters (with respect to g j(x) for any rel-
evant fixed x in the case of a smooth, g j). Let the model coeffi-
cients be β (recalling that this includes the vector θ of paramet-
ric coefficients and nuisance parameters). The penalized log-
likelihood is then

L(β) = l(β)− 1
2
λ jβ

TS jβ,

and we assume that the model is well enough posed that this
has a positive definite maximum (at least after dealing with any
parameter redundancy issues that can be addressed by linear
constraint). Let β̂ be the maximizer of L and let H be the neg-
ative Hessian, with elements −Li

β̂

j
β̂
. The log LAML (see online

SA C) is

V(λ) = L(β̂)+ 1
2
log |Sλ|+ − 1

2
log |H| + Mp

2
log(2π),

where Sλ = λ jS j and |Sλ|+ is the product of the positive eigen-
values of Sλ. Mp is the number of zero eigenvalues of Sλ, when
all λ j are strictly positive. The basic strategy is to optimize V
with respect to ρ = log(λ) via Newton’s method. This requires
β̂ to be obtained for each trial ρ via an inner Newton iteration,
and derivatives of β̂ must be obtained by implicit differentia-
tion. The log determinant computations have the potential to be
computationally unstable, and reparameterization is needed to
deal with this. The full Newton method based on computation-
ally exact derivatives has the substantial practical advantage that
it can readily be detected when V is indefinite with respect to a
particular ρi, since then ∂V/∂ρi = ∂2V/∂ρ2i � 0. Such indef-
initeness occurs when a smoothing parameter, λi,→∞ or a
variance component tends to zero, both of which are perfectly
legitimate. Dropping a ρi fromNewton update when such indef-
initeness is detected ensures that it takes a value which can
be treated as “working infinity” without overflowing. Methods



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1551

which use an approximate Hessian, or none, do not have this
advantage.

The proposed general method consists of outer and inner
iterations, as follows.

Outer algorithm for ρ

1. Obtain initial values for ρ = log(λ), to ensure that the
effective degrees of freedom of each smooth lies away
from its maximum or minimum possible values.

2. Find initial β̂ guesstimates (model specific).
3. Perform the initial reparameterizations required in

Section 3.1.1 to facilitate stable computation of log |Sλ|+.
4. Repeat the following standard Newton iteration until

convergence is detected at Step (c).
(a) Find β̂, V i

ρ and V i j
ρρ by the inner algorithm.

(b) Drop any V i
ρ , V i j

ρρ and V ji
ρρ for which V i

ρ � V ii
ρρ � 0.

Let I denote the indices of the retained terms.
(c) Test for convergence, that is, all V i

ρ � 0 and the Hes-
sian (elements−V ji

ρρ) is positive semidefinite.
(d) If necessary perturb the Hessian (elements−V ji

ρρ) to
make it positive definite (guaranteeing that theNew-
ton step will be a descent direction).

(e) Define �I as the subvector of � indexed by I, with
elements−Vρρi j V j

ρ , and set	 j = 0 ∀ j /∈ I.
(f) While V(ρ +�) < V(ρ) set �← �/2.
(g) Set ρ← ρ +�.

5. Reverse the Step 3 reparameterization.
The method for evaluating V and its gradient and Hessian

with respect to ρ is as follows, where Lβ̂k β̂j denotes the inverse of
Lk
β̂

j
β̂
.
Inner algorithm for β

1. Reparameterize to deal with any “type 3” penalty blocks
as described in Section 3.1.1 so that computation
of log |Sλ|+ is stable, and evaluate the derivatives of
log |Sλ|+.

2. Use Newton’smethod to find β̂, regularizing theHessian,
and applying step length control, to ensure convergence
even when the Hessian is indefinite and/or β̂ is not iden-
tifiable, as described in Section 3.1.2.

3. Test for identifiability of β̂ at convergence by examining
the rank of the H as described in Section 3.1.2. Drop
unidentifiable coefficients.

4. If coefficients were dropped, find the reduced β̂ by fur-
ther steps of Newton’s method (Section 3.1.2).

5. Compute dβ̂i/dρk = Lβ̂i β̂j λkSkjl β̂l and hence li
β̂

j
β̂

l
ρ =

li
β̂

j
β̂

k
β̂
dβ̂k/dρl (Section 3.1.3).

6. Compute d2β̂i/dρkdρl = Lβ̂i β̂j {(−l j plβ̂β̂ρ
+ λlSljp)dβ̂p/

dρk + λkSkjpdβ̂p/dρl} + δlkdβ̂i/dρk, (Section 3.1.3).

7. Compute Lβ̂β̂k j l
j k pv
β̂β̂ρρ

(model specific). (3.1.3)
8. The derivatives of V can now be computed according to

Section 3.1.4.
9. For each parameter dropped from β̂ during fitting,

zeroes must be inserted in β̂, ∂β̂/∂ρ j and the corre-
sponding rows and columns ofLβ̂k β̂j . The Step 1 reparam-
eterization is then reversed.

The following subsections fill in the method details, but note
that to implement a particular model in this class it is necessary
to be able to compute, l, liβ and liβ

j
β , given β, along with li j k

β̂β̂ρ

given dβ̂/dρk, andLβ̂β̂k j l
j k pv
β̂β̂ρρ

given d2β̂/dρkdρl . The last of these

is usually computable much more efficiently than if l j k pv
β̂β̂ρρ

was
computed explicitly.

... Derivatives and Stable Evaluation of log |Sλ|+
This section covers the details for outer Step 3 and inner Step 1.
Stable evaluation of the log determinant terms is the key to sta-
ble computation with the LAML. The online SA C explains the
issue. Wood (2011) proposed a solution which involves orthog-
onal transformation of the whole parameter vector β, but in the
general case the likelihood may depend on each smooth func-
tion separately and such a transformation is therefore untenable.
It is necessary to develop a reparameterization strategy which
does not combine coefficients from different smooths. This is
possible if we recognize that Sλ is block diagonal, with different
blocks relating to different smooths. For example, if S j denotes
the nonzero sub-block of S j,

Sλ =

⎛⎜⎜⎜⎜⎜⎜⎝

λ1S
1 . . . .

. λ2S
2 . . .

. . λ jS
j . .

. . . . .

. . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ .

That is, there are some blockswith single smoothing parameters,
and otherswith amore complicated additive structure. There are
usually also some zero blocks on the diagonal. The block struc-
turemeans that the generalized determinant, its derivatives with
respect to ρk = log λk and thematrix square root of Sλ can all be
computed blockwise. So for the above example,

log |Sλ|+ = rank(S1) log(λ1)+ log |S1|+ + rank(S2) log(λ2)

+ log |S2|+ + log |λjSj|+ + · · ·
For any ρk relating to a single parameter block we have

∂ log |Sλ|+
∂ρk

= rank(Sk)

and zero second derivatives. For multi-λ blocks there will gen-
erally be first and second derivatives to compute. There are no
second derivatives “between-blocks.”

In general, there are three block types, each requiring differ-
ent preprocessing.

1. Single parameter diagonal blocks. A reparameterization
can be used so that all nonzero elements are one, and the
rank precomputed.

2. Single parameter dense blocks. An orthogonal reparam-
eterization, based on the eigenvectors of the symmetric
eigen-decomposition of the block, can be used to make
these blocks look like the previous type (by similarity
transform). Again the rank is computed.

