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An Introduction to Twisted Particle Filters and

Parameter Estimation in Non-linear State-space

Models
Juha Ala-Luhtala, Nick Whiteley, Kari Heine and Robert Piché

Abstract

Twisted particle filters are a class of sequential Monte Carlo methods recently introduced by Whiteley and Lee

[1] to improve the efficiency of marginal likelihood estimation in state-space models. The purpose of this article is to

extend the twisted particle filtering methodology, establish accessible theoretical results which convey its rationale,

and provide a demonstration of its practical performance within particle Markov chain Monte Carlo for estimating

static model parameters. We derive twisted particle filters that incorporate systematic or multinomial resampling and

information from historical particle states, and a transparent proof which identifies the optimal algorithm for marginal

likelihood estimation. We demonstrate how to approximate the optimal algorithm for nonlinear state-space models

with Gaussian noise and we apply such approximations to two examples: a range and bearing tracking problem and

an indoor positioning problem with Bluetooth signal strength measurements. We demonstrate improvements over

standard algorithms in terms of variance of marginal likelihood estimates and Markov chain autocorrelation for given

CPU time, and improved tracking performance using estimated parameters.

Index Terms

Particle filter, sequential Monte Carlo, particle MCMC, Gaussian state-space model, parameter estimation.

I. INTRODUCTION

State-space models are applied to a wide variety of signal processing problems, especially in positioning, tracking

and navigation [2]–[4]. These models need to be calibrated by inferring unknown parameters from data. There are

a variety of approaches to this inference problem, such as maximum likelihood (ML) or maximum a posteriori

(MAP) estimation using the Expectation Maximization algorithm or Laplace approximations, Gaussian filtering

based approximations, and state augmentation techniques [3], [5], [6]. In this paper we consider a Bayesian approach,
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which has the advantage of allowing prior information about parameters to be imparted, and a variety of estimates

and measures of uncertainty to be reported based on the posterior distribution. By using a Markov chain Monte

Carlo (MCMC) algorithm, e.g. Metropolis-Hastings (M-H) (see [7] for an introduction), one can in principle explore

the entire posterior, but in practice the design of efficient MCMC algorithm can be a challenging task.

A direct application of M-H to a state-space model requires evaluation of the marginal likelihood of data,

which is a high-dimensional, analytically intractable integral in many cases of interest. However, this issue can be

circumvented through the application of pseudo-marginal MCMC methods [8], [9], which allow MCMC algorithms

yielding samples from the desired posterior to be constructed if an unbiased estimator of the marginal likelihood

is available. Particle filters [10] (see [3], [4] for overviews in the context of tracking applications) provide such an

estimator, and the resulting MCMC scheme is known as a particle Markov chain Monte Carlo (PMCMC) method

[11]. Typically the most substantial contribution to the overall cost of a PMCMC algorithm arises from the need to

run a particle filter at each iteration of the MCMC sampler, and the performance of the sampler is sensitive to the

variability of the marginal likelihood estimate which the particle filter delivers [12]. This motivates the development

of particle filters which can provide reliable marginal likelihood estimates at a low computational cost.

In this paper we develop new “twisted particle filtering” methodology, building from ideas recently introduced by

[1]. Twisted particle filters are purposefully designed to provide more reliable approximations of marginal likelihoods

than standard particle filters, while preserving the lack-of-bias property which permits their use within PMCMC.

Unlike traditional approaches to improving the efficiency of particle filters which modify the proposal distribution

on a per-particle basis [13] or employ auxiliary weights for resampling [14], twisted particle filters are derived by

applying a form of re-weighting to the particle system as a whole, using a so-called “twisting” function. The

role of the twisting function is to incorporate information from the observations, possibly future and past, into

the mechanism by which particles are propagated over time. The ability to choose different twisting functions

introduces a degree of freedom into the design of the particle algorithm, leading naturally to questions of optimality.

In concrete terms, if the twisting function is chosen well, the twisted particle filter can estimate the marginal

likelihood with greater accuracy than a standard particle filter, in turn allowing more efficient estimation inference

for static parameters in the state-space model.

The investigations of [1] focussed mainly on theoretical analysis of twisted particle filters, studying their asymp-

totic properties in the regimes where the number of particles tends to infinity and where the length of the time

horizon grows, under probabilistic assumptions on the observation sequence and strong regularity conditions on the

statistical model.

The objectives of this paper are to present new twisted particle filtering methodology, validate it theoretically, and

demonstrate its application and effectiveness within PMCMC for inferring the parameters of state-space models.

Our main contributions are as follows.

1) Algorithms: We introduce a general formulation of twisted particle filters. The first novel aspect of this

formulation beyond that given in [1], is that it allows various resampling methods to be incorporated in twisted

particle filters. In particular, we derive a twisted particle filter around the popular systematic resampling method,

which is known to reduce variance within the particle filter. The second novel aspect of the new formulation is
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that it allows for twisting functions which depend on historical particle states, which is an important factor when

designing them efficiently in practice. The methodology of [1], which treated only multinomial resampling and

twisting functions which depend only on current particle states. The utility of these algorithmic developments is

that they allow for more accurate estimation of marginal likelihoods.

2) Theory: We provide novel theoretical results which justify the new algorithms and characterize their optimal

operation. The first result, Theorem 1, establishes the lack-of-bias property of the marginal likelihood approximation

delivered by the new twisted particle filter. The importance of this result is that it justifies the use of the twisted

particle filter within PMCMC, whilst allowing for more general structure of the resampling technique and twisting

function than in [1].

The second result, Theorem 2, identifies the twisting functions which are optimal for approximating the marginal

likelihood for a given finite number of observations. This provides a different perspective to the results of [1], which

are asymptotic in nature, considering optimality in terms of minimal variance growth rate in the regime where the

length of the data record tends to infinity. Theorem 2 relies on only mild regularity assumptions on the ingredients

of the twisted particle filter, whereas the results of [1] assume a particularly strong form of geometric ergodicity

of the signal in the hidden Markov model (HMM) and certain uniform upper and lower bounds on the likelihood

functions. Moreover, compared to the analyses of [1], the proof of Theorem 2 is less intricate, and gives the reader

a more accessible route to understanding how twisted particle filters work.

3) Approximation techniques: Informed by Theorem 2, we propose methods to approximate the optimal twisting

function for nonlinear Gaussian state-space models, based on ideas of Kalman filtering methodology together with

local linearization using historical particle states.

4) Applications and numerical results: We provide numerical results in the context of two applications.

The first application is a range and bearing tracking problem. This is a classical nonlinear tracking scenario

and serves as a benchmark application of particle filters [15], [2]. The purpose of this example is to compare

the performance of twisted particle filters and the corresponding PMCMC algorithms to standard particle filters

in a situation where the ground truth for static parameters is available, with simulated data. The twisted particle

filters we consider employ linearization techniques to approximate the optimal twisting functions. The results we

obtain illustrate that twisted particle filters can more reliably approximate marginal likelihoods for the same or less

computational cost than standard particle filters. The benefits of using twisted particle filters within PMCMC are

also demonstrated in terms of lower auto-correlation, and consequently more accurate approximation of posterior

distributions over static parameters. We also compare tracking performance based on estimated parameter values.

The second application is a more complex indoor positioning problem. In this application a state-space model

represents the unknown position of a user over time, observed indirectly and with uncertainty through received

signal strength (RSS) measurements. Such data are widely available from many different wireless communication

systems including mobile networks and WLAN. They have been proposed for use in location estimation in a variety

of novel location-aware applications, such as environmental and structure monitoring, and many military and public

safety applications, see [16], [17] and references therein. We work with a real Bluetooth RSS data set. A key

task when dealing with RSS measurements is to calibrate the model by estimating unknown parameters which

April 2, 2016 DRAFT



4

describe attenuation characteristics of the environment in which the user moves, since otherwise one must resort to

oversimplified models [17], which exhibit inferior tracking performance.

A variety of approaches to estimating these parameters have been suggested, involving least squares [17] and

weighted least squares [18] methods. These techniques provide point estimates of parameter values from a batch

of data. Bayesian approaches, e.g., [19], allow additionally for uncertainty associated with estimates to be reported,

and incorporate prior distributions to quantify expert knowledge and physical constraints on parameter values. They

also naturally handle uncertainty over state variables when inferring parameters through marginalization.

The price to pay for the Bayesian approach is the computational cost of Monte Carlo sampling, and so our

numerical investigations largely focus on computational efficiency. We compare the performance of twisted particle

filters to more standard particle filters using a variety of proposal and resampling techniques. We demonstrate

improved CPU-time efficiency in estimating marginal likelihoods, and we show that this efficiency is carried over

to the particle MCMC algorithm, giving performance gains in terms of quality of the resulting MCMC chain

compared to PMCMC using a standard particle filter. We also demonstrate favourable tracking performance using

parameter estimates obtained from PMCMC.

The structure of the paper is as follows. Section II gives the problem formulation. Section III introduces a

PMCMC algorithm and a standard particle filter. Section IV presents the twisted particle filtering methodology

and Theorems 1-2, which characterize the lack-of-bias property and optimal twisting functions. Computational

complexity is also discussed. Section V introduces methods for approximating the optimal twisting functions in

nonlinear state-space models with Gaussian noise. Section VI contains applications and numerical results. Finally,

conclusions are presented in Section VII.

