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ABSTRACT 

 
 

This paper summarizes the main results obtained by the Fuel Combustion Group in 

three applications: 1) Carbon based catalysts for SCR of NOx. Low cost catalyst able to 

work at lower temperatures, compared with the commercial catalysts have been 

prepared; 2) Pt and Pt-Ru catalysts for Direct Alcohol Fuel Cells.  New catalysts for 

methanol and ethanol electrochemical oxidation exhibiting current densities double that 

the commercial ones have been developed and 3) Carbon-supported catalysts for the 

electroreduction of CO2 based on Fe and Pd were synthesized and tested. Formic acid 

was obtained as the main product on all the Fe/C electrodes. 

 

1. Introduction 

 

Carbon materials have been used as catalysts since many years. Activated 

carbons have been considered over the last decades for their utilization in several 

processes involving heterogeneous catalysis, because they have suitable support 

properties as its inertness toward unwanted reactions, stability under regeneration and 

reaction conditions, adequate mechanical properties, modifiable surface area, porosity, 

and physical form, i.e., the possibility of being manufactured in granulates and 
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conglomerates of different size and shape to suit different chemical reactor 

configurations [1-4]. 

 

However, AC present two important limitations: Their narrow microporosity, 

which difficult the mass transport processes and the lack of electrical conductivity, 

which prevents their use as electrocatalyst. In order to overcome these limitations, 

during the last decade, new synthetic nanostructured carbon materials such as 

nanotubes, nanofibers, nanocoils, nanohorns and ordered mesoporous carbons have 

been developed as new catalyst supports which present several advantages versus 

activated carbon: They have a better pore structure, more uniform characteristics, 

reduced number of impurities and better electronic structure [4]. Thus, a wide field of 

applications has been deployed for these materials because they possess electrical and 

thermal conductivity, as well as a mechanical strength and lightness that conventional 

materials cannot match [2, 5]. 

 

The Fuel Conversion Research Group of ICB-CSIC has a long track record in 

the preparation and characterization of carbon materials [6-15]. In a first stage, AC 

obtained from low rank coals were tested as catalysts and catalyst supports in energy 

related reactions such as sulfur and nitrogen emissions reduction from coal combustion 

and gasification. It was shown that the textural properties and, in particular the surface 

chemistry of these materials, which is controlled by the presence of oxygen groups, 

were well suited to carry out such reactions.  

 

With the arrival on the scene of renewable energies, in particular renewable 

electricity, the interest on the conversion energy processes moved toward the 
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electrochemical reactions involved in electrochemical devices such as Fuel Cells and 

Solar Fuels harvesting by means of electrochemical reduction of CO2. Activated 

carbons are not adequate for these applications due to the lack of electrical conductivity 

and their narrow microporosity, so new carbon materials intended to overcome these 

limitations were synthesized: Carbon nanofibers (CNF), nanocoils (CNC) and xerogels 

(CXG), as well as ordered mesoporous carbon materials (OMC) and carbon blacks 

(CB), e.g., the commercial material Vulcan XC-72R, have been synthesized and used as 

catalytic support for different applications [6-39]. Carbon materials have been obtained 

using different methods. In the case of carbon nanofibers, they were synthesized by 

methane decomposition on a NiCuAl2O3 catalyst. This catalyst was prepared by co-

precipitation of the metal nitrates, followed by a calcination process at 450 ºC. Later, a 

methane flow is passed through a furnace containing the catalyst at 700 ºC for 10 h, 

transforming this molecule into molecular hydrogen and carbon deposited in nanofiber 

shape. On the other hand, carbon nanocoils were synthesized by the catalytic 

graphitization of a resorcinol-formaldehyde gel. In this procedure, formaldehyde and 

silica sol were dissolved in deionized water. After a nickel and cobalt salts mixture was 

added before the addition of resorcinol as organic precursor. This mixture was heat-

treated at 85 ºC for 3 h and dried at 108 ºC. Finally it was carbonized in a nitrogen 

atmosphere at 900 ºC for 3 h. Silica particles removal was made by a chemical 

treatment with a concentrated NaOH solution, followed by a treatment with 

concentrated HNO3. For the carbon xerogels synthesis, resorcinol, water, formaldehyde 

and sodium carbonate were mixed under stirring in ratios which promote the obtaining 

of highly porous xerogels. The mixture was putted into closed vials and cured for 24 h 

at room temperature. After the vials were heated in an oven at 50ºC for 24 h and dried at 

85ºC for 120 hours. Pyrolysis of the organic gels was performed at 800ºC for 3 hours 
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under N2 flow. Finally, ordered mesoporous carbons were obtained by incipient wetness 

impregnation method using a ordered mesoporous silica as template and a furan 

resin/acetone resin as carbon precursor. The silica was impregnated with the carbon 

precursor and after carbonized at 700°C for 2 h. Subsequently, the silica-carbon 

composite was washed with NaOH in ethanol to remove the silica. Further details can 

be found elsewhere [6-15]. From these works, carbons with different physicochemical 

properties have been obtained. Thus, CNF and CNC show a crystalline structure with 

well aligned graphene layers, while OMC exhibit a hexagonal ordered structure 

composed of amorphous carbon. In contrast, CXG are mainly composed of not 

crystalline carbon aggregates, which are characterized by the random aggregation of 

primary carbon spheres. All these materials present different textural properties, with 

the surface area increasing in the order CNF < CB < CNC < CXG < OMC, covering a 

wide interval of values from 70 m2g-1 for carbon nanofilaments, due to their lack of 

microporosity, to 1050 m2g-1 for OMC. This last material presents a very developed 

surface area which is associated to their porous structure based on periodic carbon 

cylinders, with uniform mesopores between them. 