3. Multi-λ blocks will require the reparameterization
method of Wood (2011) appendix B to be applied for
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each new ρ proposal, since the numerical problem that
the reparameterization avoids is ρ dependent (see online
SA C). Initially, before the smoothing parameter selec-
tion iteration, it is necessary to reparameterize to sep-
arate the parameters corresponding to the block into
penalized and unpenalized subvectors. This initial repa-
rameterization can be based on the eigenvectors of the
symmetric eigen decomposition of the “balanced” ver-
sion of the block penalty matrix,

∑
j S

j/‖S j‖F , where ‖ ·
‖F is the Frobenious norm. The balanced penalty is used
for maximal numerical stability, and is usable because
formally the spaces for the penalized and unpenalized
components do not change with the smoothing parame-
ters.

The reparameterizations from each block type are applied
to the model, usually to the model matrices X j of the individ-
ual smooth terms. The reparameterization information must be
stored so that we can return to the original parameterization at
the end.

After the one off initial reparameterization just described,
then step one of the inner algorithm requires only that the repa-
rameterization method of Wood (2011) Appendix B be applied
to the parameters corresponding to type 3 blocks, for each new
set of smoothing parameters.

... Newton Iteration for β̂
This section provides details for inner Steps 2–4. Newton itera-
tion for β̂ requires the gradient vector, G, with elements Li

β =
liβ − λkSki jβ j and negative Hessian matrix H with elements
−Li

β

j
β = −liβ j

β + λkSki j (we will also useH to denote theHessian
of the negative unpenalized log-likelihood with elements−liβ j

β).
In principleNewton iteration proceeds by repeatedly settingβ to
β +�, where� =H−1G. In practice, Newton’s method is only
guaranteed to converge to amaximumofL, provided (i) that the
Hessian is perturbed to be positive definite if it is not, guarantee-
ing that theNewton direction is an ascent direction, (ii) that step
reduction is used to ensure that the step taken actually increases
L and (iii) that the computation of the step is numerically stable
(see Nocedal and Wright 2006).

L may be indefinite away from a maximum, but even near
the maximum there are two basic impediments to stability and
positive definiteness. First, some elements of β may be uniden-
tifiable. This issue will be dealt with by dropping parameters at
convergence, as described shortly. The second issue is that some
smoothing parameters may legitimately become very large dur-
ing fitting, resulting in very largeλ jS j components, poor scaling,
poor conditioning and, hence, computational singularity. How-
ever, given the initial and Step 1 reparameterizations, such large
elements can be dealt with by diagonal preconditioning of H.
That is define diagonal matrix D such that Dii = |Hii|−1/2, and
preconditioned Hessian H′ = DHD. Then H−1 = DH′−1D,
with the right-hand side resulting inmuch better scaled compu-
tation. In the work reported here the pivoted Cholesky decom-
position of the perturbed Hessian RTR =H′ + εI is repeated
with increasing ε, starting from zero, until positive definite-
ness is obtained. The Newton step is then computed as � =
DR−1R−TDG. If the step toβ +� fails to increase the likelihood

then � is repeatedly halved until it does. Note that the pertur-
bation of the Hessian does not change the converged state of a
Newton algorithm (although varying the perturbation strength
can change the algorithm convergence rate).

At convergenceH can at worst be positive semi- definite, but
it is necessary to test for the possibility that some parameters
are unidentifiable. The test should not depend on the particu-
lar values of the smoothing parameters. This can be achieved
by constructing the balanced penalty S =∑

j S
j/‖S j‖F (‖ · ‖F

is the Frobenius norm, but another norm could equally well
be used), and then forming the pivoted Cholesky decomposi-
tion PTP = H/‖H‖F + S/‖S‖F . The rank of P can then be esti-
mated by making use of Cline et al. (1979). If this reveals rank
deficiency of order q then the coefficients corresponding to the
matrix rows and columns pivoted to the last q positions should
be dropped from the analysis. The balanced penalty is used
to avoid dropping parameters simply because some smoothing
parameters are very large. Given the nonlinear setting it is nec-
essary to repeat the Newton iteration to convergence with the
reduced parameter set, in order that the remaining parameters
adjust to the omission of those dropped.

... Implicit Differentiation
This section provides the details for inner Steps 5–7. We obtain
the derivatives of the identifiable elements of β̂ with respect to
ρ. All computations here are in the reduced parameter space,
if parameters were dropped. At the maximum penalized likeli-
hood estimate we have Li

β̂
= li

β̂
− λkSki jβ̂ j = 0 and differentiat-

ing with respect to ρk = log λk yields

Li
β̂

k
ρ = li

β̂

j
β̂

dβ̂ j

dρk
− λkSki jβ̂ j − λlSli j

dβ̂ j

dρk
= 0 and rearranging,

dβ̂i
dρk
= Lβ̂i β̂j λkSkjl β̂l,

given which we can compute li j l
β̂β̂ρ
= li j k

β̂β̂β̂
dβ̂k/dρl from the

model specification. −li j l
β̂β̂ρ
+ δlkλkSki j are the elements of

∂H/∂ρl , required in the next section (δlk is 1 for l = k and 0
otherwise). Then

d2β̂i
dρkdρl

= Lβ̂i β̂j
{(
−l j

β̂

p
β̂

l
ρ + λlSljp

) dβ̂p

dρk
+ λkSkjp

dβ̂p

dρl

}
+ δlk

dβ̂i
dρk

,

which enables computations involving ∂2H/∂ρk∂ρl , with ele-
ments−li j k l

β̂β̂ρρ
+ δlkλkSki j, and

li j k l
β̂β̂ρρ
= li j r t

β̂β̂β̂β̂

dβ̂r
dρk

dβ̂t
dρl
+ Li j r

β̂β̂β̂

d2β̂r
dρkdρl

.

As mentioned in Section 3.1, it will generally be inefficient to
form this last quantity explicitly, as it occurs only in the summa-
tions involved in computing the final trace in (3).
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... The Remaining Derivatives
Recalling that H is the matrix with elements −Li

β

j
β = −liβ j

β +
λkSki j, we require (inner Step 8)

∂V
∂ρk
= −λk

2
β̂
T
Skβ̂ + 1

2
∂ log |Sλ|+
∂ρk

− 1
2
∂ log |H|
∂ρk

and

∂2V
∂ρk∂ρl

= −δlk
λk

2
β̂
T
Skβ̂ − dβ̂

T

dρl
H dβ̂

dρk
+ 1

2
∂2 log |Sλ|+
∂ρk∂ρl

−1
2
∂2 log |H|
∂ρk∂ρl

,

where components involvingL j
β̂
are zero by definition of β̂. The

components not covered so far are

∂ log |H|
∂ρk

= tr
(
H−1 ∂H

∂ρk

)
and

∂2 log |H|
∂ρk∂ρl

= −tr
(
H−1 ∂H

∂ρk
H−1 ∂H

∂ρl

)
+ tr

(
H−1 ∂

2H
∂ρk∂ρl

)
.

(3)

The final term above is expensive if computed naively by explic-
itly computing each term ∂2H/∂ρk∂ρl , but this is unnecessary
and the computation of tr

(H−1∂2H/∂ρk∂ρl) can usually be
performed efficiently as the final part of the model specification,
keeping the total cost to O(Mnp2): see online SA G and Section
3.2 for illustrative examples.