II. PROBLEM FORMULATION

We first introduce some notation. Uppercase is used to denote random variables (e.g. X,Y, . . .) and realized values

are denoted with lowercase (e.g. x, y, . . .). For any sequence (an)n≥0 and s ≤ k we write as:k := (as, . . . , ak).

We consider state-space models of the form

X0 ∼ µ0,θ(·), Xk ∼ fk,θ(· |Xk−1), k ≥ 1,

Yk ∼ gk,θ(· |Xk), k ≥ 0, (1)

where Xk ∈ X is the state vector, Yk ∈ Yk is the measurement vector, µ0,θ(·) is the initial distribution, fk,θ(· |xk−1)

describes the transitions of the state process and gk,θ(· |xk) is the conditional distribution for the measurement. All

the model distributions are assumed to admit probability densities denoted with the same letter as the distribution.

The joint density of the state-variables and measurements for k ≥ 1 is given by

pθ(y0:k, x0:k) = µ0,θ(x0)g0,θ(y0 |x0)

·
k∏
s=1

fs,θ(xs |xs−1)gs,θ(ys |xs). (2)

The parameter vector θ ∈ Rdθ contains all the unknown parameters of the model.
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We are mainly concerned in estimating the unknown parameters θ using a set of realized measurements y0:t. In

the Bayesian framework, the parameters are considered as random variables and estimates are computed using the

posterior distribution

p(θ | y0:t) ∝ pθ(y0:t)p(θ), (3)

where pθ(y0:t) is the likelihood and p(θ) is the prior.

With the shorthand

π−k,θ(dxk) := pθ(dxk | y0:k−1), πk,θ(dxk) := pθ(dxk | y0:k),

the likelihood term can be evaluated recursively, for k ≥ 1,

pθ(y0:k) = pθ(y0:k−1)

∫
X
gk,θ(yk |xk)π−k,θ(dxk), (4)

pθ(y0) =
∫
X g0,θ(y0 |x0)µ0,θ(dx0), and

π−k,θ(xk) =

∫
X
fk,θ(xk |xk−1)πk−1,θ(dxk−1), k ≥ 1, (5)

πk,θ(xk) ∝

 g0,θ(y0 |x0)µ0,θ(x0), k = 0,

gk,θ(yk |xk)π−k,θ(xk), k ≥ 1.
(6)

Exact inference using (3) directly is usually intractable, since the likelihood term can be evaluated exactly for only

some special models (e.g. linear Gaussian model). We consider particle filtering methods for computing unbiased

estimates for the likelihood term. These can then be used as a part of particle MCMC methods that draw samples

from the posterior distribution of interest.

III. PARTICLE MCMC

In this section we describe methods for drawing samples from the parameter posterior distribution in (3).

Algorithms targeting only the parameter posterior are often called marginal algorithms, because samples are drawn

only from the marginal posterior p(θ | y0:t) instead of the full posterior p(x0:t, θ | y0:t).

MCMC methods generate samples from the target posterior distribution by simulating a Markov chain θ0, θ1, . . .

that has the target posterior distribution as a stationary distribution [7]. One of the best known and general MCMC

methods is the Metropolis-Hastings (MH) algorithm, where a new sample θ∗ at step i is generated from a proposal

distribution κ(· | θi−1). The generated sample θ∗ is then accepted with probability

min

{
1,

pθ∗(y0:t)p(θ
∗)

pθi−1(y0:t)p(θi−1)

κ(θi−1 | θ∗)
κ(θ∗ | θi−1)

}
. (7)

To compute this acceptance probability, we need to evaluate likelihood terms pθ(y0:t), but that is not possible

for a general nonlinear state-space model. However, if an unbiased estimator for the likelihood is available, it is

still possible to construct an MCMC algorithm to sample from the posterior distribution [8], [9]. For state-space

models, we can use particle filters as unbiased estimators of the likelihood [11]. A Metropolis-Hastings algorithm

using particle filters to estimate the likelihood terms, called particle marginal Metropolis-Hastings (PMMH) [11],

is given in Algorithm 1.
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1: Sample θ0 ∼ p(θ)

2: Obtain an unbiased estimate Z0 of pθ0(y0:t)

3: for i ≥ 1 do

4: Sample θ∗ ∼ κ(· | θi−1)

5: Obtain an unbiased estimate Z∗ of pθ∗(y0:t)

6: Set α = min

{
1,

Z∗p(θ∗)

Zi−1p(θi−1)

κ(θi−1 | θ∗)
κ(θ∗ | θi−1)

}
7: Sample U from a uniform distribution on [0, 1]

8: if U < α then

9: Set θi = θ∗ and Zi = Z∗

10: else

11: Set θi = θi−1 and Zi = Zi−1

12: end if

13: end for

Algorithm 1. Particle marginal Metropolis-Hastings

A. Particle filtering

We proceed with an account of a standard particle filter. Our notation is in some places a little non-standard, but

is chosen deliberately to help with the derivation of twisted particle filters in Section IV. Henceforth, for notational

simplicity, we often omit the subscript θ and implicitly assume that the distributions can depend on the parameters.

We denote the set of n ≥ 1 particles at time k ≥ 0 by ξk = (ξik)ni=1, with corresponding unnormalized weights

Wk = (W i
k)ni=1. The filtering distribution is approximated by

πk,θ(dxk) ≈
∑n
i=1W

i
kδξik(dxk)∑n

i=1W
i
k

, (8)

where δξik(·) denotes a unit point mass centered at ξik.

In order to describe the sampling mechanism for the particles and understand certain properties of the algorithm

it is convenient to also introduce, for each k ≥ 0, the ancestor indicator variables Ak = (Aik)ni=1, where each Aik

takes a value in {1, . . . , n}. If we also define for each k ≥ 0 and i ∈ {1, . . . , n}, (Bik,j)
k
j=0 by letting Bik,k := i

and for k > 0, recursively Bk,j := A
Bk,j+1

j , j = k − 1, . . . , 0, then we can write the “ancestral line” of particle ξik

as

L i
k := (ξik, ξ

Bik,k−1

k−1 , . . . , ξ
Bik,0
0 ), (9)

which is a Xk+1-valued random variable.

A particle filter is given in Algorithm 2. Here the proposal distributions (qk)k≥0 are assumed to be chosen such

that for each k ≥ 0 the weights Wk are strictly positive and finite. Each qk may be chosen to depend also on the

observations y0:k, but this dependence is suppressed from the notation.
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1: for 1 ≤ i ≤ n do

2: Sample ξi0 ∼ q0(·)

3: Set W i
0 = g0(y0 | ξi0)µ0(ξi0)/q0(ξi0)

4: end for

5: Set Z0 = 1
n

∑n
i=1W

i
0

6: for 1 ≤ k ≤ t do

7: Sample Uk−1 ∼ U [0, 1]m

8: Set Ak−1 = r(Uk−1,Wk−1)

9: for 1 ≤ i ≤ n do

10: Sample ξik ∼ qk(· |L Aik−1

k−1 )

11: Set W i
k =

gk(yk | ξik)fk(ξik | ξ
Aik−1

k−1 )

qk(ξik |L
Aik−1

k−1 )
12: end for

13: Set Zk = Zk−1
1
n

∑n
i=1W

i
k

14: end for

Algorithm 2. Particle filter

B. Resampling

Lines 7 and 8 in Algorithm 2 together implement a generic resampling operation. Line 7 generates Uk−1 =

(U ik−1)mi=1 consisting of m ≥ 1 i.i.d. random variables, each uniformly distributed on [0, 1]. Line 8 passes Uk−1

and the unnormalized weights Wk−1 to a deterministic mapping r : [0, 1]m × Rn+ → {1, . . . , n}n, which returns

the ancestor indicator variables Ak−1 = (Aik−1)ni=1. With ri(Uk−1,Wk−1) indicating the ith element in the vector

returned by r, for brevity we sometimes write rik−1(Uk−1) ≡ ri(Uk−1,Wk−1).

A variety of resampling mechanisms can be cast in this form through specific choices of m and r. We describe

here two well known schemes: the multinomial and systematic methods; see [20] for background information. These

techniques are standard; the details are included here in order to prepare for the presentation of the non-standard

resampling techniques in twisted particle filters.

1) Multinomial resampling: We have m = n and the mapping r is defined as

ri(u,w) = j ⇔ ui ∈ (dj−1, dj ], (10)

where d0 = 0 and di =
∑i
j=1 w

j/(
∑n
j=1 w

j).

2) Systematic resampling: We have m = 1 and the mapping r is defined as

ri(u,w) = j ⇔ u+ i− 1 ∈ (ndj−1, ndj ], (11)

where d0 = 0 and di =
∑i
j=1 w

j/(
∑n
j=1 w

j).
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Systematic resampling is computationally light and has been found to have good empirical performance, although

theoretical analysis is difficult due to high dependence between the resampled particles. Nevertheless, it is known,

see e.g. [20], that both multinomial and systematic resampling satisfy Assumption 1 below.

We define the shorthand notation F0 := ξ0 and for k ≥ 1, Fk := (ξ0, U0, ξ1, . . . , Uk−1, ξk).