 

Although the activated carbons and the mesoporous carbons above described 

present very different textural properties, their surface chemistry present many 

similarities because in all of them is controlled by the presence of oxygen groups. As a 

consequence, their acid-base and redox properties and therefore their performances as a 

catalyst can be studied with analogous physico-chemical criteria. 

 

In this summary of the keynote presented at the AWPAC 2014 (3rd International 

Symposium on air & water pollution abatement catalysis), the results obtained in three 
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different applications related to the topics of the conference are presented: 1) Carbon 

based catalysts for the selective catalytic reduction of NO, 2) Pt and Pt-Ru catalysts for 

direct alcohol fuel cells, and 3) Carbon-supported catalysts for CO2 electroreduction. 

 
 

 

2. Carbon based catalysts for the selective catalytic reduction of NO. 

 

Nitrogen oxides, NOx, have a huge impact in our environment. They generate 

acid rain, soil eutrophization and acidification, as well as water nitrification, and also 

they contribute to ozone formation in the lower layers of the atmosphere. They are 

generated in every combustion process making use of a fossil or N-containing fuel 

and/or, most importantly, when combustion takes place under air atmosphere at high 

temperatures (> 900ºC). Increasingly stricter environmental regulations concerning the 

emission of nitrogen oxides (NOx), have forced the development of more efficient 

technologies to reduce the emission of this pollutants from small and medium industrial 

facilities. Activated carbons have been used as catalysts in De-NOx after-treatment 

technologies. They can act as a NOx reductant itself [40, 41], as a catalyst or as a 

catalyst support, either in the presence or in absence of an external reducing agent.  

 

Selective catalytic reduction (SCR) is the nitrogen oxide reduction in the 

presence of a catalyst and a reducing agent. The use of carbon-based catalyst in this 

process has been studied in the last years, because they are able to bring down the 

optimal reaction temperature for achieving high De-NOx conversions, in comparison to 

TiO2-based catalytic systems. Several carbon materials have been impregnated with Cu 

[42, 43], Fe [42], Mn [44-46] and V compounds [20, 21, 47]. 
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Catalysts containing vanadium as active metal supported on activated carbons 

were extensively studied by Lázaro and co-workers, investigating as well the use of 

petroleum coke ashes as V-source [21]. The authors optimized [22] the features of the 

activated carbon support, modifying several parameters in the preparation process via 

steam activation of a low-rank coal. They observed that adequate surface area, porosity 

and oxygen surface groups (mainly basic groups, such as phenolic) were necessary 

because of their decisive role in Vanadium fixation on the carbon surface, even more 

when petroleum coke ashes were used as the active phase precursor. Figure 1 shows the 

NO reduction measured in selective catalytic reduction (SCR) reaction, in the presence 

of ammonia and O2 at 150ºC using several catalysts synthesised with different activated 

carbon supports and petroleum coke ashes (PCA) as V-source, corresponding to 3% wt 

V-load. The activity was increased for the catalyst supported on the carbon support with 

the highest amount of surface groups. The functionalization of supports using HNO3 

pre-treatments yielded higher NO conversions, reaching almost 90% in some cases [20]. 

 

The elucidation of the different steps in the mechanism of the SCR of NO over 

V-loaded activated carbons was studied by Gálvez and co-workers [23] using 

temperature programmed desorption (TPD), ammonia chemisorption, in-situ DRIFT 

spectrometry and transient response analysis. Ammonia adsorption on the catalyst 

surface was a key step in the overall reaction mechanism because it could be adsorbed 

in the metallic centres (V) and in the oxygen surface groups (most probably carboxylic 

acids). The presence of oxygen surface functionalities can be beneficial, as seen in this 

last example, or detrimental, as observed in the hindered adsorption of phenol on the 

surface of acidic activated carbons [48, 49]. 
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The following step of the study was the briquetting of the catalyst in order to 

obtain catalysts that present a lower pressure drop [21, 24-28]. They produced carbon 

briquettes from a low rank coal pyrolyzed at 800 ºC, blended with a commercial tar 

pitch and cold pressed at 125 MPa. The obtained cylindrical briquettes were then cured 

in air and pyrolyzed at 800 ºC. After that the briquettes were activated in the presence 

either of CO2 and H2O and functionalized using HNO3 and H2SO4. Vanadium as active 

phase was introduced by impregnation using different precursors, as V obtained from 

the ashes of a petroleum coke (PCA). Mechanical strength of the catalytic briquettes 

was evaluated by means of Impact Resistance Index (IRI) and Water Resistance Index 

(WRI), following the procedure described by Richards [50].  Activation process notably 

influenced the mechanical properties of the carbon briquettes. IRI increased after 

activation either with steam or CO2, with respect to the pyrolyzed briquette. The 

activation of the briquettes let a decrease in the mechanical strength, similar to that 

reported by Rubio et al. [51] and Amaya et al. [52]. WRI was mostly affected by the 

chemistry of the briquettes. According to the mechanism postulated by Ozaki et al. [53], 

carboxylic groups avoid the adsorption of water on the external surface of the briquette 

which retards the formation of cracks and their propagation. 