The Cox (1972) proportional hazards model provides a
straightforward application of the general method, and the req-
uisite computations are set out in online SA G in a manner
that maintains O(Mnp2) computational cost. Another exam-
ple is the multivariate additive model, in which the means
of a multivariate Gaussian response are given by separate lin-
ear predictors, which may optionally share terms. This model
is covered in the online SA H and Section 8. Section 3.2
considers how another class of models falls into the general
framework.

3.2. A Special Case: GAMLSSModels

The GAMLSS (or “distributional regression”) models discussed
by Rigby and Stasinopoulos (2005) (and also Yee and Wild
1996; Klein et al. 2014, 2015) fall within the scope of the gen-
eral method. The idea is that we have independent univariate
response observations, yi, whose distributions depend on sev-
eral unknown parameters, each of which is determined by its
own linear predictor. The log-likelihood is a straightforward
sum of contributions from each yi (unlike the Coxmodels, e.g.),
and the special structure can be exploited so that implementa-
tion of newmodels in this class requires only the supply of some
derivatives of the log-likelihood terms with respect to the dis-
tribution parameters. Given the notational conventions estab-
lished previously, the expressions facilitating this are rather com-
pact (without such a notation they can easily become intractably
complex).

Let the log-likelihood for the ith observation be
l(yi, η1i , η2i , . . .) where the ηk = Xkβk are K linear predic-
tors. The Newton iteration for estimating β = (β1T,β2T, . . .)T

requires l j
β l = li

ηl
X l
i j and l j

β l
k
βm = li

ηl
i
ηmXl

i jX
m
ik , which are also

sufficient for first-order implicit differentiation.
LAML optimization also requires

l j
β̂ l
k
β̂m

p
ρ = l j

β̂ l
k
β̂m

r
β̂q

dβ̂q
r

dρp
= li

η̂l
i
η̂m

i
η̂qX

l
i jX

m
ik X

q
ir
dβ̂q

r

dρp

= li
η̂l
i
η̂m

i
η̂qX

l
i jX

m
ik
dη̂qi
dρp

.

Notice how this is just an inner product XTVX, where the diag-
onal matrix V is the sum over q of some diagonal matrices. At
this stage the second derivatives of β̂ with respect to ρ can be
computed, after which we require only

l j
β̂ l
k
β̂m

p
ρ

v
ρ = l j

β̂ l
k
β̂m

r
β̂q

t
β̂s

dβ̂q
r

dρp
dβ̂s

t

dρv

+ l j
β̂ l
k
β̂m

r
β̂q

d2β̂q
r

dρpdρv

= li
η̂l
i
η̂m

i
η̂q

i
η̂sX

l
i jX

m
ik
dη̂qi
dρp

dη̂si
dρv

+ li
η̂l
i
η̂m

i
η̂qX

l
i jX

m
ik

d2η̂qi
dρpdρv

.

So to implement a new family for GAMLSS estimation requires
mixed derivatives up to fourth order with respect to the param-
eters of the likelihood. In most cases what would be conve-
niently available is, for example, li

μ̂l
i
μ̂m

i
μ̂q

i
μ̂s rather than li

η̂l
i
η̂m

i
η̂q

i
η̂s
,

where μk is the kth parameter of the likelihood and is given by
hk(μk) = ηk, hk being a link function.

To get from the μ derivatives to the η derivatives, the rules
(A.1)–(A.4) from Appendix A are used. This is straightforward
for any derivative that is not mixed. For mixed derivatives con-
taining at least one first-order derivative the transformation rule
applying to the highest order derivative is applied first, followed
by the transformations for the first-order derivatives. This leaves
only the transformation of li

μ̂ j
i
μ̂ j

i
μ̂k

i
μ̂k as at all awkward, but we

have

li i i i
η̂ j η̂ j η̂kη̂k

= (li i i i
μ̂ jμ̂ jμ̂kμ̂k /h

j′2
i − li i i

μ̂ jμ̂kμ̂k h
j′′
i /h

j′3
i )/

hk′2i − (li i i
μ̂ jμ̂ jμ̂k /h

j′2
i − li i

μ̂ jμ̂k h
j′′
i /h

j′3
i )h

k′′
i /h

k′3
i .

The general method requires Lβ̂β̂k jl
j k p v

β̂β̂ ρ ρ
to be computed,

which would have O{M(M + 1)nP2/2} cost if the terms l j k p v

β̂ β̂ ρ ρ

were computed explicitly for this purpose (where P is the
dimension of combined β). However, this can be reduced to
O(nP2) using a trick most easily explained by switching to
a matrix representation. For simplicity of presentation assume
K = 2, and define matrix B to be the inverse of the penalized
Hessian, so that Bi j = Lβ̂i β̂j . Defining

v lm
i = li

η̂l
i
η̂m

i
η̂q

i
η̂s

dη̂qi
dρp

dη̂si
dρv

+ li
η̂l
i
η̂m

i
η̂q

d2η̂qi
dρpdρv

and

Vlm = diag(v lm
i ) we have
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Figure . A smooth Gaussian location scalemodel fit to themotorcycle data from Silverman (), using themethods developed in Section .. The left plot shows the raw
data as open circles and an adaptive p-spline smoother for themean overlaid. The right plot shows the simultaneous estimate of the standard deviation in the acceleration
measurements,with the absolute values of the residuals as circles. Dotted curves are approximate%confidence intervals. Theeffectivedegreesof freedomof the smooths
are . and . respectively.

Lβ̂β̂k j l j k p v

β̂β̂ ρ ρ
= tr

{
B

(
X1TV11X1 X1TV12X2

X2TV12X1 X2TV22X2

)}

= tr

⎧⎨⎩B

(
X1 0

0 X2

)T (
V11X1 V12X2

V12X1 V22X2

)⎫⎬⎭ . (4)
Hence, following the one off formation of B

(
X1 0
0 X2

)T
(which

need only have O(nP2) cost), each trace computation has
O(MnP ) cost (since tr(CTD) = Di jCi j).

See online SA I where a zero inflated Poissonmodel provides
an example of the details. Figure 2 shows estimates for themodel
acceli ∼ N( f1(ti), σ 2

i ) where log σi = f2(ti), f1 is an adap-
tive P-spline and f2 a cubic regression spline, while SA F.2 pro-
vides another application. Package mgcv also includes multino-
mial logistic regression implemented this way and further exam-
ples are under development. An interesting possibility with any
model which has multiple linear predictors is that one or more
of those predictors should depend on some of the same terms,
and online SA H shows how this can be handled.

3.3. AMore Special Case: Extended Generalized Additive
Models

For models with a single linear predictor, in which the
log-likelihood is a sum of contributions per yi, it is possible
to perform fitting by iterative weighted least squares, enabling
profitable reuse of some components of standard GAM fitting
methods, including the exploitation of very stable orthogonal
methods for solving least squares problems. Specifically, con-
sider observations yi, and let the corresponding log-likelihood
be of the form

l =
∑
i

li(yi, μi, θ, φ),

where the terms in the summation may also be written as li
for short, and μi is often E(yi), but may also be a latent vari-
able (as in the ordered categorical model of SA K). Given h,
a known link function, h(μi) = ηi where η = Xβ + o, X is a
model matrix, β is a parameter vector and o is an offset (often
simply 0). θ is a parameter vector, containing the extra param-
eters of the likelihood, such as the p parameter of a Tweedie
density (see online SA J), or the cut points of an ordered cat-
egorical model (see online SA K). Notice that in this case θ is

not treated as part of β, since θ can not always be estimated
by straightforward iterative regression. Instead θ will be esti-
mated alongside the smoothing parameters. φ is a scale param-
eter, often fixed at one. Let l̃i = maxμi li(yi, μi, θ, φ) denote the
saturated log-likelihood. Define the deviance corresponding to
yi as Di = 2(l̃i − li)φ, where φ is the scale parameter on which
Di does not depend. Working in terms of the deviance is conve-
nient in a regression setting, where deviance residuals are a pre-
ferred method for model checking and the proportion deviance
explained is a natural substitute for the r2 statistic as a measure
of goodness of fit (but see the final comment in online SA I).