Assumption 1. The mapping r is such that for any k ≥ 0 and integrable function ϕ : Xk+1 → R,

E

[
1

n

n∑
i=1

ϕ(L
rik(Uk)
k )

∣∣∣∣∣Fk

]
=

∑n
i=1W

i
kϕ(L i

k)∑n
i=1W

i
k

,

where E denotes expectation when sampling according to Algorithm 2.

Lines 5 and 13 compute a sequence (Zk)tk=0, where each Zk is an estimate of p(y0:k). The following proposition

justifies the use of Algorithm 2 to provide an unbiased estimate of p(y0:t) at line 5 of Algorithm 1. This kind of

result is well known; a proof is outlined in Appendix A for completeness.

Proposition 1. If Assumption 1 holds, then for each k ≥ 0, E[Zk] = p(y0:k).

IV. TWISTED PARTICLE FILTERS

In order to introduce and validate twisted particle filters we think more explicitly about ξ0 and the sequence

(ξk, Uk−1)k≥1 as a stochastic process and consider the following initial and conditional distributions, according to

which ξ0 and (ξk, Uk−1)k≥1 evolve when sampled through Algorithm 2.

M0(dξ0) =

n∏
i=1

q0(dξi0), (12a)

Mk(dξk, duk−1 |Fk−1)

= U(duk−1)

n∏
i=1

qk(dξik |L
rik−1(uk−1)

k−1 ), (12b)

where U(du) denotes the uniform distribution on [0, 1]m.

Twisted particle filters are obtained by sampling the process ξ0, (ξk, Uk−1)k≥1 from alternatives to (12a)–(12b),

which we discuss in more detail below.

Remark 1. For historical perspective, we note that the idea of constructing alternative distributions over the random

variables in particle filters appears in some of the theoretical arguments which justify PMCMC [11]. However, the

specifics of twisted particle filters are more akin to eigenfunction changes of measure for branching processes,

which were studied earlier in the stochastic processes literature, see [21, Section 3] and references therein.

Let (ψk)k≥0 be a sequence of strictly positive functions, such that ψ0 : X→ R+ and for k ≥ 1, ψk : Xk+1 → R+.

We shall often write interchangeably ψk(x0:k−1, xk) ≡ ψk(x0:k). Each ψk may also depend on Fk−1 and any

number of the measurements yk, but this dependence is suppressed from the notation.
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The initial and conditional distributions for the twisted particle filter are given by

M̃0(dξ0) ∝ 1

n

n∑
s=1

M0(dξ0)ψ0(ξs0), (13a)

M̃k(dξk, duk−1 |Fk−1)

∝ 1

n

n∑
s=1

Mk(dξk, duk−1 |Fk−1)ψk(L
rsk−1(uk−1)

k−1 , ξsk), (13b)

where the functions ψk are called “twisting functions”. To avoid some tangential complications we shall assume

henceforth that supx ψk(x) <∞ for each k ≥ 0, which is sufficient to ensure that the integrals needed to normalize

M̃0 and each M̃k are finite.

A more explicit expression for M̃0 is obtained by plugging in (12a) and normalizing, to give

M̃0(dξ0) =
1

n

n∑
s=1

q̃0(dξs0)
∏
i 6=s

q0(dξi0),

where q̃0(dξs0) := ψ0(ξ0)q0(dξs0)/
∫
ψ0(x)q0(dx). So to sample from M̃0, one first draws a random variable, say

S0, from the uniform distribution on {1, . . . , n}, then samples ξS0
0 ∼ q̃0(·) and ξi0 ∼ q0(·) for i 6= S0. Deriving a

similar sampling recipe for M̃k is somewhat more involved. We state the resulting procedure in Algorithm 3, then

formalize its validity and other properties in Theorems 1 and 2.

To write out Algorithm 3 we need a few more definitions. For k ≥ 0, define the twisted (unnormalized) weights

W̃ i
k := W i

kṼ
i
k , 1 ≤ i ≤ n, (14)

where

Ṽ ik :=

∫
X
ψk+1(L i

k , xk+1)qk+1(dxk+1 |L i
k). (15)

For k ≥ 1, define the twisted proposal distribution

q̃k(dxk |x0:k−1) ∝ ψk(x0:k)qk(dxk |x0:k−1). (16)

Let Sk be a discrete random variable conditional on (L i
k−1)ni=1, having distribution S̃k(·) on {1, . . . , n}, whose

probabilities are proportional to

S̃k(Sk = s) ∝
∫
[0,1]m

U(du)

·
∫
X
ψk(L

rsk−1(u)

k−1 , xk)qk(dxk |L
rsk−1(u)

k−1 ). (17)

Also introduce a distribution Ũk−1( · | s) on [0, 1]m given by

Ũk−1(du | s) ∝

U(du)

∫
X
ψk(L

rsk−1(u)

k−1 , xk)qk(dxk |L
rsk−1(u)

k−1 ). (18)

Note that the distributions S̃k and Ũk−1 depend on the resampling method defined through the mapping r. Details

of how to sample from these distributions in the cases when r corresponds to multinomial or systematic resampling

are given in Sections IV-A and IV-B.
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1: Sample S0 uniformly from {1, . . . , n}

2: Sample ξS0
0 ∼ q̃0(·)

3: for i 6= S0 do

4: Sample ξi0 ∼ q0(·)

5: end for

6: for 1 ≤ i ≤ n do

7: Set W i
0 = g0(y0 | ξi0)µ0(ξi0)/q0(ξi0)

8: end for

9: Set Z̃0 =

∑n
i=1W

i
0

∫
X ψ0(x0)q0(dx0)∑n
i=1 ψ0(ξi0)

10: for 1 ≤ k ≤ t do

11: Sample Sk ∼ S̃k(·)

12: Sample Uk−1 ∼ Ũk−1( · |Sk)

13: Set Ak−1 = r(Uk−1,Wk−1)

14: Sample ξSkk ∼ q̃k(· |L A
Sk
k−1

k−1 )

15: for i 6= Sk do

16: Sample ξik ∼ qk(· |L Aik−1

k−1 )

17: end for

18: for 1 ≤ i ≤ n do

19: Set W i
k =

gk(yk | ξik)fk(ξik | ξ
Aik−1

k−1 )

qk(ξik |L
Aik−1

k−1 )

20: Set Ṽ ik−1 =
∫
X ψk(L i

k−1, x)qk(dx |L i
k−1)

21: Set W̃ i
k−1 = W i

k−1Ṽ
i
k−1

22: end for

23: Set Z̃k = Z̃k−1

∑n
i=1W

i
k∑n

i=1W
i
k−1

∑n
i=1 W̃

i
k−1∑n

i=1 ψk(L i
k)

24: end for

Algorithm 3. Twisted particle filter

Our first main result, Theorem 1, establishes that Algorithm 3 indeed samples from (13a)–(13b) and delivers

unbiased estimates of p(y0:k), which justifies its use within Algorithm 1. The proof is given in Appendix B.

Theorem 1. The random variables ξ0 and (ξk, Uk−1)k≥1 sampled using Algorithm 3 are drawn from (13a)–(13b).

Furthermore, if Assumption 1 holds, then for each k ≥ 0,

Ẽ[Z̃k] = E[Zk] = p(y0:k), (19)

where Ẽ (resp. E) denotes expectation w.r.t. (13a)–(13b) (resp. (12a)–(12b)).

Theorem 2 identifies the choice of the functions (ψk)0≤k≤t which are ideal for estimating p(y0:t). The proof is

given in Appendix C.
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Theorem 2. If we choose

ψk(x0:k) =


µ0(x0)p(y0:t |x0)

q0(x0)
, k = 0,

fk(xk |xk−1)p(yk:t |xk)

qk(xk |x0:k−1)
, 1 ≤ k ≤ t,

(20)

then Z̃t = p(y0:t).

The choice of ψk identified in (20) is of course not usually available in practice, but Theorem 2 motivates us to

consider twisting functions of the form

ψk,l(x0:k) =


µ0(x0)φ0,l(x0)

q0(x0)
, k = 0,

fk(xk |xk−1)φk,l(x0:k)

qk(xk |x0:k−1)
, 1 ≤ k ≤ t,

(21)

where the functions φk,l : Xk+1 → [0, 1] are chosen to approximate p(yk:k+l |xk), possibly also depending on

Fk−1, and l is a positive integer parameter such that 0 ≤ l ≤ t−k, which specifies how many future measurements

are used in the twisting function. Devising such approximations is the subject of Section V.

We conclude Section IV by showing how to sample Sk and Uk−1 on lines 11 and 12 in Algorithm 3.

A. Twisted multinomial resampling

In this case m = n, and using definition (10) for rk−1, it is easily checked that the probabilities S̃k(Sk = s) in

(17) are independent of the value s, i.e. S̃k is the uniform distribution over {1, . . . , n}.

The density function corresponding to (18) can be written as

Ũk−1(u | s)

∝ I[0,1](us)
∫
X
ψk(L

rsk−1(u
s)

k−1 , xk)qk(dxk |L
rsk−1(u

s)

k−1 )

·
∏
i 6=s

I[0,1](ui)

=

 n∑
j=1

I(dj−1,dj ](u
s)ṽjk−1

∏
i 6=s

I[0,1](ui),

where the equality uses (10), and d0k−1 = 0, djk−1 =
∑j
i=1 w

i
k−1/

∑n
i=1 w

i
k−1 for 1 ≤ j ≤ n, for any set I,

II(u) = 1, when u ∈ I and zero otherwise, and the terms ṽjk−1 are given by (15).