  

Figure 2 shows the activity of catalytic briquettes. The activity depends on the 

surface area and the amount of basic oxygen surface functionalities on its surface. An 

adequate development of porosity was necessary to avoid pore blockage, especially 

after the deposition of the active phase, favouring the diffusion of reactants and products 

out of the structure of the briquette. The presence of surface functionalities promoted 

support-active phase interaction resulting in enhanced catalytic activity [28]. 
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The next step was to prepare the catalyst as carbon-coated cordierite monoliths 

[29, 30] using furan resin and polyethylene glycol, which was carbonized and activated 

with CO2 at 800 ºC. They reported that resin yielded the carbon layer during pyrolysis, 

whereas polyethylene glycol helped in the creation of mesopores. On the other hand, 

activation with CO2 contributed to the formation of new micropores. Upon vanadium 

addition, by means of equilibrium adsorption using ammonium metavanadate as 

precursor, they observed that oxygen surface functionalities were decisive for an 

optimal distribution of the active phase. Up to 6% wt. vanadium loading, the catalysts 

showed activities comparable to similar SCR catalytic systems reported in the literature, 

with complete selectivity towards N2. Increasing vanadium content resulted in less 

uniform distributions of the active phase. By simulating the influence of the coating 

thickness on the geometric parameters and conversion, they identified and optimal 

coating thickness around 30 mm reaching a compromise between activity and pressure 

drop. The influence of oxidation pre-treatments on carbon-coated honeycomb monoliths 

was also studied by the same authors [31], as well as their catalytic behaviour in the 

SCR of NO in the presence of steam and SO2 (see figure 3) [32]. Using several 

characterization techniques, such as Fourier transform infrared spectroscopy, X-ray 

photoelectron spectroscopy and temperature programmed desorption, they concluded 

that pre-treating of the carbon-coated monoliths at 330ºC in the presence of 10% O2-Ar 

induces the formation of an optimal amount of surface groups resulting in the highest 

vanadium loading at high dispersion. Vanadium loading depends not only on the 

amount of oxygen-containing groups but also on the textural properties of the carbon. 

At temperatures higher than 200ºC the vanadia-loaded carbon-coated monoliths were 

able to maintain its activity in the SCR of NO under their presence of steam and SO2, 
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due to an auto-regenerating mechanism in which ammonium sulphate salts were 

instantaneously decomposed as long as they were formed and deposited on the catalyst 

surface. 

 

3. Pt and Pt-Ru catalysts for direct alcohol fuel cells. 

 

The use of renewable energy sources has captured the attention of scientists, in 

order to find solutions for �green� energy generation, avoiding the production of 

pollutants from the use of petroleum fuels. Polymer electrolyte membrane fuel cells are 

a technology able to take part of the renewable energy sources, because they convert 

chemical energy into electric power, by means of the oxidation of a continuously 

supplied fuel [54], clean-produced, noiseless and efficient electric energy [55] for 

mobile, stationary and portable applications. 

 

Direct methanol fuel cells (DMFC) are a subcategory of PEM fuel cells, which 

use methanol as fuel. Some of the advantages of methanol employment are its easy 

storage, higher energy in a small volume unit, less polluting reaction products and long 

operation times. Nevertheless, DMFC�s present two main technological disadvantages: 

(1) the passage of methanol through the membrane or crossover [56, 57], diminishing 

the cell potential due to its oxidation on the cathode and (2) the poisoning of the anode 

with carbon monoxide, which is strongly adsorbed on Pt surface [57-59], reducing the 

catalytic surface area and the cell performance. In this sense, the design of Pt-carbon 

based catalysts with novel properties is an interesting research subject due to the 

necessity of overcoming these troubles and also, to reduce the production costs of their 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

components. Recently, several investigations have been focused to the use of different 

Pt alloys with transition metals [60-63] and the use of novel carbon supports. 

 

Concerning carbon supports, it has been reported that the use of novel synthetic 

carbon materials with a more ordered structure and better surface and electrical 

properties enhances fuel cell performance. Some of these carbon materials are: graphite 

nanofibers [64-65], carbon nanotubes [66, 67], carbon microspheres [68], hard carbon 

spherules [69], carbon aerogels and xerogels [70, 71] and mesoporous carbons [72, 73]. 