In general the estimates of β will depend on some log
smoothing parameter ρ j = log λ j, and it is notationally expedi-
ent to consider these to be part of the vector θ, although it is to
be understood that l does not actually depend on these elements
of θ. Given θ, estimation ofβ is byminimization of the penalized
deviance D(β, θ) =∑

i Di(β, θ)+
∑

j λ jβ
TS jβ, with respect

to β. This can be achieved by penalized iteratively reweighted
least squares (PIRLS), which consists of iterative minimization
of

∑
i wi(zi − Xiβ)

2 +∑
j λ jβ

TS jβ, where the pseudodata and
weights are given by

zi = ηi − oi − 1
2wi

∂Di

∂ηi
, wi = 1

2
d2Di

dη2i
.

Note that if wi = 0 (or wi is too close to 0), the penalized least
squares estimate can be computed using onlywizi, which is then
well defined and finite when zi is not.

Estimation of θ, and possibly φ, is by LAML. Writing W as
the diagonal matrix of wi values, the log LAML is given by

V(θ, φ) = −D(β̂, θ)
2φ

+ l̃(θ, φ)− log |XTWX+ Sλ| − log |Sλ|+
2

+Mp

2
log(2πφ),

where W is evaluated at the β̂ implied by θ. To compute the
derivatives of V with respect to θ the derivatives of β̂ with
respect to θ are required. Note that V is a full Laplace approx-
imation, rather than the “approximate” Laplace approximation
used to justify PQL (Breslow and Clayton 1993), so that PQL’s
well known problems with binary and low count data are much
reduced. In particular: (i) most PQL implementations estimate
φ when fitting the working linear mixed model, even in the
binomial and Poisson cases, where it is fixed at 1. For binary
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and low count data this can give very poor results. (ii) PQL
uses the expected Hessian rather than the Hessian, and these
only coincide for the canonical link case. (iii) PQL is justified
by an assumption that the iterative fitting weights only vary
slowlywith the smoothing parameters, an assumption that is not
needed here.

The parameters θ and φ can be estimated by maximizing V
using Newton’s method, or a quasi-Newtonmethod. Notice that
V depends directly on the elements of θ viaD, l̃ and Sλ, but also
indirectly via the dependence of μ̂ and W on β̂ and hence on
θ. Hence, each trial θ, φ requires a PIRLS iteration to find the
corresponding β̂, followed by implicit differentiation to find the
derivatives of β̂ with respect to θ. Once these are obtained, the
chain rule can be applied to find the derivatives ofV with respect
to θ and φ.

As illustrated in SA C, there is scope for serious numerical
instability in the evaluation of the determinant terms in V , but
for this case we can reuse the stabilization strategy from Wood
(2011), namely for each trial θ and φ:

1. Use the orthogonal reparameterization fromAppendix B
ofWood (2011) to ensure that log |Sλ|+ can be computed
in a stable manner.

2. Estimate β̂ by PIRLS using the stable least squares
method for negatively weighted problems from Section
3.3 of Wood (2011), setting structurally unidentifiable
coefficients to zero.

3. Using implicit differentiation, obtain the derivatives of V
required for a Newton update.

Step 3 is substantially more complicated than in Wood
(2011), and is covered in Appendix A.

... Extended GAMNewModel Implementation
The general formulation above assumes that various standard
information is available for each distribution and link. What is
needed depends on whether quasi-Newton or full Newton is
used to find θ̂. Here is a summary of what is needed for each
distribution

1. For finding β̂. Di
μ, Di

μ
i
μ, h′, and h′′.

2. For ρ̂ via quasi-Newton. h′′′, Di
μ

j
θ , D

i
θ , D

i
μ
i
μ
i
μ, and Di

μ
i
μ

j
θ .

3. For ρ̂ via full Newton. h′′′′, Di
θ

j
θ , D

i
μ

j
θ
k
θ , D

i
μ
i
μ
i
μ
i
μ, Di

μ
i
μ
i
μ

j
θ ,

and Di
μ
i
μ

j
θ
k
θ .

In addition, first and second derivatives of l̃ with respect to
its arguments are needed. All of these quantities can be obtained
automatically using a computer algebra package. EDi

μ
i
μ is also

useful for further inference. If it is not readily computed then we
can substituteDi

μ
i
μ, but a complication of penalized modeling is

thatDi
μ
i
μ can fail to be positive definite at β̂. When this happens

EDi
μ
i
μ can be estimated as the nearest positive definite matrix to

Di
μ
i
μ.
We have implemented beta, negative binomial, scaled t mod-

els for heavy tailed data, simple zero inflated Poisson, ordered
categorical and Tweedie additive models in this way. The first
three were essentially automatic: the derivatives were computed
by a symbolic algebra package and coded from the results. Some
care is required in doing this, to avoid excessive cancellation
error, underflow or overflow in the computations. Overly naive

coding of derivatives can often lead to numerical problems: The
online SA I on the zero inflated Poisson provides an example
of the sort of issues that can be encountered. The ordered cate-
gorical and Tweedie models are slightly more complicated and
details are therefore provided in the online SA J andK (including
further examples of the need to avoid cancellation error).

4. Smoothing Parameter Uncertainty

Conventionally in a GAM context smoothing parameters have
been treated as fixed when computing interval estimates for
functions, or for other inferential tasks. In reality smooth-
ing parameters must be estimated, and the uncertainty asso-
ciated with this has generally been ignored except in fully
Bayesian simulation approaches. Kass and Steffey (1989) pro-
posed a simple first-order correction for this sort of uncertainty
in the context of iid Gaussian random effects in a one way
ANOVA type design. Some extra work is required to under-
stand how their method works when applied to smooths. It
turns out that the estimation methods described above pro-
vide the quantities required to correct for smoothing parameter
uncertainty.

Assume we have several smooth model components, let ρi =
log λi and Sλ =∑

j λ jS j. Writing β̂ρ for β̂, to emphasize the
dependence of β̂ on the smoothing parameters, we use the
Bayesian large sample approximation (see SB.4)

β|y, ρ ∼ N(β̂ρ,Vβ ) where Vβ = (Î + Sλ)−1 (5)

which is exact in the Gaussian case, along with the large sample
approximation

ρ|y ∼ N(ρ̂,Vρ ), (6)

where Vρ is the inverse of the Hessian of the negative log
marginal likelihood with respect to ρ. Since the approximation
(6) applies in the interior of the parameter space, it is necessary
to substitute a Moore-Penrose pseudoinverse of the Hessian if a
smoothing parameter is effectively infinite, or otherwise to reg-
ularize the inversion (which is equivalent to placing a Gaussian
prior on ρ). Conventionally (5) is usedwith ρ̂ plugged in and the
uncertainty in ρ neglected. To improve on this note that if (5)
and (6) are correct, while z ∼ N(0, I) and independently ρ∗ ∼
N(ρ̂,Vρ ), then β|y d= β̂ρ∗ + RT