We therefore have the following procedure for sampling Sk and Uk−1 from S̃k(·) and Ũk−1(· | s) respectively:

1) Sample Sk uniformly from {1, . . . , n}

2) Sample index Jk−1 from the discrete distribution on {1, . . . , n} such that the probability that Jk−1 = j is

proportional to ∫
[0,1]

I(dj−1
k−1,d

j
k−1]

(us) dus ṽjk−1 = wjk−1ṽ
j
k−1

3) Sample USkk−1 from the uniform distribution on (d
Jk−1−1
k−1 , d

Jk−1

k−1 ] and for each i 6= Sk, U ik−1 from the uniform

distribution on [0, 1]
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B. Twisted systematic resampling

In this case we have m = 1, and using definition (11) for rk−1, the probabilities in (17) are

S̃k(Sk = s)

∝
∫
[0,1]

U(du)

∫
X
qk(dxk |L

rsk−1(u)

k−1 )ψk(L
rsk−1(u)

k−1 , xk)

=

n∑
j=1

∫
[0,1]

IIs,jk−1
(u) du

∫
X
qk(dxk |L j

k−1)ψk(L j
k−1, xk)

=
∑

{j | Ij,sk−1 6=∅}

[
min(ndjk−1 − s+ 1, 1)

−max(ndj−1k−1 − s+ 1, 0)
]
ṽjk−1, (22)

where the first equality follows from (11), and Is,jk−1 = (ndj−1k−1 − s+ 1, ndjk−1 − s+ 1] ∩ [0, 1] and (djk−1)nj=0 are

defined as in the twisted multinomial resampling.

The probability density function corresponding to (18) can be written as

Ũk−1(u | s)

∝ I[0,1](u)

∫
X
ψk(L

rsk−1(u)

k−1 , xk)qk(dxk |L
rsk−1(u)

k−1 )

=

n∑
j=1

IIs,jk−1
(u)ṽjk−1,

where the equality follows from (11).

This leads to the following procedure for sampling Sk and Uk−1 from S̃k(·) and Ũk−1(· | s) respectively:

1) Sample Sk from a distribution over {1, . . . , n} with probabilities given by (22)

2) Sample index Jk−1 from the discrete distribution on {1, . . . , n} such that the probability that Jk−1 = j is

proportional to ∫
[0,1]

IISk,jk−1

(u) du ṽjk−1

=
[
min(ndjk−1 − Sk + 1, 1)

−max(ndj−1k−1 − Sk + 1, 0)
]
ṽjk−1,

if ISk,jk−1 6= ∅, and otherwise the probability that Jk−1 = j is zero.

3) Sample Uk−1 from the uniform distribution on ISk,Jk−1

k−1

C. Complexity of twisted resampling methods

Twisted multinomial resampling involves sampling 2 times from a discrete distribution with n elements and n

times from a continuous uniform distribution, and can be implemented in O(n) time.

Twisted systematic resampling involves sampling two times from a discrete distribution with n elements and

one time from a continuous uniform distribution, and can be implemented in O(n) time. Compared to twisted
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multinomial resampling, some computation time is saved since only one draw from the continuous uniform dis-

tribution is needed. However, the computation of the probabilities for the discrete distributions is computationally

more involved for the twisted systematic resampling.

The overall complexity of Algorithm 3 depends on the specific nature of the twisting function and how it is

computed. This is a problem-specific issue, which we discuss in the context of a particular family of models and

twisting functions in Section V-C.

V. TWISTED PARTICLE FILTERS FOR GAUSSIAN STATE-SPACE MODELS

In this section, we present methods for approximating the optimal twisting function in Gaussian state-space

models with X = Rdx , Y = Rdy and

µ0(·) = N (· | ν0,P0), (23a)

fk(· |xk−1) = N (· | ck−1(xk−1),Qk−1), k ≥ 1, (23b)

gk(· |xk) = N (· |hk(xk),Rk), k ≥ 0, (23c)

where N (· | ν,P) denotes a Gaussian distribution with mean vector ν and covariance matrix P. The mean functions

ck−1(xk−1) and hk(xk) can be nonlinear functions of the state vector.

To use the twisted particle filter in practice, we need to evaluate the integrals in (15) and sample from the twisted

distributions given by (16). For the Gaussian model, we choose an exponential form for the function φk,l in (21),

given by

φk,l(x0:k) = αk,l exp

{
−1

2
xTkΓk,lxk + xTk βk,l

}
, (24)

where αk,l ≡ αk,l(x0:k−1) ∈ R+, βk,l ≡ βk,l(x0:k−1) ∈ Rdx and Γk,l ≡ Γk,l(x0:k−1) ∈ Rdx×dx are parameters,

possibly depending on Fk−1 and any number of measurements. For k ≥ 1, we use shorthand notation αik,l =

αk,l(L i
k−1), βik,l = βk,l(L i

k−1) and Γik,l = Γk,l(L i
k−1). Methods for computing these parameters are considered

in Sections V-A and V-B.

With twisting function given by (21) and (24), we have q̃0(·) = N (· |µ0,l,Σ0,l), where

µ0,l = Σ0,l

(
P−10 ν0 + β0,l

)
, (25a)

Σ0,l =
(
P−10 + Γ0,l

)−1
. (25b)

For k ≥ 1 and 1 ≤ i ≤ n, we have q̃k(· |L i
k−1) = N (· |µik,l,Σi

k,l), where

µik,l = Σi
k,l

(
Q−1k−1ck−1(ξik−1) + βik,l

)
, (26a)

Σi
k,l =

(
Q−1k−1 + Γik,l

)−1
. (26b)

The initial likelihood estimate in the twisted particle filter is now given by

Z̃0 =

α0,l|Σ0,l|1/2

|P0|1/2
exp

{
1
2µ

T
0,lΣ

−1
0,l µ0,l

}
exp

{
1
2ν

T
0 P−10 ν0

}
 ∑n

i=1W
i
0∑n

i=1 ψ0(ξi0)
, (27)
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where |P| denotes the determinant of a matrix P. The integral in (15) can be computed to give

Ṽ ik = αik+1,l

|Σi
k+1,l|1/2

|Qk|1/2

·
exp

{
1
2 (µik+1,l)

T
(
Σi
k+1,l

)−1
µik+1,l

}
exp

{
1
2ck(ξik)TQ−1k ck(ξik)

} , (28)

for k ≥ 0 and 1 ≤ i ≤ n.

The resulting algorithm for the twisted particle filter for Gaussian state-space models is given in Algorithm 4. We

conclude Section V by presenting two methods for computing the twisting function parameters on lines 1 and 13.

Whilst we focus on the case of Gaussian disturbances, one could follow an almost identical approach to constructing

a twisting function for a model in which the disturbances are non-Gaussian, but of known mean and covariance.

In particular, one replaces respectively Qk−1 and Rk by the conditional covariances of Xk|xk−1 and Yk|xk, and

ck−1(xk−1) and hk(xk) by the conditional means of Xk|xk−1 and Yk|xk. Exponential-family disturbances could

be treated with the kind of techniques explored in [22].

A. Twisting function using local linearization

For a linear Gaussian model the term p(yk:k+l |xk), as a function of xk, is exactly of the exponential form in

(24). For a nonlinear Gaussian model, we can therefore compute an approximation of p(yk:k+l |xk) by considering

linearized transition and measurement functions.

We propose to use a local Taylor series based linearization using the extended Kalman filter (EKF). The local

linearization method for computing the twisting function parameters αk,l, βk,l and Γk,l is summarized in Algorithms

5 and 6 and details are given in the following equations.

We first present the equations for computing the linearized transition functions ck+s−1(xk+s−1) ≈ Ck+s−1xk+s−1+

ĉk+s−1 and linearized measurement functions hk+s(xk+s) ≈ Hk+sxk+s + ĥk+s for 0 ≤ s ≤ l using the EKF local

linearization.