Particularly, carbon nanofibers (CNFs) have become notorious for their suitable textural 

properties such as surface area, pore volume and high electrical conductivity. Carbon 

xerogels also can be used as carbon supports, taking into account their mesoporous and 

macroporous textures and large pore volume. These supports possess excellent 

characteristics, such as high porosity, high surface area, controllable pore size and 

different forms (monolith, thin film or powder), depending on the desired use [74]. On 

the other hand, ordered mesoporous carbon structures draw attention because of their 

applications in catalysis and energy storage. These carbons are synthesized by nano-

casting methods, using ordered silica templates [75]. 

 

Different carbon materials have been used as support for Pt and Pt-Ru catalysts, 

obtaining desirable anode and cathode materials for direct alcohol fuel cells. 

Optimization of carbon nanofibers, carbon xerogels and graphitized ordered 

mesoporous carbons has been made in order to determine the influence of the properties 

of carbon supports, which affect the fuel cell performance. 
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3.1 Pt and Pt-Ru catalysts supported on carbon nanofibers 

 

Properties of carbon supports (such as surface area, pore volume, electrical and thermal 

conductivity, corrosion resistance) strongly influence the properties of the catalysts 

(activity, transport of electrons, heat dissipation and stability in time) [5]. In the case of 

carbon nanofibers, these characteristics principally depend on the structure generated 

with graphite plane stacks [76], which can be modified by reaction temperature, gas 

composition and the catalyst employed during the carbon nanofibers growth [5, 33, 77-

79]. Sebastián et al [34] reported that an increase in the growth temperature of carbon 

nanofibers from 550 to 700 ºC induces a decrease in the catalytic activity of Pt 

nanoparticles supported on this carbon material towards the electrochemical oxidations 

of both CO and methanol in acid media (0.5 M H2SO4).  

 

Figure 4 [34] shows that the catalyst supported on the grown-up carbon 

nanofiber at the lowest temperature (550 ºC) displayed the highest electrochemical 

activity in comparison with those prepared at higher temperatures. In the case of the 

stripping of a CO monolayer adsorbed at 0.20 V vs RHE, two CO oxidation peaks were 

observed, the first close to 0.73 V and the second one near to 0.83 V; the second peak 

shifts to more positive potentials with the increase of the carbon nanofiber growth 

temperature; meanwhile, the Pt/C commercial catalyst developed a single CO oxidation 

peak occurring at 0.86 V. The catalyst supported on the nanofiber synthesized at 550 ºC 

has the biggest amount on surface groups [34], which promote the electronic 

transference by means of these groups and benefit the CO oxidation at lower potentials. 

This fact was also evident in the methanol electrochemical oxidation, which again 
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displayed the best behavior for the Pt catalysts supported on the carbon nanofiber 

prepared at 550 ºC. 

 

Pt-Ru alloys are recognized as good catalysts for carry out the electrochemical 

oxidation of low weight alcohols, because of the generation of OHads at low potentials, 

which are able to promote the oxidation of formed carbon monoxide as intermediate in 

the alcohol oxidation reaction [58]. Nanoparticles of this alloy have been supported on 

carbon nanofibers synthesized at different growth temperatures in order to determine 

their catalytic activity towards the oxidation of methanol and ethanol at room 

temperature, finding a relation between the carbon nanofiber crystallinity, the pore 

volumes and the electrocatalytic activity [8]. Figure 5 shows the cyclic voltammograms 

for the CO oxidation, when this molecule is adsorbed at 0.2 V vs RHE in acid media 

(0.5 M H2SO4); a single peak in the range 0.59 - 0.65 V was observed, and no double 

peaks or pre-peaks was seen, as in the case of Pt/CNF catalysts. The differences among 

the materials were explained in terms of the CO oxidation peak potential and their 

correlation with the graphitization degree of the support; again, the authors suggest that 

amount of graphitic planes affects the metal-support interaction, favoring the CO 

electro-oxidation at more negative potential values, although similarity of peak potential 

values was also attributed to the regular growth of the nanoparticles inside micelles, 

bearing in mind the catalysts were synthesized by a microemulsion method. On the 

other hand, it was found that methanol oxidation currents are enhanced with the increase 

of the graphitization degree of carbon nanofibers (see figure 6), a fact attributed to a 

major metal-support interaction; nevertheless, an excessive increase of graphicity, and 

thus, a decrease in the pore volume of the carbon support and oxygen functional groups, 

as that obtained at 700 ºC and 750 ºC during the carbon nanofibers synthesis process, 
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decreased the activities of the catalysts towards the ethanol electrochemical oxidation 

(figure 7); lower ethanol oxidation current densities than those for the methanol were 

observed, being this result coherent with both, the slower kinetics for the ethanol 

oxidation and the influence of the carbon nanofibers properties, bearing in mind the 

decrease in the pore volumes of the different graphitized carbon nanofibers, when the 

temperature is increased. This fact suggested that diffusion of ethanol through the 

carbon nanofiber structure controls the kinetic of ethanol oxidation, bearing in mind that 

in the materials with low pore volumes, as in the case of the high graphitized carbon 

nanofibers, the oxidation current densities were low and thus, the catalytic activity 

diminished. 