ρ∗z where RT
ρ∗Rρ∗ = Vβ (andVβ

depends on ρ∗). This provides a way of simulating from β|y, but
it is computationally expensive as β̂ρ∗ andRρ∗ must be computed
afresh for each sample. (The conventional approximation would
simply set ρ∗ = ρ̂.) Alternatively consider a first-order Taylor
expansion

β|y d= β̂ρ̂ + J(ρ − ρ̂)+ RT
ρ̂z +

∑
k

∂RT
ρz

∂ρk

∣∣∣∣∣
ρ̂

(ρk − ρ̂k)+ r,

where r is a lower order remainder term and J = dβ̂/dρ|ρ̂.
Dropping r, the expectation of the right-hand side is β̂ρ̂ . Denot-
ing the elements of Rρ by Ri j, tedious but routine calculation
shows that the three remaining random terms are uncorrelated
with covariance matrix
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V′β = Vβ + V′ + V′′, where V′ = JVρJT and

V ′′jm =
p∑
i

M∑
l

M∑
k

∂Ri j

∂ρk
Vρ,kl

∂Rim

∂ρl
, (7)

which is computable at O(Mp3) cost (see online SA D). Drop-
ping V′′ we have the Kass and Steffey (1989) approximation
β|y ∼ N(β̂ρ̂ ,V∗β ) where V

∗
β = Vβ + JVρJT. (A first-order Tay-

lor expansion of β̂ about ρ yields a similar correction for the
frequentist covariance matrix of β̂: V∗

β̂
= (Î + Sλ)−1Î(Î +

Sλ)−1 + JVρJT, where Î is the negative Hessian of the log-
likelihood).

The online SA D shows that in a Demmler-Reinsch like
parameterization, for any penalized parameter βi with posterior
standard deviation σβi ,

dβ̂i/dρ j

d(RTz)i/dρ j
� β̂i

ziσβi
.

So the J(ρ − ρ̂) correction is dominant for components that are
strongly nonzero. This offers some justification for using the
Kass and Steffey (1989) approximation, but not in amodel selec-
tion context, where near zero model components are those of
most interest: hence, in what follows we will use (7) without
dropping V′′.

5. An Information Criterion for SmoothModel
Selection

When viewing smoothing from a Bayesian perspective, the
smooths have improper priors (or alternatively vague priors of
convenience) corresponding to the null space of the smoothing
penalties. This invalidates model selection via marginal likeli-
hood comparison. An alternative is a frequentist AIC (Akaike
1973), based on the conditional likelihood of the model coeffi-
cients, rather than the marginal likelihood. In the exponential
family GAM context, Hastie and Tibshirani (1990, §6.8.3) pro-
posed a widely used version of this conditional AIC in which
the effective degrees of freedom of the model, τ0, is used in
place of the number of model parameters (in the general set-
ting τ0 = tr{Vβ Î} is equivalent to the Hastie and Tibshirani
(1990) proposal). But Greven and Kneib (2010) showed that this
is overly likely to select complex models, especially when the
model contains random effects: the difficulty arises because τ0
neglects the fact that the smoothing parameters have been esti-
mated and are, therefore, uncertain (a marginal AIC based on
the frequentistmarginal likelihood, inwhich unpenalized effects
are not integrated out, is equally problematic, partly because of
underestimation of variance components and consequent bias
toward simple models). A heuristic alternative is to use τ1 =
tr(2ÎVβ − ÎVβ ÎVβ ) as the effective degrees of freedom,moti-
vated by considering the number of unpenalized parameters
required to optimally approximate a bias corrected version of
themodel, but the resultingAIC is too conservative (see, Section
6, e.g.). Greven and Kneib (2010) show how to exactly compute
an effective modified AIC for the Gaussian additive model case
based on defining the effective degrees of freedom as

∑
i ∂ ŷi/∂yi

(as proposed by Liang et al. 2008). Yu and Yau (2012) and Säfken

et al. (2014) considered extensions to generalized linear mixed
models. The novel contribution of this section is to use the
results of the previous section to avoid the problematic neglect of
smoothing parameter uncertainty in the conditional AIC com-
putation in a manner that is easily computed and applicable to
the general model class considered in this article.

The derivation of AIC (see, e.g., Davison 2003, sec. 4.7) with
the MLE replaced by the penalized MLE is identical up to the
point at which the AIC score is represented as

AIC = −2l(β̂)+ 2E
{
(β̂ − βd )

TId(β̂ − βd )
}

(8)

= −2l(β̂)+ 2tr
[
E{(β̂ − βd )(β̂ − βd )

T}Id

]
, (9)

where βd is the coefficient vector minimizing the KL diver-
gence and Id is the corresponding expected negative Hes-
sian of the log-likelihood. In an unpenalized setting E{(β̂ −
βd )(β̂ − βd )

T} is estimated as the observed inverse information
matrix Î−1 and τ ′ = tr{E(β̂ − βd )(β̂ − βd )

TId} is estimated
as tr(Î−1Î ) = k. Penalization means that the expected inverse
covariance matrix of β̂ is no longer well approximated by Î , and
there are then two ways of proceeding.

The first is to view β as a frequentist random effect, with
predicted values β̂. In that case the covariance matrix for the
predictions, β̂, corresponds to the posterior covariance matrix
obtained when taking the Bayesian view of the smoothing
process, so we have the conventional estimate τ = tr{Vβ Î} if
we neglect smoothing parameter uncertainty, or τ = tr(V′β Î )
accounting for it using (7).

The frequentist random effects formulation is not a com-
pletely natural way to view smooths, since we do not usually
expect the smooth components of a model to be resampled
from the prior with each replication of the data. However in the
smoothing context Vβ has the interpretation of being the fre-
quentist covariance matrix for β̂ plus an estimate of the prior
expectation of the squared smoothing bias (matrix), which offers
some justification for using the same τ estimate as in the strict
random effects case. To see this consider the decomposition

E{(β̂ − βd )(β̂ − βd )
T} = E{(β̂ − Eβ̂)(β̂ − Eβ̂)T} +�β�

T
β,

where �β is the smoothing bias in β̂. The first term on the
right-hand side, above, can be replaced by the standard frequen-
tist estimate V

β̂
= (Î + Sλ)−1Î(Î + Sλ)−1. Now expand the

penalized log-likelihood around βd :

lp(β′) � l(βd )+
∂ l
∂βT (β

′ − βd )−
1
2
(β′ − βd )

TId(β
′ − βd )

−1
2
β′TSλβ′.

Differentiating with respect to β′ and equating to zero we obtain
the approximation

β̂ � (Id + Sλ)−1
(
Idβd +

∂ l
∂β

∣∣∣∣
βd

)
.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1557

Edl/dβ|βd = 0 by definition of βd , so taking expectations of
both sides we have E(β̂) � (Id + Sλ)−1Idβd . Hence estimat-
ing Id by Î we have �̃β � {(Î + Sλ)−1Î − I}βd . Considering
the expected value of �̃β�̃

T
β according to the prior mean and

variance assumptions of the model, we have the following.

Lemma 1. Let the setup be as above and let Eπ denote expecta-
tion assuming the prior mean and covariance for β. Treating Î
as fixed, then V

β̂
+ Eπ (�̃β�̃

T
β ) = Vβ.