For k ≥ 1 and 1 ≤ i ≤ n, the EKF algorithm is initialized with x̂k−1 = ξik−1 and P̂k−1 = 0. For 0 ≤ s ≤ l, we

recursively compute Ck+s−1, ĉk+s−1, Hk+s and ĥk+s by first linearizing the transition function using the EKF

prediction step equations

x̂−k+s = ck+s−1(x̂k+s−1), (29a)

Ck+s−1 =

[
∂

∂x
ck+s−1(x)

]
x=x̂k+s−1

, (29b)

ĉk+s−1 = ck+s−1(x̂k+s−1)−Ck+s−1x̂k+s−1, (29c)

P̂−k+s = Ck+s−1P̂k+s−1C
T
k+s−1 + Qk+s−1, (29d)

where for a vector-valued function c,
[
∂
∂xc(x)

]
x=x̂

denotes the Jacobian matrix, evaluated at the point x = x̂.
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1: Set (α0,l, β0,l,Γ0,l) using Algorithm 5 or 7

2: Set µ0,l and Σ0,l using (25a)–(25b)

3: Sample S0 uniformly from {1, . . . , n}

4: Sample ξS0
0 ∼ N (· |µ0,l,Σ0,l)

5: for i 6= S0 do

6: Sample ξi0 ∼ q0(·)

7: end for

8: for 1 ≤ i ≤ n do

9: Set W i
0 = g(y0 | ξi0)µ0(ξi0)/q0(ξi0)

10: end for

11: Set Z̃0 using (27)

12: for 1 ≤ k ≤ t do

13: Set (αik,l, β
i
k,l,Γ

i
k,l)

n
i=1 using Algorithm 6 or 7

14: for 1 ≤ i ≤ n do

15: Set µik,l and Σi
k,l using (26a)–(26b)

16: end for

17: Sample Sk ∼ S̃k(·)

18: Sample Uk−1 ∼ Ũk−1( · |Sk)

19: Set Ak−1 = r(Uk−1,Wk−1)

20: Sample ξSkk ∼ N (· |µA
Sk
k−1

k,l ,Σ
A
Sk
k−1

k,l )

21: for i 6= Sk do

22: Sample ξik ∼ qk(· |L Aik−1

k−1 )

23: end for

24: for 1 ≤ i ≤ n do

25: Set W i
k =

g(yk | ξik)f(ξik | ξ
Aik−1

k−1 )

qk(ξik |L
Aik−1

k−1 )

26: Set Ṽ ik−1 using (28) and W̃ i
k−1 = W i

k−1Ṽ
i
k−1

27: end for

28: Set Z̃k = Z̃k−1

∑n
i=1W

i
k∑n

i=1W
i
k−1

∑n
i=1 W̃

i
k−1∑n

i=1 ψk(L i
k)

29: end for

Algorithm 4. Twisted particle filter for Gaussian model

The linearization for the measurement function is obtained by first computing the EKF update step equations

H−k+s =

[
∂

∂x
hk+s(x)

]
x=x̂−

k+s

, (30a)

S−k+s = H−k+sP̂
−
k+s

(
H−k+s

)T
+ Rk+s, (30b)

G−k+s = P̂−k+s
(
H−k+s

)T (
S−k+s

)−1
, (30c)

x̂k+s = x̂−k+s + G−k+s(yk+s − hk+s(x̂
−
k+s)), (30d)

P̂k+s = P̂−k+s −G−k+sS
−
k+s

(
G−k+s

)T
, (30e)
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1: Set x̂−0 = ν0 and P̂−0 = P0

2: Set x̂0, P̂0, H0 and ĥ0 using (30)-(31)

3: Set (α0,0, β0,0, Γ0,0) using (32)

4: for 1 ≤ s ≤ l do

5: Set x̂s, P̂s, Cs−1, ĉs−1, Hs and ĥs using (29)-(31)

6: Set (α0,s, β0,s, Γ0,s) using (33)–(35)

7: end for

8: Return (α0,l, β0,l,Γ0,l)

Algorithm 5. Twisting function parameters for k = 0 using EKF linearization

1: for 1 ≤ i ≤ n do

2: Set x̂ik−1 = ξik−1 and P̂i
k−1 = 0

3: Set x̂ik, P̂i
k, Hi

k and ĥik using (29)–(31)

4: Set (αik,0, βik,0, Γik,0) using (32)

5: for 1 ≤ s ≤ l do

6: Set x̂ik+s, P̂i
k+s, Ci

k+s−1, ĉik+s−1, Hi
k+s, ĥ

i
k+s using (29)–(31)

7: Set (αik,s, β
i
k,s, Γik,s) using (33)–(35)

8: end for

9: end for

10: Return (αik,l, β
i
k,l,Γ

i
k,l)

n
i=1

Algorithm 6. Twisting function parameters for k ≥ 1 using local EKF linearization

and then relinearizing w.r.t. x̂k+s:

Hk+s =

[
∂

∂x
hk+s(x)

]
x=x̂k+s

, (31a)

ĥk+s = hk+s(x̂k+s)−Hk+sx̂k+s. (31b)

For k = 0, the EKF algorithm is initialized using x̂−0 = ν0 and P̂−0 = P0 and the recursion is started from the

update step (30).

The parameters αk,l, βk,l and Γk,l in (24) can be then computed recursively using the following equations. The

parameters are initialized with

αk,0 =
exp{− 1

2 (yk − ĥk)TR−1k (yk − ĥk)}
|2πRk|1/2

, (32a)

βk,0 = HT
kR−1k (yk − ĥk), (32b)

Γk,0 = HT
kR−1k Hk. (32c)
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Recursive updates for 1 ≤ s ≤ l are given by

αk,s = αk,s−1
exp

{
− 1

2ε
T
k+sS

−1
k+sεk+s

}
|Sk+s|1/2

, (33a)

βk,s = βk,s−1 + DT
k+sH

T
k+sS

−1
k+sεk+s, (33b)

Γk,s = Γk,s−1 + DT
k+sH

T
k+sS

−1
k+sHk+sDk+s, (33c)

where

εk+s = yk+s − ĥk+s −Hk+svk+s, (34a)

Sk+s = Hk+sKk+sH
T
k+s + Rk+s, (34b)

Gk+s = Kk+sH
T
k+sS

−1
k+s, (34c)

and the variables Dk+s, Kk+s and vk+s are initialized with Dk+1 = Ck, Kk+1 = Qk and vk+1 = ĉk, and then

recursively computed for 2 ≤ s ≤ l using

Dk+s = (Ck+s−1 −Ck+s−1Gk+s−1Hk+s−1)Dk+s−1, (35a)

Kk+s = Ck+s−1 (Kk+s−1

−Gk+s−1Sk+s−1G
T
k+s−1

)
CT
k+s−1 + Qk+s−1, (35b)

vk+s = Ck+s−1 [vk+s−1 + Gk+s−1εk+s−1] + ĉk+s−1. (35c)

The computational complexity of Algorithms 5 and 6 are O(nl)). To reduce computational time, it is possible

to leave out the relinearization of the measurement function and set Hk+s = H−k+s and ĥk+s = hk+s(x̂
−
k+s) +

H−k+sx̂
−
k+s. We then have Sk+s = S−k+s and Gk+s = G−k+s, and we therefore do not need to evaluate (34b),

(34c) and (35b) when computing the parameters αk,l, βk,l and Γk,l. However, in our experiments, the increase in

performance when using relinearization was found to clearly outweigh the increase in computational time.

B. Twisting function using linearization around the mode

The local linearization approximation requires running the EKF algorithm separately for each particle to obtain

the corresponding twisting function parameters. This is computationally heavy and can make the local linearization

approach too slow in practice. Computation time can be significantly reduced if we can make some assumptions

about the form of p(yk:k+l |xk).

The simplest case is when p(yk:k+l |xk) can be assumed to be roughly symmetric and unimodal. A global

approximation can be then obtained by computing the twisting function parameters using EKF linearization around

the mode. This method has computational complexity of O(l) and is summarized in Algorithm 7.

In practice, an approximation to the location of the mode can be obtained by using a Gaussian smoother initialized

from some distribution over xk set for example as some function of the particles (ξik−1)ni=1, to approximate the

mean of p(xk | yk:k+l). We can then take the smoothed mean as an approximation for the mode. More accurate

approximation of the mode can be obtained by targeting log p(yk:k+l |xk) directly and using an iterative optimization

method.
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1: Set x̂k ≈ arg maxxk p(yk:k+l |xk) and Pk = 0

2: Set Hk and ĥk using (31)

3: Set (αk,0, βk,0, Γk,0) using (32)

4: for 1 ≤ s ≤ l do

5: Set x̂k+s, Pk+s, Ck+s−1, ĉk+s−1, Hk+s and ĥk+s using (29)–(31)

6: Set (αk,s, βk,s, Γk,s) using (33)–(35)

7: end for

8: Set αik,l = αk,l, βik,l = βk,l and Γik,l = Γk,l for all 1 ≤ i ≤ n

9: Return (αik,l, β
i
k,l,Γ

i
k,l)

n
i=1

Algorithm 7. Twisting function parameters using EKF linearization around the mode of p(yk:k+l |xk)

For multimodal p(yk:k+l |xk), the linearization could be done separately for all the modes and then combined

into a mixture of exponential terms of the form in (24) (see [23] where a similar approach is used to approximate

multimodal likelihoods in Gaussian mixture filters).

C. Complexity of twisted particle filters using linearization

First consider Algorithm 4 in the case that Algorithms 5 and 6 are used at lines 1 and 13 respectively. Algorithms

5 and 6 have computational complexity O(nl) and the full Algorithm 4 then scales as O(tnl).

Consider next using Algorithm 7 at lines 1 and 13 in Algorithm 4. Algorithm 7 has computational complexity

O(l) and the overall complexity of Algorithm 4 then scales as O(t(n+ l)).

VI. APPLICATIONS AND NUMERICAL RESULTS

We provide here numerical examples to demonstrate the use of twisted particle filter and compare its performance

against a particle filter in likelihood estimation and parameter inference using particle MCMC.

We consider the following particle filters:

• BSPF: bootstrap particle filter, i.e. qk = fk

• EKFPF: particle filter in which qk is obtained by a standard EKF local-linearization of the importance

distribution minimizing the conditional expectation of the importance weights – see [13] for details.

• twisted-BSPF-local: twisted version of BSPF using the EKF local linearization for the twisting function.

