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Abstract: This paper develops an ad hoc distributed control algorithm for air traffic management. The 

method is based on model predictive control, in which aircraft use optimization to determine their own 

flight trajectories.  The coordination approach of Self-organized Time Division Multiple Access is used to 

ensure no two aircraft re-optimize simultaneously, thus ensuring collision avoidance. Unlike existing 

distributed predictive control, which requires a pre-organized optimizing sequence, this new approach 

requires no central coordinator.  
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1 INTRODUCTION 

Free flight has been proposed as a way to handle ever-

increasing air traffic demands and to provide economic 

benefits to airspace users. One of the primary concepts behind 

free flight is the transferring of responsibility for separation 

between aircraft, from air traffic controllers to pilots, which 

gives the aircraft freedom to select their path and speed in real 

time (Metzger and Parasuraman 2001). This can be treated as 

a distributed control problem where each aircraft optimizes its 

own objective while maintaining safe separation. Here, we 

have used Distributed Model Predictive Control (DMPC) ( 

Maestre and Negenborn 2014). The main goal of this paper is 

finding a distributed trajectory optimization strategy for 

network of aircraft during their flights over the airspace 

sectors.  

Several strategies for DMPC have been presented in the 

literature which could be categorized by the type of coupling 

or interactions between constituent subsystems (Scattolini, 

2009). For example, dynamically coupled systems (Dong et 

al., 2001; Dunbar, 2007a), coupling via the cost function 

(Borrelli and Keviczky 2006; Dunbar 2007b; Dunbar and 

Murray 2006) and subsystems sharing coupled constraints 

(Richards and How 2004a, 2004b; Kuwata et al., 2007; 

Keviczky et al., 2004 & 2006). This paper has focused on the 

air traffic problem in which systems are dynamically 

decoupled but have coupled constraints. One distributed 

control strategy for solving this kind of problems, is using the 

serial scheme where in each time step just one of the coupled 

agents optimizes to respect its neighbours’ published 

intensions by freezing their plan and exchanges the new plan 

to achieve constraint satisfaction. Serial scheme demands 

some agreements of sequence. Existing researches employ a 

predetermined sequence of optimizing across the agents which 

needs centralized coordinator to determine this optimization 

order (Richards and How 2004a, 2004b; Keviczky et al., 

2004a, 2004b; Kuwata, et al., 2006; Trodden, et al., 2006). 

Therefore, the predetermined sequence is not scalable to the 

large numbers of agents present in Air Traffic Management 

(ATM) problems.  

We propose “ad hoc” distributed MPC for ATM problem in 

which aircraft entering and leaving the area dynamically, 

implement a decentralized approach to sequencing. In the 

decentralized sequencing, planning collision can happen when 

two coupled agents determining their sequence of optimization 

in a group at the same time. This problem is analogous to 

multiple access to a shared communications channel, in which 

a collision occurs when two stations transmit at the same time. 

So, the ideas from communication are adopted here (Keiser, 

1989; Pahlavan and Levesque, 2005; Kumar et al., 2004). In 

particular, for channels using Time Division Multiple Access 

(TDMA), coordination involves allocation of time slots 

amongst transmitting agents, analogous to the allocation of 

slots for optimizing (Rom and Sidi 1989). Self-organizing 

TMDA (STDMA) which is common for wireless 

communications sharing a channel, performs this allocation in 

a distributed fashion without any central coordinator (Gaugel, 

et al. 2013) and is already used for aviation data link and Mode 

S (Gustavsson 1996).  
The paper is organized as follows. Section 2 begins by 

presenting the distributed MPC problem. Then, section 3 

reviews STDMA method. Section 4 proposes an ad hoc 

distributed MPC for aircraft conflict avoidance, exploiting 

ideas from network systems to determine the optimization time 

of each agent. Finally, preliminary results from numerical 

simulation using this new algorithm are presented in section 5.     

 

2 DISTRIBUTED MODEL PREDICTIVE CONTROL 
PROBLEM 

Consider the DMPC of a system containing Nv subsystems 

with decoupled dynamics and coupled constraints. The model 

predictive control problem for each subsystem is as follows: 
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where N is prediction horizon, �� is the set of current 
neighbours of subsystem p,	��,�

�
 is the measured states of 

subsystem p at step k and ��
�
 is the cost on the terminal state. 

The decision variables are the control inputs, ��,�
�
, and the 

terminal invariant set, ��
�	
,	that ensures the safety of the 

subsystem p beyond the planning horizon respect to its current 
neighbours.  

In sequential DMPC, subsystems who are coupled through 

their constraints, cannot renew their plan simultaneously. A 

specific sequence is applied for optimization.  

 

3 STDMA Algorithm 

STDMA is a decentralized MAC method in which the network 

members are responsible for sharing the communication 

channel. Like TDMA system, time is divided into frames. 