 

3.2 Pt and Pt-Ru catalysts supported on carbon xerogels 

 

Carbon xerogels are another type of carbon support intensively studied in the 

last few years, because of their interesting properties as high surface area, rich and 

interconnected mesopore structure and modifiable pore size distribution [80-82]. Alegre 

et al [15] prepared Pt catalysts supported on a carbon xerogel employing sodium 

borohydride (SBM), formic acid (FAM) and a microemulsion as synthesis methods, in 

order to study their activity towards the oxygen reduction reaction when they are 

employed as cathodes in a direct methanol fuel monocell operating at 60 ºC. These 

routes allow obtaining catalysts with different properties: FAM-reduced catalysts 

displayed the highest performance and activity in both, polarization and power density 

curves (figure 8a), whereas the comparison with the Pt catalyst supported on Vulcan 

carbon black and prepared using the same methodology also exhibited enhanced 

activity, as shown in figure 8b. These facts were explained from the obtaining of a low 
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crystallite size (3.6 nm) for the FAM-synthesized material in comparison with the 

values determined in the case of the catalysts prepared by the borohydride and 

microemulsion routes (4.2 nm and 3.9 nm, respectively). Moreover, Pt/CXG FAM 

presented a slightly major performance than that for the catalysts supported on the 

commercial Vulcan carbon black Pt/CB FAM, prepared by the same synthesis route, 

suggesting that the resistance of the catalysts supported on carbon xerogel is 

comparable with that of the carbon black, in spite of its lack of graphitic planes, which 

are present in the commercial carbon material. 

 

Alegre et al [35] synthesized Pt-Ru catalysts supported on carbon xerogels using 

different synthesis routes to evaluate the catalytic activity towards the CO and methanol 

electrochemical oxidation. The results for the first reaction appear in figure 9a and the 

higher tolerance towards the CO poisoning was detected for the PtRu/CXG-ME 

catalyst, which was prepared by the microemulsion route, generating the most negative 

CO oxidation peak potential. This tolerance decrease in the other materials following 

the next order: the formic acid reduced catalyst (PtRu/CXG-FAM), sodium borohydride 

(PtRu/CXG-SBM), and those synthesized by a new methodology, the sulfite complex 

catalysts PtRu/CXG-SUL and PtRu/CXG-SUL-TT400. This order was explained from 

the high surface Ru content observed for the catalyst synthesized by the microemulsion 

method, which also present a high alloy degree with Pt, according to the determined 

lattice parameter. Presence of agglomerates with high content of crystal defects in 

PtRu/CXG-FAM explained the obtaining of a negative CO-oxidation peak potential, 

whereas the low alloying degree and lower metallic Ru content in SBM catalyst could 

be the reasons for the more positive CO oxidation peak potential observed in this 

material. The catalysts prepared by the sulfite complex method displayed the worst 
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activity and it was associated to the lowest particle sizes determined for these materials, 

which probably has a lack of crystal defects and planes, which are necessary to react. 

On the other hand, methanol electrochemical oxidation was carried out on these 

materials, and the results are presented in figure 9b; the reactivity order shows the best 

performance for the PtRu/CXG-FAM catalyst, possibly because of their largest crystal 

size, high segregation of Pt on the catalyst surface and better combination of Pt and Ru 

atoms. PtRu/CXG-SUL-TT400 also presented high content of Pt in the surface but low 

alloy degree with Ru, suggesting a key role for this parameter in the activity towards the 

methanol electrochemical oxidation. 

 

3.3 Pt and Pt-Ru catalysts supported on graphitized ordered mesoporous carbons 

 

Ordered mesoporous carbons (OMCs) have received great interest in the last few years 

because of their potential application in different fields such as energy storage, 

separation, adsorption and catalysis [83-86]. In order to be employed as electrocatalyst 

supports, these carbonaceous materials must have tunable textural properties and 

surface chemistry, besides the regular structure, high surface area, large pore volume, 

narrow pore size distribution and high electrical conductivity [87]. Calvillo et al [36] 

reported the graphitization CMK-3 ordered mesoporous carbon, in order to increase its 

conductivity and thus, the activity of catalysts towards the CO and methanol 

electrochemical oxidation. Graphitization of OMCs was achieved by a heat treatment of 

the carbon material at 1500 ºC. Figure 10 displayed the results for the CO stripping on 

the catalysts supported on the graphitized OMCs and the comparison with the signal 

observed for the commercial catalyst Pt/C E-TEK. In both cases, only one CO oxidation 

peak was observed, although the value for Pt/gCMK-3 was located at more negative 
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potential values than the observed for commercial catalysts (0.79 V compared with 

0.84, respectively), indicating an increase of the catalytic activity attributed to the 

enhancement of the electroactive species diffusion. Methanol and ethanol 

electrochemical oxidation on this catalyst and the comparison with the commercial 

catalyst is presented in figure 11. In both fuels, the current densities overcome that 

obtained for the commercial catalyst in a two-factor or even more. This reaction was 

studied in the catalysts supported on the carbon material without heat treatment [38], 

but lower current densities were detected, so the enhanced performance of the 

Pt/gCMK-3 catalyst could be attributed to the high electrical conductivity of the 

modified gCMK-3 carbon support, generated by the heat treatment. 