• twisted-EKFPF-local: twisted version of EKFPF using the EKF local linearization for the twisting function.

• twisted-BSPF-mode: computationally lighter alternative for the twisted-BSPF-local, where we use EKF lin-

earization around an approximation for the mode of p(yk:k+l |xk). For our numerical example, the approxi-

mation for the mode of p(yk:k+l |xk) is obtained using an extended Rauch-Tung-Striebel (RTS) smoother [3],

initialized from a Gaussian distribution over xk, with mean and covariance given by the empirical mean and

covariance of {ck−1(ξik−1)}ni=1.
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We consider all the above with multinomial resampling, and also some of them with instead systematic resampling,

the latter being indicated below by a suffix ‘sys’.

The performance of the particle filters in likelihood estimation is measured by computing

Var(logZt) =
1

τ

τ∑
j=1

(logZjt − log Z̄t)
2, (36)

where τ is the number of samples and Z̄t is the sample mean of {Zjt }τj=1. Our interest in this quantity is that

the variability of Zt affects mixing when the particle filter is used within PMCMC. Generally speaking, higher

variability degrades mixing. Probability computations are done with logarithms to avoid numerical problems.

The quality of the chain {θj}τj=1 generated by the PMCMC algorithm can be assessed through the sample

autocorrelation. Typically θ is a vector of parameters, say of length p, and the autocorrelation is computed for each

1-dimensional component θi, 1 ≤ i ≤ p, as

aci(l) =
1

aci(0)

1

τ − 1

τ−l∑
j=1

(θji − θ̄i)(θ
j+l
i − θ̄i), (37)

where l is the lag, τ is the number of samples in the chain, and θ̄i is the sample mean of {θji }τj=1. Since correlations

in the MCMC chain contribute to the variance of the parameter estimate, we would like to see the autocorrelation

approach zero rapidly for a good quality MCMC chain.

The autocorrelation can be used to compute a single summary number for the quality of the MCMC chain, called

the effective sample size [24], and given by

τeff =
τ

1 + 2
∑∞
l=1 ac(l)

. (38)

The effective sample size gives an approximation for the equivalent number of independent samples contained in

the MCMC chain.

All the particle filters we tested were implemented in MATLAB (R2014a). Computations were performed using

a MacBook Pro with 3 GHz Intel i7 and 8 Gb of memory.

A. Positioning using range and bearing measurements

The first example we consider is a target tracking problem with nonlinear measurements, where the goal is to

estimate the trajectory of a moving object e.g. a vehicle or a person using range and bearing measurements from

a single measurement station. This is a prototypical problem in the literature on particle filters for target tracking,

see e.g., [3], [4].

The state X = (R, V ) consists of position R = (R1, R2) ∈ R2 and velocity V = (V1, V2) ∈ R2. The dynamical

model, formed by discretizing the constant velocity continuous-time stochastic model, is linear and given by

Xk+1 =

 I I∆t

0 I

Xk + ωk, (39)

where ωk is zero-mean Gaussian white noise with covariance

Q = q2

 ∆t3/3I ∆t2/2I

∆t2/2I ∆tI

 (40)
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Fig. 1. Example A: Variance of logZt versus the parameter l for twisted-BSPF-mode-sys with different number of particles. Results are

averaged over 10 datasets and 30 simulations for each dataset.

and ∆t is the time step between states. The initial state is taken to be Gaussian with mean ν0 = [100, 100, 0, 0]T

and covariance chosen to reflect a relatively large uncertainty in the initial position,

P0 =


102 0 0 0

0 102 0 0

0 0 10−3 0

0 0 0 10−3

 .

The measurements are the range and bearing measured from a stationary measurement station located at coordi-

nates (0, 0). The measurements are modeled by

Yk = h(Xk) + ζk (41)

where

h(r, v) =

 ‖r‖

arctan(r2/r1)

 , (42)

and ζk is zero-mean Gaussian white noise, independent of ωk, with covariance

R =

 σ2
1 0

0 σ2
2

 .
The unknown parameters are the process noise variance parameter q2 and the measurement noise variances σ2

1

and σ2
2 . For the unknown parameters, we use independent inverse Gamma priors IG(a, b) with shape a and scale

b parameters set to a = b = 0.1 for measurement noises parameters, and to a = 1 and b = 0.01 for the process

noise q2.

To test the performance of the different methods, we generated 10 datasets each consisting of t = 200 measure-

ments. Fig. 1 shows the variance of logZt for the twisted-BSPF-mode-sys with different values of the twisting

function parameter l. It can be seen that increasing the value over l = 50 does not give significant reduction in the

variance. In the subsequent tests we fix l = 50.

Fig. 2 shows the variance of logZt for the different methods as a function of the number of particles and

computation time. The twisted particle filters clearly outperform the non-twisted particle filters when looking at the

logZt variance as a function of the number of particles. However, the local linearization based twisted particle filters
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Fig. 2. Example A: Variance of logZt versus the number of particles n (left) and time (right) for different particle filters. Parameters are

fixed to the ground truth values. Results are averaged over 10 datasets and 30 simulations for each dataset.

have a high computation time in this example. Note also that since the EKF approximations for the importance

distribution in EKFPF can be computed as a part of the local linearization for the twisting function, the computation

times for twisted-BSPF-local and twisted-EKFPF-local are about the same. The twisted-BSPF-mode algorithm,

based on linearizing around the mode of the twisting function, is computationally much lighter and gives the lowest

variance for the logZt in a given computation time. For both the twisted and non-twisted particle filters using

systematic resampling improves the results compared to the results using multinomial resampling.

We next analyze performance of the methods for generating samples using the Metropolis-Hastings PMCMC

sampler. Based on the results in Fig. 2 we chose the twisted-BSPF-mode-sys and BSPF-sys as the test methods.

We randomly chose one of the datasets as a test set and generated 20 000 samples using the PMMH sampler. An

initial test run using the BSPF-sys with n = 5000 particles was used to tune the proposal covariance, which was

then held constant for the subsequent test runs.

Fig. 3 shows the autocorrelation performance for the methods. The BSPF-sys with n = 1000 particles has

about the same computation time as twisted-BSPF-mode-sys with n = 250 particles and l = 50. The twisted-

BSPF-mode-sys has clearly better autocorrelation performance than the BSPF-sys with similar computation time.

The effective sample sizes and relative computation times are shown in Table I. The relative computation time is

obtained as the ratio of running time for each algorithm setting to that of twisted-BSPF-sys-mode with 50 particles.

Generating 20 000 samples with the twisted-BSPF-mode-sys with 50 particles took approximately 9 minutes. The

twisted-BSPF-mode-sys gives clearly larger effective sample sizes in less computational time than the BSPF-sys.

The convergence of the MCMC sequence is demonstrated in Fig. 4 using normalized histograms computed from

the MCMC chains. The better mixing of the MCMC chain computed using twisted-BSPF-mode-sys is especially

evident in the top row histograms computed using only a small number of samples.

A simple demonstration of the tracking performance using the estimated parameter values is shown in Table II.

We used an EKF algorithm with parameters fixed to mean values of the MCMC chains with 500 samples. The

consistency value gives the fraction of times the true position is inside the 95% confidence ellipsoid, averaged over

all the time steps. The 95% confidence ellipsoid at time k is given by

(µk − xtrue)
TΣ−1k (µk − xtrue) = F−1

χ2
2

(0.95),

where F−1
χ2
2

(0.95) is the value of the χ2 inverse cumulative distribution function with 2 degrees of freedom evaluated
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Fig. 3. Example A: Autocorrelation plots from a MCMC chain with 20 000 samples generated using PMMH with BSPF and twisted-BSPF-mode.

The autocorrelations are computed with burn in of 2500 samples excluded from the computations.

TABLE I

EXAMPLE A: THE AVERAGE EFFECTIVE SAMPLE SIZES AND RELATIVE COMPUTATION TIMES FOR THE DIFFERENT PARTICLE FILTERS.

Particle filter n avg. τeff rel. time

BSPF-sys 200 167.8 0.5

500 404.6 1.0

1000 540.6 1.7

2000 753.5 3.4

twisted-BSPF-mode-sys 50 793.8 1.0

100 890.0 1.2

250 969.7 1.5

500 1019.5 2.7

TABLE II

EXAMPLE A: TRACKING PERFORMANCE USING EKF

PMCMC method RMSE 95% cons.

BSPF-sys, n = 1000 13.2 0.92

twisted-BSPF-sys-mode, n = 200, l = 50 12.4 0.91

at 0.95.
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Fig. 4. Example A: Normalized histograms for parameter q2 computed from PMCMC chains using BSPF-sys with n = 1000 (left) and

twisted-BSPF-mode-sys with n = 200 and l = 50 (right). Number of PMCMC samples used are 500 (top row) and 2000 (bottom row). The

estimated true posterior (red line) is fitted to a separate PMCMC chain with 20 000 samples. The ground truth value of the parameter is shown

with a black line.

B. Positioning using RSS measurements

As a second example, we consider estimating the parameters of a received signal strength (RSS) measurement

model in an indoor positioning scenario using Bluetooth measurements. As the user moves inside the building,

the positioning device measures the attenuated signal from Bluetooth base stations situated at known locations.