These frames are further divided into slots, which typically 

corresponds to one packet duration. Each network member 

(node) will randomly select a number of free slots within each 

frame to transmit in (Gaugel, et al. 2013, Bilstrup, et al. 2009). 

The procedure of slot assignment which is carried out by each 

node is as follows (as shown in figure 1): 

 
 Figure 1. Picking the slots in the STDMA algorithm 

 

- Each node determines its report rate, corresponding to how 

many slots that needs to be reserved in each frame. 

- It will listen to the channel activity during one frame length 

to find which slots are occupied and what the position is of 

the node using it.  

- Calculate a Nominal Increment (NI) by dividing the 

number of slots with the report rate. 

- Randomly select a Nominal Start Slot (NSS) drawn from 

the current slot up to NI. 

- Determine a Selection Interval (SI) of slots as 20% of NI 

and put this interval around the NSS. 

- Pick the Nominal Transmission Slot (NTS) randomly 

within the interval SI around NSS. If the randomly chosen 

NTS is occupied, then the closest free slot within SI is 

chosen. If all slots within the SI are occupied, the slot used 

by a node furthest away from oneself will be chosen. The 

selected slot is the first actual slot to be used for 

transmission. 

- Assign a Nominal Slot (NS) by adding NI to NSS. Then, 

the interval SI is placed around NS and the procedure of 

determining the next NTS will start over again. This 

procedure will be repeated as many times as decided by the 

report rate.  

4 AD HOC DISTRIBUTED CONTROL FOR AIR 

TRAFFIC MANAGEMENT 

In aeronautics, airspaces are the portion of the atmosphere 

controlled by a country above its territory. These airspaces are 

divided into smaller “sectors”. In this paper, each sector is 

assumed to have an associated coupled control problem, with 

aircraft entering and leaving as they progress along their paths.  

Each aircraft is assumed coupled to others in the same sector 

and decoupled from all others. Future work could also consider 

the abolition of sectors in favour of dynamic sets of 

neighbours, but this is beyond the scope of this paper. Each 

aircraft has its own objective function which is minimizing its 

flight time, along with coupled constraint which is avoiding its 

neighbours. 

Building on Space-Time Division Multiple Access scheme 

(Amouris 2001), one virtual frame with infinite time slots is 

assumed for each airspace sector. Agents should determine 

their optimization turns before entering into each sector by 

selecting desirable time slots correspond to the sector’s frame. 

Each agent can re-optimize its plan at its selected time slots. 

Agents in different sectors can re-plan at the same time. For 

example, agents f, g, c and e could re-optimize their trajectories 
at the same time; but, agents g and i cannot have simultaneous 
optimization (figure 3.a).  

The terminal invariant set guaranties the safety of each agent 

regards to its current neighbours. This invariant set is the 

straight-line extrapolation of the aircraft terminal state which 

does not intersect any current neighbours’ trajectories (Patel 

and Goulart 2011). However, the neighbours of each aircraft 

are changing dynamically. This could cause a problem 

especially when the agents change their sectors. For example, 

as it is depicted in figure 3.a agent h might collide with agent 
b just after entering into sector 2; as it had not considered agent 
b as its neighbour. So, each agent should consider the agents 
of its next sector as neighbours, to some distance before 

entering into that sector. For resolving this issue, a safety 

margin area is constructed around each airspace sector (figure 

3.b). Agents who are located in the safety margin area (green 

area; Mmargin= Mout\Minn) and are optimizing their path, should 

consider all agents in Mout of the sectors which are sharing this 

area, e.g. agent h should avoid agents g, i, j and a, b, c when it 
is optimizing its path at Mmargin (figure 3.c). Accordingly, 

agents g, i, j, a, b and c should freeze their plan when h is 
planning in Mmargin. 

The next issue is the assigning of suitable time slots to each 

agent. This task is done by each agent before entering into a 

new sector. Agents can start the time slot assignment process 

for the next sector as soon as leaving Minn and arriving to the 

margin area. In this position, the agent estimates its arrival 

time into the next sector, t0, exiting time from that, tf, arrival 

time into the next Minn, tm1, and the exiting time from that, tm2, 

based on its recent optimized trajectory. Depending on the 

length of the flight over the Minn area, it calculates the 

Optimization Rate (OR) which determines the number of 

required time slots for optimization in the next sector (eq. 8).  
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Here, k denotes the demanded optimization period defining 

how frequently the re-optimization should happen and ��� is 



 

 

     

 

floor function. Each agent needs at least one time slot in each 

sector to increase its chance of getting a time slot in upcoming 

sectors.  