For proof see online SA D. This offers some justification
for again using τ = tr{Vβ Î}, or τ = tr(V′β Î ) accounting for ρ

uncertainty. So both the frequentist random effects perspective
and the prior expected smoothing bias approach result in

AIC = −2l(β̂)+ 2tr(ÎV′β ). (10)

This is the conventional Hastie and Tibshirani (1990) con-
ditional AIC with an additive correction 2tr{Î(V′ + V′′)},
accounting for smoothing parameter uncertainty. The correc-
tion is readily computed for any model considered here, pro-
vided only that the derivatives of β̂ and Vβ can be computed:
the methods of Section 3 provide these. Section 6 provides an
illustration of the efficacy of (10).

6. Simulation Results

The improvement resulting from using the corrected AIC of
Section 5 can be illustrated by simulation. Simulationswere con-
ducted for additive models with true expected values given by
η = f0(x0)+ f1(x1)+ f2(x2)+ f3(x3), where the f j are shown
in the online SA E, and the x covariates are all independent
U (0, 1) deviates. Two model comparisons were considered. In
the first a 40 level Gaussian random effect was added to η,
with the random effect standard deviation being varied from

0 (no effect) to 1. AIC was then used to select between mod-
els with or without the random effect included, but where all
smooth terms were modeled using penalized regression splines.
In the second case models with and without f0 were com-
pared, with the true model being based on c f0 in place of f0,
where the effect strength c was varied from 0 (no effect) to
1. Model selection was based on (i) conventional conditional
generalized AIC using τ0 from Section 5, (ii) the corrected
AIC of Section 5, (iii) a version of AIC in which the degrees
of freedom penalty is based on τ1 from Section 5, (iv) AIC
based on the marginal likelihood with the number of param-
eters given by the number of smoothing parameters and vari-
ance components plus the number of unpenalized coefficients
in the model, and (v) The Greven and Kneib (2010) corrected
AIC for the Gaussian response case. The marginal likelihood
in case (iv) is a version in which unpenalized coefficients are
not integrated out (to avoid the usual problems with fixed
effect differences and REML, or improper priors and marginal
likelihood).

Results are shown in the top row of Figure 3 for a sample
size of 500 with Gaussian sampling error and standard devi-
ation of 2. For the random effect comparison, conventional
conditional AIC is heavily biased toward the more complex
model, selecting it on over 70% of occasions. The ML based
AIC is too conservative for an AIC criterion with 3.5% selec-
tion of the larger model when it is not correct, as against the
roughly 16% one might expect from AIC comparison of models
differing in 1 parameter. The known underestimation of vari-
ance components estimated by this sort of marginal likelihood
is partly to blame. The AIC based on τ1 from Section 5 also
lacks power, performing even less well than the ML based ver-
sion. By contrast, the new corrected AIC performs well, and
in this example is a slight improvement on Greven and Kneib
(2010). For the smooth comparison the different calculations
differ much less, although the alternatives are slightly less biased

Figure . Simulation based illustration of the problems with previous AIC type model selection criteria and the relatively good performance of the Section  version. In all
panels: (i) the solid curves are for conventional conditional AIC, (ii) the dotted curves are for the Section  version, (iii) the middle length dashed curves are for AIC based
on the heuristic upper bound degrees of freedom, (iv) the dashed dot curves are for the marginal likelihood based AIC and (v) the long dashed curves are for the Greven
and Kneib () corrected AIC (top row only). (a) Observed probability of selecting the larger model as the effect strength of the differing term is increased from zero, for
a  level random effect and Gaussian likelihood. (b) whole model effective degrees of freedom used in the alternative conditional AIC scores for the left hand panel as
effect size increases. (c) Same as (a), but where the term differing between the twomodels was a smooth curve. (d) As (a) but for a Bernoulli likelihood. (e) As (a) for a beta
likelihood. (f ) As (a) for a Cox proportional hazards partial likelihood.
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Figure . Results of simulation comparison with gamlss (beta, nb, scat, zip) and BayesX (ocat) packages for one dimensional P-spline models. The two plots at lower
right show comparisons of log10 computing times for the case with the smallest time advantage for the new method — Beta regression. The remaining panels show
boxplots of replicate by replicate difference in MSE/Brier’s score each standardized by the averageMSE or Brier’s score for the particular simulation comparison. Each panel
shows three box plots, one for each noise to signal level. Positive values indicate that the newmethod is doing better than the alternative. Boxplots are shaded grey when
the difference is significant at the % level (all three for nb correlated should be gray). In all cases where the difference is significant at % the new method is better than
the alternative, except for the zero inflated Poisson with uncorrelated data, where the alternative method is better at all noise levels.

toward the more complex model than the conventional con-
ditional generalized AIC, with the corrected Section 5 version
showing the smallest bias. The lower row of Figure 3 shows
equivalent power plots for the same Gaussian random effect
and linear predictor η, but with Bernoulli, beta and Cox pro-
portional hazard (partial) likelihoods (the first two using logit
links).

The purpose of this article is to develop methods to allow the
rich variety of smoothers illustrated in Figure 1 to be used in
models beyond the exponential family, a task for which general
methods were not previously available. However, for the special
case of univariate P-splines (Eilers andMarx 1996;Marx andEil-
ers 1998) some comparison with existing methods is possible,
in particular using R package gamlss (Rigby and Stasinopou-
los 2005, 2014) and the BayesX package (Fahrmeir and Lang
2001; Fahrmeir, Kneib, and Lang 2004; Brezger and Lang 2006;
Umlauf et al. 2015; Belitz et al. 2015, www.bayesx.org). For
this special case both packages implement models using essen-
tially the same penalized likelihoods used by the new method,
but they optimize localized marginal likelihood scores within
the penalized likelihood optimization algorithm to estimate the
smoothing parameters.

The comparison was performed using data simulated from
models with the linear predictor given above (but without any
random effect terms). Comparison of the new method with
GAMLSS was only possible for negative binomial, beta, scaled
t and simple zero inflated Poisson families, and with BayesX was
only possible for the ordered categorical model (BayesX has a
negative binomial family, but it is currently insufficiently stable
for a sensible comparison to be made). Simulations with both

uncorrelated and correlated covariates were considered. Three
hundred replicates of the sample size 400were produced for each
considered family at three levels of noise (see SA E for further
details). Models were estimated using the correct link and addi-
tive structure, and using P-splines with basis dimensions of 10,
10, 15, and 8whichwere chosen to avoid any possibility of forced
oversmoothing, while keeping down computational time.

Model performance for the negative binomial (nb), beta,
scaled t (scat), and zero inflated Poisson (zip) families was com-
pared via MSE, n−1

∑n
i=1

{
η̂(xi)− ηt (xi)

}2
, on the additive

predictor scale. The Brier score, 1
n
∑n

i=1
∑R

j=1(pi j − p̂i j)2, was
used to measure the performance for the ordered categorical
(ocat) family, whereR is a number of categories, pi j are true cate-
gory probabilities and p̂i j their estimated values. In addition, the
computational performance (CPU time) of the alternativemeth-
ods was recorded. Figure 4 summarizes the results. In general,
the newmethod provides a small improvement in statistical per-
formance, which is slightly larger when covariates are correlated.
The correlated covariate setting is the one inwhich local approx-
imate smoothness selection methods would be expected to per-
form less well, relative to “whole model” criteria. In terms of
speed and reliability the new method is an improvement, espe-
cially for correlated covariates, which tend to lead to reduced
numerical stability, leading the alternative methods to fail in up
to 4% of cases.