Given a suitable model for the signal attenuation, the measurements give information about the distance between

the positioning device and the base stations. Combined with a motion model, we can then use the measurements

to track the user’s movements inside the building.

For this example, we use a simple two parameter empirical model for the signal attenuation [25]. The base

station specific parameters, together with any other unknown parameters (e.g. noise variances), are estimated using

a learning dataset. We consider a full Bayesian approach and use the PMCMC algorithm to draw samples from the

true parameter posterior distributions. The samples can then be used to compute point estimates or integrate out

the parameters in subsequent positioning phases.

We use a real data set collected in a building at the Tampere University of Technology. This data consists of

RSS measurements from 8 different base stations with a total of t = 54 RSS measurement vectors. The locations

of the base stations and the true route is shown in Fig. 5; the true route was obtained by having the user manually

indicate his location on a map at regular intervals. The number of elements in the RSS measurement vector at a

single time point ranges from 1 to 7, with an average number of about 5 elements per time point.

The dynamical model is the same as in the first example in Section VI-A. The initial state is taken to be Gaussian

with mean ν0 and covariance P0. For this example, we fix the position components of the initial mean to the true

location, and set the velocity components to zero. The initial covariance is the same as in the first example.
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Fig. 5. Example B: The indoor positioning scenario.

The measurements are modelled as

Yk = hk(Xk) + ζk,

where hk(x) is a vector with elements hi(x), i ∈ Ik, where Ik contains the indices of the base stations whose RSS

are measured at time k, ζk is a zero-mean Gaussian vector, independent of ωk, with covariance R = σ2I, and the

RSS measurement function is [25]

hi(r, v) = ρi − 10λi log10 ‖rBS,i − r‖, 1 ≤ i ≤ nBS,

where rBS,i are the locations of measurement stations, λi and ρi are the base station specific parameters, and nBS

is the number of base stations.

The measurement likelihood is strongly non-Gaussian and can be multimodal, depending on the geometry of the

base station locations. However, the term p(yk:k+l |xk) becomes concentrated on a single mode as the number of

measurements l increases (see Fig. 6). This allows us to reduce the computation time of the twisted particle filter

by using the linearization around the mode of p(yk:k+l |xk), described in Section V-B, when l is sufficiently large.

The unknown parameters are the transition noise variance parameter q2, the process noise variance σ2, and the

measurement model parameters λi and ρi, i = 1, . . . , nBS. Priors for the parameters are chosen as follows. For the

noise variance parameters, we use independent inverse Gamma priors IG(a, b) with shape a and scale b parameters

set to a = b = 0.1 for measurement noise σ2, and to a = 1 and b = 0.01 for the process noise q2. For the path-loss

exponents λi, we use independent gamma priors G(a, b), with shape parameter a = 3.8 and scale parameter b = 1.6.

For the parameters ρi we use independent Gaussian priors with zero mean and variance 702.

We first determine an initial approximation for the posterior mean by generating 10 000 samples using the PMMH

and BSPF with n = 5000 particles. For this relatively high dimensional problem, we found that it was necessary

to use a component-wise update, also called Metropolis-within-Gibbs, in the PMMH sampler. The parameters are

updated in nBS + 1 blocks of 2 variables, with the blocks consisting of (λi, ρi), for i = 1, . . . , nBS and (q2, σ2) for

the final block. For each block, we have an independent Gaussian random walk proposal, with covariance tuned

during the initial PMMH run and kept fixed in the subsequent test runs.
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Fig. 6. Example B: Illustration of the behaviour of p(yk:k+l |xk) as the number of measurements l increases. The values for l > 0 are

computed by running a particle filter separately for each point on a dense grid for the position rk . The velocity vk is kept fixed for this example

plot.

Fig. 7 shows the variance of logZt for the twisted-BSPF-local as a function of the parameter l, with the unknown

parameters fixed to the mean values from the initial test run. It can be seen that increasing l over 20 does not

generally improve the results and can lead to larger variance of the estimate. This is most likely caused by the

gradually increasing linearization errors in the computation of the twisting function using the EKF, meaning that

for large l we have a slightly poorer approximation of the optimal twisting function. For the following tests, we

use a fixed l = 10 for all the tested twisted particle filters.

Fig. 8 shows the variance of the different particle filters as a function of number of particles and computation

time. Parameters were first fixed to the posterior mean estimate from the initial test run and then to a value chosen

from the initial PMCMC chain, to test how the particle filters perform for parameter values away from the mean.

The results are similar as in the first example. All the tested twisted particle filters clearly outperform the

non-twisted particle filters when looking at the number of particles needed for a specific log-likelihood variance.

In a given computation time, the twisted-BSPF-mode-sys gives the lowest variance for logZt. Using systematic

resampling improves the results for both twisted and non-twisted particle filters.

We proceed by comparing two of the most promising particle filters, i.e. the BSPF and twisted-BSPF-mode, in

generating samples using the PMMH sampler. For each particle filter, we generated a total of 100 000 samples

using 10 independent chains of 10 000 samples. Fig. 9 shows the average autocorrelation plots over the 10 chains

for base station parameters λ1 and ρ1, and noise variances σ2 and q2. The BSPF-sys has clearly better performance

compared to the BSPF with the same number of particles, as was expected from the log-likelihood variance results.

However, BSPF-sys still needs a significantly larger number of particles and longer computation times (see Table

III) to reach the same autocorrelation performance as twisted-BSPF-mode.
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Fig. 7. Example B: Variance of logZt versus the parameter l for twisted-BSPF-local using multinomial resampling with different number of

particles. Results are computed from 100 simulations.
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Fig. 8. Example B: Variance of logZt versus the number of particles n (left) and time (right) for different particle filters. Parameters are

fixed to a posterior mean estimate (upper row) and to a random value chosen from test PMCMC chain (lower row). Results are computed from

500 simulations.

The average effective sample sizes over all the parameters and relative computation times are shown in Table

III. The relative computation time is obtained as the ratio of running time for each algorithm setting to the running

time of the twisted-BSPF-mode algorithm with 250 particles. Generating 10 000 samples with twisted-BSPF-mode

with 250 particles took approximately 33 minutes.

Results show that the two tested twisted particle filters give clearly the largest effective sample size with a given

number of particles and in a given computational time. For the twisted particle filters, the effect of using systematic

resampling is relatively small, with the systematic resampling giving slightly better results especially for a large

number of particles.

A simple demonstration of the tracking performance using the estimated parameter values is shown in Table IV.

We used an EKF algorithm with parameters fixed to mean values of the respective MCMC chains, computed from

10 000 MCMC samples. It should be noted that for our example, only a small amount of data was available, and

for this reason the offline parameter estimation and online tracking were computed using the same data set. In
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Fig. 9. Example B: Average autocorrelation plots from 10 MCMC chains generated using PMMH with BSPF and twisted-BSPF-mode. The

plots are for parameters λ1 (top left), ρ1 (top right), σ2 (bottom left) and q2 (bottom right). The autocorrelations are computed from chains

with 10 000 samples with burn in of 1000 samples excluded from the computations.

TABLE III

EXAMPLE B: THE AVERAGE EFFECTIVE SAMPLE SIZES AND RELATIVE COMPUTATION TIMES FOR THE DIFFERENT PARTICLE FILTERS.

Particle filter n avg. τeff rel. time

BSPF 1000 59.6 1.1

2000 117.0 2.1

5000 146.0 5.7

10000 171.5 11.8

BSPF-sys 1000 81.1 0.9

2000 124.1 1.7

5000 165.5 4.5

10000 191.8 9.6

twisted-BSPF-mode 250 111.0 1.0

500 141.5 1.3

1000 162.3 2.1

2000 189.0 3.5

twisted-BSPF-sys-mode 250 110.0 1.0

500 149.6 1.3

1000 168.9 2.0

2000 199.9 3.4

reality, one would use a separate, comprehensive data set for parameter estimation.
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TABLE IV

EXAMPLE B: TRACKING PERFORMANCE USING EKF

PMCMC method RMSE 95% cons.

BSPF-sys, n = 2000 4.6 0.09

twisted-BSPF-sys-mode, n = 500, l = 10 4.5 0.11

VII. CONCLUSION

Our numerical results indicate that twisted particle filters can give efficiency gains for marginal likelihood

approximation and parameter estimation via PMCMC. The performance gains shown in Tables I and III illustrate a

speed-up of about 3-5 times for the same average effective sample size, compared to standard methods. Of course,

the amount of speed-up is implementation dependent, and in our implementations we have not gone to great lengths

to optimize performance of the twisted particle filter, so larger gains may well be possible. On the other hand, the

efficiency of the twisted particle filter rests on the choice of the twisting functions ψk, and the ability to choose a

“good” ψk is of course problem dependent.

For our purposes, a sufficient choice for ψk was obtained by using an EKF based linearization of the non-linear

model functions. However, for problems where the EKF based methods fail to deliver a good approximation for

optimal ψk, the presented algorithms could be modified to use linearization based on other types of Gaussian filters

e.g. unscented Kalman filter or other sigma-point Gaussian filters described for example in [3].

Further research should be conducted to determine the best approach for approximating the optimal twisting

function in the case of multimodal p(yk:k+l |xk). A possible solution could be to use mixture approximations with

each component formed by linearizing the model functions around one of the modes.