 

From the results presented in this part of the review, it could be seen that 

different carbon materials can be used as support for DMFC catalysts, even though 

there are several differences between them, whose play a role in the activity of the 

catalysts. These differences in morphology, structure, crystallinity of both carbon 

support and metal nanoparticles, and surface chemistry affect the electrochemical 

activity of the catalysts through some properties as electrochemical conductivity, 

electronic transferences, increase of active sites, enhancement of metal nanoparticle-

carbon support interaction and the diffusion of electroactive species. The effects of 

these differences are evidenced in two facts: first, low CO oxidation peak potentials, 

which represents high tolerance towards the poisoning and second, high methanol 

oxidation current densities and thus, high performances of the catalysts when they are 

used as anodes in direct methanol fuel cells. 
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4. Carbon-supported catalysts for CO2 electroreduction. 

 

CO2 emissions caused by the burning of carbon-rich fossil fuels for obtaining 

electricity and energy have been increasing since the industrial revolution, which may 

result in serious global warming problems. Consequently, the reduction of global CO2 

emissions is currently a critical issue and several CO2 mitigation strategies have been 

developed. Among them, the CO2 conversion to valuable products for energy source or 

chemical industry has attracted special attention. Chemical, electrochemical, 

thermochemical, photochemical, and biochemical methods have been proposed for CO2 

conversion. It is well known that the electrochemical route is a possibility for produce a 

variety of useful products (methane, monoxide carbon, acid formic, methanol, etc.) [88, 

89].  

 

The electrochemical reduction of CO2 has been studied for many years using 

various metallic electrodes since the product distribution strongly depends on the used 

material [88-91]. Efficient catalysts for CO2 reduction should provide both the 

activation of CO2 and the subsequent hydrogenation to reduced species. For this reason, 

metals with low hydrogen overpotentials, such as Pt and Pd, have been widely used 

since these materials adsorb easily hydrogen, which may interact with intermediates 

derived from CO2 activation [18, 92-95]. CO2 is reduced to strongly adsorbed CO on Pt, 

inhibiting further CO2 transformation [92]. However, adsorbates from CO2 reduction 

may behave as intermediates on Pd, obtaining CO and formic acid as main products [93, 

95]. On the other hand, Cu has attracted also special attention since hydrocarbons, 

aldehydes and alcohols can be obtained using this metal as catalyst, generating 

significant current densities [91]. The use of other group VIII element metals (such as 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Fe, Co, Ni) has been also studied due to their low cost [89, 90]. However, these 

electrodes show low electrocatalytic activity in CO2 electroreduction in aqueous 

solutions and room conditions, obtaining H2 (formed by water reduction) as major 

product.  

 

Mains problem of this process is the low solubility of CO2 in water at 

atmospheric pressure and room temperature. In order to address this limitation, high 

pressures [96-98], low temperatures [96, 99-103], and/or non-aqueous solvents 

(dimethyl-formamide, methanol, propylene carbonate, acetonitrile) [102-106] have been 

used. Another important alternative to enhance the rate of the CO2 reduction reaction is 

the use of gas diffusion electrodes (GDEs) or metal catalysts based on nanostructured 

carbon materials [17, 18, 107-110]. These porous electrodes present a large reaction 

area while provide low current density. A significant higher current density and a 

different product distribution has been found using supported catalysts in comparison 

than that obtained on the corresponding bulk electrode. Furthermore, carbon-based 

electrodes can favour the CO2 activation, decreasing the overpotential of the reaction. 

Surprisingly, isopropanol and acetone, together with a mixture of C3-C9 hydrocarbons 

were found in a Fe catalyst supported onto carbon nanotubes, while Pt/CNT showed 

less productivity towards these products, although with a slower deactivation [110]. 

However, there are not many studies about the CO2 electroreduction on GDEs or 

carbon-supported catalysts.  

 

The Fuel Conversion Research Group of ICB-CSIC has been working on the use 

of GDEs or catalysts supported onto carbon materials for the CO2 valorization by 

electrochemical route [17, 18]. Fe and Pd metals have been selected as the active phase 
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of the electrodes. On the other hand, novel nanostructured carbon materials, such as 

carbon nanofibers (CNF), carbon nanocoils (CNC) and ordered mesoporous carbon 

(OMC), as well as treated Vulcan XC-72R have been tested as support of the 

electrocatalysts. 

 

4.1 Fe catalysts supported on treated Vulcan XC-72R 

 

Fe electrodes present a low efficiency for CO2 electroreduction in aqueous 

solutions and room conditions, being H2 the main electrolysis product. However, the use 

of supported catalysts could favor the reaction. Our group has obtained promising 

results towards the CO2 reduction reaction using GDE based on iron-oxide catalysts 

supported on treated Vulcan XC-72R [17].  