7. Example: Predicting Prostate Cancer

This section and the next provide example applications of the
new methods, while the online SA F provides further examples

http://www.bayesx.org
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Figure . Three representative protein mass spectra (centered and normalized) from serum taken from patients with apparently healthy prostate, enlarged prostate, and
prostate cancer. It would be useful to be able to predict disease status from the spectra. The red and blue spectra have been shifted upward by  and  units, respectively.

in survival analysis and animal distribution modeling. Figure 5
shows representative protein mass spectra from serum taken
from patients with a healthy prostate, relatively benign prostate
enlargement and prostate cancer (see Adam et al. 2002). To
avoid the need for intrusive biopsy there is substantial interest
in developing noninvasive screening tests to distinguish can-
cer, healthy and more benign conditions. One possible model
is an ordered categorical signal regression in which the mean of
a logistically distributed latent variable z is given by

μi = α +
∫

f (D)νi(D)dD,

where f (D) is an unknown smooth function of mass D (in
Daltons) and νi(D) is the ith spectrum. The probability of the
patient lying in category 1, 2, or 3 corresponding to “healthy,”
“benign enlargement” and “cancer” is then given by the prob-
ability of zi lying in the range (−∞,−1], (−1, θ] or (θ,∞),
respectively (see online SA K).

Given the methods developed in this article, estimation of
this model is routine, as is the exploration of whether an adap-
tive smooth should be used for f , given the irregularity of the
spectra. Figure 6 shows some results of model fitting. The esti-
mated f (D) is based on a rank 100 thin plate regression spline.
Its effective degrees of freedom is 29. An adaptive smooth gives
almost identical results. The right panel shows a QQ-plot of
ordered deviance residuals against simulated theoretical quan-
tiles (Augustin, Sauleau, andWood 2012). There is modest devi-
ation in the lower tail. The middle panel shows boxplots of
the probability of cancer according to the model for the three
observed categories. Cancer and healthy are quite well sepa-
rated, but cancer and benign enlargement less so. For cases
with cancer, the model gave cancer a higher probability than
normal prostate in 92% of cases, and a higher probability that
either other category in 83% of cases. For healthy patients the

model gave the normal category higher probability than can-
cer in 85% of cases and the highest probability in 77% of cases.
These results are somewhat worse than those reported by Adam
et al. (2002) for a relatively complex machine learning method
which involved first preprocessing the spectra to identify peaks
believed to be discriminating. On the other hand the signal
regression model here would allow the straightforward inclu-
sion of further covariates, and does automatically supply uncer-
tainty estimates.

8. Multivariate Additive Modeling of Fuel Efficiency

Figure 7 shows part of a dataset on the fuel efficiency of 207 U.S.
car models, along with their characteristics (Bache and Lich-
man 2013). Two efficiency measures were taken: miles per gal-
lon (MPG) in city driving, and the same for highway driving.
One possible model might be a bivariate additive model, as
detailed in the online SA H, where the two mpg measurements
are modeled as bivariate Gaussian, with means given by sepa-
rate linear predictors for the two components. A priori, it might
be expected that city efficiency would be highly influenced by
weight and highway efficiency by air resistance and, hence, by
frontal area or some other combination of height and width of
the car.

The linear predictors for the two components were based on
the additive fixed effects of factors “fuel type” (petrol or diesel),
“style” of car (hatchback, sedan, etc.) and “drive” (all-, front-
or rear-wheel). In addition i.i.d. Gaussian random effects of the
22 car manufacturers were included, as well as smooth additive
effects of car weight and horsepower. Additive and tensor prod-
uct smooths of height and width were tried as well as a smooth
of the product of height and width, but there was no evidence
to justify their inclusion-term selection penalties (Marra and

Figure . Results from the ordered categorical prostate model fit. (a) The estimated coefficient function f (D) with % confidence interval. (b) Boxplots of the model
probability of cancer, for the  observed states (, healthy, , enlarged and , cancer). (c) QQ-plot of ordered deviance residuals against simulated theoretical quantiles,
indicating some mismatch in the lower tail.
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Figure . Part of a dataset from the USA on fuel efficiency of cars.

Wood 2011) remove them, p-values indicate they are not sig-
nificant and AIC suggests that they are better dropped.

The possibility of smooth interactions between weight and
horsepower were also considered, using smooth main effects
plus smooth interaction formulations of the form f1(h)+
f2(w)+ f3(h,w). The smooth interaction term f3 can read-
ily be constructed in a way that excludes the main effects of w
and h, by constructing its basis using the usual tensor product
construction (e.g., Wood 2006), but based on marginal bases
into which the constraints

∑
i f1(hi) = 0 and

∑
i f2(wi) =

0 have already been absorbed by linear reparameterization.
The marginal smoothing penalties and, hence, the induced
tensor product smoothing penalties are unaffected by the
marginal constraint absorption. This construction is the obvious

generalization of the construction of parametric interactions in
linearmodels, and is simpler than the various schemes proposed
in the literature.

The interactions again appear to add nothing useful to the
model fit, and we end up with a model in which the impor-
tant smooth effects are horse power (hp) and weight, while the
important fixed effects are fuel type and drive, with diesel giv-
ing lower fuel consumption than petrol and all wheel drive giv-
ing higher consumption than the two-wheel drives. These effects
were important for both city and highway, whereas the random
effect of manufacturer was only important for the city. Figure 8
shows the smooth and random effects for the city and highway
linear predictors. Notice the surprising similarity between the
effects although the city smooth effects are generally slightly less

Figure . Fitted smooth and random effects for final car fuel efficiency model. Panels (a)–(c) relate to the city fuel consumption, while (d)–(f ) are for the highway. (c) and
(f ) are normal QQ-plots of the predicted random effects for manufacturer, which in the case of highway MPG are effectively zero.
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pronounced than those for the highway. The overall r2 for the
model is 85% but with the city and highway error MPG stan-
dard deviation estimated as 1.9 and 2.3 MPG respectively. The
estimated correlation coefficient is 0.88.

9. Discussion

This article has outlined a practical framework for smooth
regression modeling with reduced rank smoothers, for like-
lihoods beyond the exponential family. The methods build
seamlessly on the existing framework for generalized additive
modeling, so that practical application of any of the models
implemented as part of this work is immediately accessible to
anyone familiar with GAMs via penalized regression splines.
The key novel components contributed here are (i) general,
reliable and efficient smoothing parameter estimation meth-
ods based on maximized Laplace approximate marginal likeli-
hood, (ii) a corrected AIC and distributional results incorporat-
ing smoothing parameter uncertainty to aidmodel selection and
further inference, and (iii) demonstration of the framework’s
practical utility by provision of the details for some practically
important models. The proposed methods should be widely
applicable in situations in which effects are really smooth, and
themethods scale well with the number of smoothmodel terms.
In situations in which some component functions are high rank
random fields, then the INLA approach of Rue, Martino, and
Chopin (2009) will be much more efficient; however, there are
trade-offs between efficiency and stability in this case, since piv-
oting, used by our method to preserve stability, has instead to be
employed to preserve sparsity in the INLA method (see online
SA K).

The methods are implemented in R package mgcv from ver-
sion 1.8 (see online SA M).