There are also various other aspects of PMCMC methodology which could be developed around twisted particle

filters, for example by deriving a PMMH algorithm to sample from p(θ, x0:t|y0:t) rather than just p(θ|y0:t), and in

deriving particle Gibbs samplers, along the lines of those introduced in [11].

APPENDIX A

PROOF OF PROPOSITION 1

Define functions (ηk)tk=0 recursively as ηt(xt) := 1 and ηk−1(xk−1) :=
∫
X gk(yk |xk)fk(xk |xk−1)ηk(xk) dxk

for t ≥ k ≥ 1. For any 1 ≤ k ≤ t we have

E
[
Zk

∑n
i=1W

i
kηk(ξik)∑n

i=1W
i
k

∣∣Fk−1

]
= Zk−1E

[
1

n

n∑
i=1

∫
X
W i
kηk(ξik)qk(dξik |L

rik−1(Uk−1)

k−1 )
∣∣Fk−1

]

= Zk−1E

[
1

n

n∑
i=1

ηk−1(ξ
rik−1(Uk−1)

k−1 )
∣∣Fk−1

]

= Zk−1

∑n
i=1W

i
k−1ηk−1(ξik−1)∑n
i=1W

i
k−1

, (A.1)
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where the second equality follows by plugging in W i
k and the final equality by using Assumption 1. We now have

E[Zt] = E
[
Z0

∑n
i=1W

i
0η0(ξi0)∑n

i=1W
i
0

]
=

1

n

n∑
i=1

E
[
W i

0η0(ξi0)
]

= p(y0:t),

where the first equality follows by using (A.1) repeatedly and the final equality by plugging in W i
0 and taking the

expectation.

APPENDIX B

PROOF OF THEOREM 1

It was already established in Section IV that lines 1 to 5 in Algorithm 3 draw ξ0 from M̃0. We next show that

lines 11 to 17 in Algorithm 3 draw ξk and Uk−1 from M̃k. Plugging in Mk to (13b) we get

M̃k(dξk, duk−1 |Fk−1)

∝
n∑
s=1

U(duk−1)qk(dξsk |L
rsk−1(uk−1)

k−1 )ψk(L
rsk−1(uk−1)

k−1 , ξsk)

·
∏
i6=s

qk(dξik |L
rik−1(uk−1)

k−1 ). (B.1)

We recognize this as a mixture form. So to sample ξk and Uk−1, we first draw the mixture component Sk on

{1, . . . , n} with probabilities

S̃k(Sk = s) ∝
∫
[0,1]m

U(duk−1)

·
∫
Xn
qk(dxsk | L

rsk−1(uk−1)

k−1 ψk(Lr
s
k−1(uk−1)

k−1 , xsk)

·
∏
i 6=s

qk(dxik |L
rik−1(uk−1)

k−1 )

=

∫
[0,1]m

U(duk−1)

·
∫
X
qk(dxk | L

rsk−1(uk−1)

k−1 ψk(Lr
s
k−1(uk−1)

k−1 , xk),

which give the probabilities in (17) and line 11 in Algorithm 3. Next we proceed to draw Uk−1 conditional on

Sk = s. Given Sk = s, the distribution for Uk−1, denoted with Ũk−1(· | s), is given by

Ũk−1(duk−1 | s)

∝
∫
Xn
U(duk−1)ψk(L

rsk−1(uk−1)

k−1 , xk)qk(dxsk |L
rsk−1(uk−1)

k−1 )

·
∏
i 6=s

qk(xik |L
rik−1(uk−1)

k−1 )

= U(duk−1)

∫
X
ψk(L

rsk−1(uk−1)

k−1 , xk)qk(dxk |L
rsk−1(uk−1)

k−1 ).
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This gives (18) and line 12 in Algorithm 3. Finally, given Sk = s and Uk−1 = uk−1, the distribution for ξk is

proportional to

qk(dξsk |L
rsk−1(uk−1)

k−1 )ψk(L
rsk−1(uk−1)

k−1 , ξsk)

·
∏
i 6=s

qk(ξik |L
rik−1(uk−1)

k−1 ).

This gives q̃k in (16) and lines 13 to 17 in Algorithm 3 for sampling ξk.

We next show that the expression for Z̃k in Algorithm 3 can equivalently be written

Z̃k = Zk

k∏
s=0

φs, k ≥ 0, (B.2)

where for each 0 ≤ s ≤ k, φs is the Radon-Nikodym derivative dMs/dM̃s. The result Ẽ[Z̃k] = E[Zk] then

immediately follows from the properties of the Radon-Nikodym derivative. Then, using Proposition 1, we get (19).

To compute the Radon-Nikodym derivatives we need to find the normalizing factors in (13a)-(13b). For k = 0

the normalization factor is
∫
ψ0(x)q0(dx) and we get

φ0(ξ0) =
dM0(·)
dM̃0(·)

(ξ0) =

∫
X ψ0(x0)q0(dx0)
1
n

∑n
i=1 ψ0(ξi0)

. (B.3)

For k > 0, the normalization factor is given by∫
[0,1]m

∫
Xn

1

n

n∑
s=1

Mk(dξk, duk−1 |Fk−1)

· ψk(L
rsk−1(uk−1)

k−1 , ξsk)

=

∫
[0,1]m

U(duk−1)

· 1

n

n∑
s=1

∫
X
ψk(L

rsk−1(uk−1)

k−1 , xk)qk(dxk |L
rsk−1(uk−1)

k−1 )

= E

[
1

n

n∑
s=1

∫
X
ψk(L

rsk−1(Uk−1)

k−1 , xk)

·qk(dxk |L
rsk−1(Uk−1)

k−1 )
∣∣∣ Fk−1

]
=

∑n
i=1W

i
k−1

∫
X ψk(L i

k−1, xk)qk(dxk |L i
k−1)∑n

i=1W
i
k−1

=

∑n
i=1 W̃

i
k−1∑n

i=1W
i
k−1

where we used Assumption 1 and W̃ i
k−1 are given by (14). The Radon-Nikodym derivative for k > 0 is now found

to be

φk(Fk−1, ξk) =
dMk(· |Fk−1)

dM̃k(· |Fk−1)
(ξk)

=

∑n
i=1 W̃

i
k−1∑n

i=1W
i
k−1

1
1
n

∑n
i=1 ψk(L i

k)
. (B.4)
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Writing out the expression for Z̃k from Algorithm 3 and using the expression for Zk from Algorithm 2, we have

Z̃0 =

∑n
i=1W

i
0

∫
X ψ0(x0)q0(dx0)∑n

j=1 ψ0(ξj0)
= Z0

∫
X ψ0(x0)q0(dx0)
1
n

∑n
j=1 ψ0(ξj0)

, (B.5)

and for k > 0

Z̃k = Z̃0

∑n
i=1W

i
k∑n

i=1W
i
0

k∏
s=1

∑n
i=1 W̃

i
s−1∑n

i=1 ψs(L
i
s )

= Zk

∫
X ψ0(x0)q0(dx0)∑n

j=1 ψ0(ξj0)

k∏
s=1

∑n
i=1 W̃

i
s−1∑n

i=1W
i
s−1

1
1
n

∑n
i=1 ψs(L

i
s )
, (B.6)

and combining (B.5)-(B.6) with (B.3)-(B.4) we observe that (B.2) holds as claimed.

APPENDIX C

PROOF OF THEOREM 2

With this choice of twisting function, we have the following result for 0 ≤ k ≤ t− 1

W̃ i
k = W i

k

∫
X
ψk+1(L i

k , xk+1)qk+1(xk+1 |L i
k) dxk+1

= W i
k

∫
X
fk+1(xk+1 | ξik)p(yk+1:T |xk+1) dxk+1

= W i
k

∫
X
p(yk+1:T , xk+1 | ξik) dxk+1

= W i
k p(yk+1:t | ξik) = ψk(L i

k).

The final step follows by plugging in W i
k and noting that gk(yk | ξik)p(yk+1:t | ξik) = p(yk:t | ξik). Furthermore, for

k = t, we have ψt(L i
t ) = W i

t .

Expanding and rearranging terms in the expression for Z̃t in Algorithm 3 we get

Z̃t =

∫
X
q0(dx0)ψ0(x0)

t−1∏
k=0

∑n
i=1W

i
k∑n

i=0 ψk(L i
k)

∑n
i=1 W̃

i
k∑n

i=1W
i
k

·
∑n
i=1Wt∑n

i=1 ψt(L
i
t )

=

∫
X
q0(dx0)ψ0(x0)

t−1∏
k=0

∑n
i=1 W̃

i
k∑n

i=1 ψk(L i
k)

∑n
i=1Wt∑n

i=1 ψt(L
i
t )

=

∫
X
µ0(dx0)p(y0:t |x0) = p(y0:t).
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[20] R. Douc and O. Cappé, “Comparison of resampling schemes for particle filtering,” in Proc. 4th Int. Symp. Image and Signal Process. and

Anal. (ISPA 2005). IEEE, Sep. 2005, pp. 64–69.

[21] K. B. Athreya, “Change of measures for Markov chains and the LlogL theorem for branching processes,” Bernoulli, vol. 6, no. 2, pp.

323–338, 2000. [Online]. Available: http://projecteuclid.org/euclid.bj/1081788031
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