 

Fe electrocatalysts with a metal loading of 20 wt. % were prepared by polyol 

method, using ethylene glycol as solvent and reducing agent. Prior to the metal 

deposition, Vulcan was subjected to different oxidation procedures with concentrated 

HNO3 (Nc) or a mixture HNO3�H2SO4 1:1 (v/v) (NS), in order to create functional 

groups. The treatments were performed at room (Ta) or boiling (Tb) temperatures, 

during 0.5 or 2 hours. GDEs were obtained by deposition of a layer of the 

corresponding catalyst ink onto a carbon cloth treated thermally [17]. The original 

material Vulcan and the modified carbon supports, as well as, the Fe-based catalysts 

were physico-chemically characterized by different analytic techniques (e.g., XRD, 

TEM, N2 adsorption and TPD) in order to study the textural and structural properties, 

the morphology and the surface chemistry of the carbonaceous materials, and the size 

and dispersion of metal particles. Additionally, the electrochemical properties of the 
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electrodes and the formation of gaseous and volatile products/intermediates of the 

reduction of CO2 were followed by in-situ differential electrochemical mass 

spectrometry (DEMS). DEMS experiments were carried out under room conditions in 

acid media, in an electrochemical cell directly coupled to the vacuum chamber of a 

mass spectrometer. The DEMS set-up was adapted in order to characterize GDEs [16]. 

In this way, the influence of the surface chemistry of carbon supports on the 

physicochemical and electrochemical properties of the electrodes for CO2 reduction was 

studied. Formic acid (m/z=45) was obtained as the main product on all the Fe/C 

electrodes, at potentials below -0.7 V vs. Ag/AgCl in 0.5 M H2SO4 at room temperature 

and atmospheric pressure (see Figure 12). The formation of other products containing 

longer hydrocarbon chains was not discarded. This result is really noticeable since bulk 

Fe electrodes produce mainly H2 under the same conditions [90]. In addition, formic 

acid presents several applications for agriculture, chemical, textile and pharmaceutical 

industries, as well as for food technology. On the other hand, it was found that the 

carbon support and their surface chemistry presented a strong influence towards the 

electrochemical reduction of CO2, modifying the activity and selectivity of the process. 

In fact, oxygenated groups enhanced the catalytic activity toward CO2 reduction (Fe/ 

Vulcan NcTb0.5 and Fe/Vulcan NSTa0.5) in comparison to the electrode supported on 

the virgin material (Fe/Vulcan). However, the GDE treated in nitric acid during 2 hours 

(Fe/Vulcan NcTb2) presented the lowest acid formic generation, which suggest that 

longer treatments with nitric acid destroy partially the structure of the support, 

decreasing the efficiency for CO2 reduction [17]. 
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4.2 Pd catalysts supported on nanostructured carbon materials 

 

Pd is a hydrogen-storing material which may favour the adsorption of species 

derived from CO2 reduction and their further transformation. However, the use of 

carbon-supported catalysts based on palladium has not been widely studied [111, 112]. 

Recently, our research group have studied the electrochemical activity of Pd catalysts 

supported on different nanostructured carbon materials, including CNF, CNC and 

OMC. Commercial carbon Vulcan XC-72R was also used for comparing results. 

Therefore, the influence of the carbon material on the physicochemical and 

electrochemical properties of the electrocatalysts was evaluated [18].  

 

Carbon materials were prepared using different methods: (i) methane 

decomposition for the synthesis of CNF, (ii) catalytic graphitization for CNC and (iii) 

nanocasting technique for OMC. Pd electrocatalysts were prepared by the impregnation-

reduction procedure with sodium borohydride. Appropriate amounts of metal precursor 

were employed to obtain a theoretical metal loading of 20 wt. % onto the different 

carbon materials [18]. The electrochemical properties of the catalysts were studied by 

cyclic voltammetry in NaHCO3 0.1 M. In addition, DEMS experiments were performed 

for registering simultaneously and �in-situ� the formation of molecular hydrogen, which 

is produced during the reduction of CO2.  

 

Cyclic voltammetry studies in 0.1 M NaHCO3 showed that CO2 was effectively 

reduced at Pd/C electrocatalysts. As can be seen in Fig. 13 for the Pd/Vulcan catalyst, a 

peak around -1.0 V appeared in the current voltammogram during the cathodic scan, 

while two anodic signals were developed at 0.10 and 0.35 V. In addition, the production 
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of H2 decreased by the presence of CO2. These results indicate that at -1.0 V, CO2 is 

reduced to other species (CO2)red, which are adsorbed at Pd/C surface and oxidized 

during the anodic excursion. According to the bibliography [93-95, 100] these species 

are mainly COad, although the presence of other adsorbates (such as COOHad, COHad or 

CHx) cannot be discarded. Similar results were obtained on the other electrocatalysts.  

 

In order to verify the existence of adsorbed species, CO and "reduced CO2" 

strippings were performed, by bubbling CO2 at -0.5 V and -1.0 V, respectively  [18]. 