Appendix A: Implicit Differentiation in the Extended
Gam Case

Let Dβ̂
i
β̂
j denote elements of the inverse of the Hessian matrix

(XTWX+ Sλ) with elementsDi
β̂

j
β̂
, and note that β̂ is the solution of

Di
β̂
= 0. Finding the total derivative with respect to θ of both sides

of this we have

Di
β̂

k
β̂

dβ̂k
dθ j
+Di j

β̂θ
= 0, implying that

dβ̂k
dθ j
= −Dβ̂

k
β̂

i Di j
β̂θ

Differentiating once more yields

d2β̂i
dθ jdθk

= −Dβ̂
i
β̂

l

(
Dl
β̂

p
β̂

q
β̂

dβ̂q
dθ j

dβ̂p

dθk
+Dl

β̂

p
β̂ θ

j dβ̂p

dθk

+Dl
β̂

p k
β̂ θ

dβ̂p

dθ j
+Dl j k

β̂ θ θ

)
.

The required partials are obtained from those generically avail-
able for the distribution and link used and by differentiation of the
penalty. Generically we can obtain derivatives of Di w.r.t μi and θ.

The preceding expressions hold whether θ j is a parameter of the
likelihood or a log smoothing parameter. Suppose� denotes the set

of log smoothing parameters, then

Di
β

j
θ =

{
2 exp(θ j)S

j
ikβk θ j ∈ �

Di
β

j
θ otherwise,

where S j here denotes the penalty matrix associated with θ j .
Similarly

Dl
β

p
β

j
θ =

{
2 exp(θ j)S

j
lp θ j ∈ �

Dl
β

p
β

j
θ otherwise

while

Dl
β

j
θ
k
θ =

⎧⎪⎪⎨⎪⎪⎩
2 exp(θ j)S

j
lmβm j = k; θ j, θk ∈ �

Dl
β

j
θ
k
θ θ j, θk �∈ �

0 otherwise.

Derivatives with respect to η are obtained by standard
transformations

Di
η = Di

μ/h
′
i, (A.1)

where h′i = h′(μi) and more primes indicate higher derivatives.
Furthermore,

Di
η
i
η = Di

μ
i
μ/h
′2
i − Di

μh
′′
i /h
′3
i , (A.2)

where the expectation of the second term on the right-hand side is
zero at the true parameter values.

Also Di
η
i
η
i
η = Di

μ
i
μ
i
μ/h

′3
i − 3Di

μ
i
μh
′′
i /h
′4
i

+Di
μ

(
3h′′2i /h

′5
i − h′′′i /h

′4
i

)
, and (A.3)

Di
η
i
η
i
η
i
η = Di

μ
i
μ
i
μ
i
μ/h

′4
i − 6Di

μ
i
μ
i
μh
′′
i /h
′5
i + Di

μ
i
μ(15h

′′2
i /h

′6
i

− 4h′′′/h′5i )− Di
μ(15h

′′3
i /h

′7
i − 10h′′i h

′′′
i /h

′6
i + h′′′′i /h

′5
i ).

(A.4)

Mixed partial derivatives with respect to η/μ and θ transform in the
same way, the formula to use depending on the number of η sub-
scripts. The rules relating the derivativesw.r.t η to thosewith respect
to β are much easier: Di

β = Dk
ηXki, Di

β

j
β = Dkk

ηηXkiXk j, Di
β

j
β
k
β =

Dl
η
l
η
l
ηXliXl jXlk. Again mixed partials follow the rule appropriate

for the number of β subscripts present. It is usually more efficient
to compute using the definitions, rather than forming the arrays
explicitly.

The ingredients so far are sufficient to compute β̂ and its deriva-
tives with respect to θ. We now need to consider the derivatives of
V with respect to θ. Considering D first, the components relating
to the penalties are straightforward. The deviance components are
then

dD
dθi
= D j

η̂

dη̂ j

dθi
+ Di

θ̂
and

d2D
dθidθ j

= Dkk
η̂η̂

dη̂k
dθi

dη̂k
dθ j
+ Dk

η̂

d2η̂k
dθidθ j

+Dk j
η̂ θ

dη̂k
dθi
+ Dk i

η̂ θ

dη̂k
dθ j
+ Di j

θ θ ,

where the derivatives of η̂ are simply X multiplied by the deriva-
tives of β̂. The partials of l̃ are distribution specific. The derivatives
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of the determinant terms are obtainable using Wood (2011) once
derivatives of wi with respect to θ have been obtained. These are

dwi

dθ j
= 1

2
Di
η̂
i
η̂
i
η̂

dη̂i
dθ j
+ 1

2
Di i j
η η̂ θ

,

d2wi

dθ jdθk
= 1

2
Di
η̂
i
η̂
i
η̂
i
η̂

dη̂i
dθ j

dη̂i
dθk
+ 1

2
Di
η̂
i
η̂
i
η̂

d2η̂i
dθ jdθk

+ 1
2
Di
η̂
i
η̂
i
η̂
k
θ

dη̂i
dθ j

+1
2
Di i i j
η̂ η̂ η̂ θ

dη̂i
dθk
+ 1

2
Di i j k
η̂ η̂ θ θ

.

SupplementaryMaterials

The online supplementary materials contain additional appendices for the
article.
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1. Introduction

It probably does not come as a surprise that I enjoyed read-
ing the article under discussion with its developments for flex-
ible regression modeling beyond the standard class of general-
ized additivemodels with responses originating from the simple
exponential family. My research interests always had a strong
overlap with the ones of Simon and his group, albeit with a
stronger focus on Bayesian formulations. In the current article,
SimonWood, Natalya Pya, and Benjamin Säfken develop stable
and versatile statistical methodology for what they call “general
smooth models” and what we call “structured additive distri-
butional regression models” (Klein et al. 2015b, 2015a). While
there are certain subtle differences in the model structures sup-
ported by the one or the other approach, both share the same
idea that relies on the following model structure:

� As a distributional assumption for the response, general
types of distributions not necessarily from the simple expo-
nential family are permitted. The only requirement is that
the densities are smooth enough in the parameters to allow
for the evaluation of a certain number of derivatives.

� In contrast to mean regression where a regression predic-
tor is assumed for the (transformed) expectation of the
response, a regression predictor is supplemented to poten-
tially all parameters of the response distribution.

� The predictor is additively decomposed into a number of
nonlinear components.

� These components are expanded in suitable basis func-
tions and are associated with quadratic penalties/Gaussian

CONTACT Thomas Kneib tkneib@uni-goettingen.de Department of Statistics and Econometrics, Georg-August-Universität Göttingen, Göttingen , Germany.

priors to enforce specific properties such as smoothness or
shrinkage.

The main contributions of the current article are (from my
perspective)

� The detailed development of a stable and general inferen-
tial scheme that allows us to estimate a variety of distribu-
tional regression specifications with predictors of consid-
erable complexity.

� The proposition of a novel Akaike information criterion
(AIC) for general smooth models that takes uncertainty in
the selection of smoothing parameters into account.

� The development of several results on the asymptotic
behavior of penalized cubic splines.

2. Multivariate RegressionModels

Although multivariate regression models are included in the
article by Wood, Pya and Säfken, I would like to further
emphasize the value of combining distributional regression
ideas with multivariate response structures. Wood, Pya and
Säfken followed the idea of seemingly unrelated regression
(SUR, Smith and Kohn 2000; Lang et al. 2003) by assuming
a multivariate normal specification for the responses with a
fixed correlation structure. While this has the advantage of
allowing for a basically arbitrary number of response compo-
nents, it has the disadvantage that both the variances and (more
importantly) the dependence parameters are not allowed to be
modified by covariate values. The main difficulty in doing the
latter is to obtain an interpretable and simple parameterization
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