Different oxidation charges were obtained from CO and "reduced CO2" stripping (

COredCO QQ /,2
) for all the samples, indicating that adsorbed species were not only COad, 

but also other adsorbates could be formed (COOHad, COHad) (Figure 14). ). In addition, 

different ratios ( COredCO QQ /,2
) were found for the electrocatalysts, probably due to a 

different product distribution. It could be explained from differences in the Pd-Had 

strength depending on the support, which might affect the catalytic activity towards CO2 

reduction. 

 

CONCLUSIONS 

 

Carbon has been used as catalysts support due to its excellent properties. Nowadays, 

new nanostructure materials have been developed such as nanotubes, nanofibers, 

nanocoils, nanohorns and ordered mesoporous carbons, because they have a better pore 

structure, more uniform characteristics, reduced number of impurities and better 

electronic structure for different applications than conventional supports. The Fuel 

Conversion Research Group of ICB-CSIC has a long track record in the preparation and 

characterization of carbon materials. In this paper, three applications of carbon catalysts 
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have been summarized. In the first one, the NO reduction over activated carbons in 

different shapes (powder, briquettes and monoliths); in the second, electrocatalysts for 

fuel cells has been synthetized over nanofibers, xerogels and ordered mesoporous 

carbons and finally, the electroreduction of CO2 using Fe and Pd deposited onto carbon 

materials. The main conclusion of this work is that the properties of carbon supports 

have an enormous influence on the performance of carbon catalysts for all aplications. 
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FIGURE CAPTIONS 

 

Figure 1. NO reduction at 150ºC in the presence of NH3 and O2 measured for a) a series 
of V-loaded activated carbons; and b) catalysts prepared using pre-oxidized carbon 
supports. 
 
Figure 2. NO removal as a function of temperature. 
 
Figure 3. NO conversion for V- loaded carbon monolith fresh or after submitted to pre-
oxidation treatment using H2SO4; in the presence of 500 ppm NO, 600 ppm NH3, 3% O2 
(when added). 
 
Figure 4. Activity of Pt nanoparticles supported on carbon nanofibers growth at 
different temperatures, in acid media. Left side: CO stripping adsorbed at 0.2 V vs RHE. 
Right side: methanol electrochemical oxidation. 
 
Figure 5. CO electrochemical oxidation on Pt-Ru catalysts supported on carbon 
nanofibers synthesized at different temperatures. Scan rate: 20 mV s-1. Support 
electrolyte: 0.5 M H2SO4. CO adsorption potential: 0.2 V vs. RHE. 
 
Figure 6. Methanol electrochemical oxidation on Pt-Ru catalysts supported on carbon 
nanofibers synthesized at different temperatures. Scan rate: 20 mV s-1. Support 
electrolyte: 0.5 M H2SO4. Methanol concentration: 2.0 M. 
 
Figure 7. Ethanol electrochemical oxidation on Pt-Ru catalysts supported on carbon 
nanofibers synthesized at different temperatures. Scan rate: 20 mV s-1. Support 
electrolyte: 0.5 M H2SO4. Ethanol concentration: 2.0 M. 
 
Figure 8. (a) Polarization curves (dashed lines) and power density curves (full lines) for 
Pt/CXG synthesized catalysts by different synthesis methods. (b) Comparison between 
Pt catalysts supported on carbon xerogel (red line) and carbon black (blue line); in this 
case, both catalysts were reduced by formic acid reduction (FAM method). 
 
Figure 9. (a) CO stripping on the Pt-Ru catalysts supported on carbon xerogels in acid 
medium and (b) methanol electrochemical oxidation on the same catalysts. Scan rate: 20 
mV s-1. Support electrolyte: 0.5 M H2SO4. Methanol concentration: 2.0 M. CO 
adsorption potential: 0.2 V vs. RHE. 
 
Figure 10. CO stripping on (a) Pt/gCMK-3 catalysts and (b) Pt/C E-TEK commercial 
catalyst. Scan rate: 20 mV s-1. Support electrolyte: 0.5 M H2SO4. CO adsorption 
potential: 0.2 V vs. RHE. 
 
Figure 11. Methanol electrochemical oxidation on (a) Pt/gCMK-3 and (b) Pt/C E-TEK, 
and ethanol electrochemical oxidation on (c) Pt/gCMK-3 and (d) Pt/C E-TEK. Scan 
rate: 20 mV s-1. Support electrolyte: 0.5 M H2SO4. Methanol and ethanol concentration: 
2.0 M. 
 
Figure 12. CVs (upper panel) and MSCV for formic acid (bottom panel, m/z =45) at 
Fe/C catalysts in 0.5 M H2SO4. v = 0.01 Vs-1. 
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Figure. 13. CVs (upper panel) and its corresponding MSCV for H2 (bottom panel, m/z 
=2) at Pd/Vulcan catalyst in 0.1 M NaHCO3. v = 0.01 Vs-1. Black curves: Ar saturated 
solution. Red curves: CO2 saturated solution.  
 
Figure. 14. Comparison of CO and �reduced CO2� stripping voltammograms for Pd/C 

catalysts in 0.1 M NaHCO3. v = 0.01 Vs-1. 
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