 
(a) 
 

 
(b) 

 

 
(c) 

Figure 3. (a) Neighbour selection policy without margin   (b) Example of Minn, 

Mout , Sector area & margin area  (c) Neighbour selection policy after defining 
margin area 

 

Now, the agent begins the slot assignment process by 

monitoring the frame of the next sector. Then it attempts to 

find OR free time slots in the time interval [tm1 tm2] by running 

the modified STDMA algorithm (outlined algorithm 1).  

In succeeding planning for the next sector, the agent enters into 

the new sector and by arriving at Minn trajectory optimization 

at the appointed time slots will be started. When the agent 

finishes its optimization at the last slot, it is still in Minn area. 

So, it re-computes the tm2 (exit time from Minn) and tf (exit time 

from the current sector) by using fresh information. Then, it 

tries to find a free slot in the margin area at this time interval 

[tm2 tf]. Since margin area is common between more than one 

Mout, the agent looks for a slot which is free in the frame of all 

sectors who are sharing this margin area. One likely problem 

is planning collision which could happen when two or more 

non-neighbour agents attempt to plan for a same frame 

simultaneously.  

Algorithm 1. Modified STDMA algorithm in ad hoc distributed control 

 

Imagine two agents a and b who are in the different sectors 
(see figure 4.a). Since a and b are not neighbour, they had their 
last optimization at the same time. Now, they are monitoring 

the frames of their current and next sectors (i.e. which slots are 

occupied). Agent a should check the frames of first and second 
sector and agent b should inspect frames of first and third 
sector to find one free time slot in both frames at desired time 

interval [tm2 tf]. Since the first frame is common between these 

two agents, they will have a conflict while making a decision 

about this frame. Planning collision will happen when these 

agents want to announce their selected time slots to the other 

agents. As a result, none of them could gain a time slot. Both 

agents continue their current plan and after waiting a random 

time attempt to find a free slot again. If another collision 

occurs, the random waiting time is increased. This process 

which is similar to Carrier Sense Multiple Access with 

Collision Detection (CSMA/CD) protocol (Rom and Sidi 

1989) continues until a slot is assigned. However, the time 

interval, which is explored for finding a free slot depends on 

the agent’s position at the moment of decision. To obtain a free 

time slot at current time, t, different time intervals should be 
explored in the different positions corresponding to figure 4 

(see table 1). 

 

  
(a) (b) 

  
(c) (d) 

Figure 4. Different positions of the agents with communication collision 

1. Calculate the number of slots at your desired time interval [t0   t]: 
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2. Calculate the nominal increment:  �� = 	 ��
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3. Separate the slots between Nt0 and Nt (the slot which belongs to t0 

and t) into OR parts with length of NI. 
 

4. For i = 1:OR do  

i. Randomly select a Nominal Slot (NS) drawn from the ith 

slot section. 
ii. If the randomly chosen NS is occupied, then search for 

another free slot in this section (within [Nt0 + (i-1)×NI       
Nt0+i×NI-1])   

iii. If all slots within [Nt0 + (i-1)×NI     Nt0+i×NI-1] are 

occupied, skip this section and go to the next slot section. 

5. Update OR based on the number of slots that you have got in this 

process.  



 

 

     

 

Table 1. Time intervals which should be investigated in different positions 
for finding a free time slot 

 

 

If planning collisions prevent an aircraft from obtaining a slot, 

then it is possible for an aircraft to enter a sector without 

having obtained slots for coordinating with its new 

neighbours. In this circumstance, the aircraft will continue to 

try to get slots until it succeeds. This situation is dangerous, in 

the sense that it permits collisions, as one agent comes into a 

sector without adopting its trajectory respect to the new 

neighbours who are already flying in that sector. An outline of 

the ad hoc distributed control algorithm is shown in algorithm 

2.  

Algorithm 2. Ad Hoc Distributed Control Algorithm for One Agent 

  Based on the timing, if it is your optimization turn: 

1. Find your neighbours based on your current position 

i. If you are in Minn area, the neighbours are all the 

agents who are currently located in your Minn, 

ii. If you are in margin area, the neighbours are all agents 

located in Mout of the sectors which are sharing this 

margin area, 
 

2. Re-optimize your trajectory  

3. If it is your last optimization in this sector,  

i. Re-calculate your exit time from current Minn and 

current sector (tm2 , tf), 
ii. Monitor the frame of your current and next sector and 

find one slot at time interval [tm2 , tf] which is free in 

both frames, 

iii. Transmit your intention, 

iv. If communication collision happened, repeat the 

following process until getting a free slot: 

a. wait a random time while continuing your path,  

b. re-calculate your available time,  

c. find one free slot based on your current position 

and available time in appropriate frames, 

If it is your slot assignment turn: 

1. If you had a chance of slot assignment for your current 

sector,  

i. Calculate the entrance/exit time into/from Minn of your 

next sector, 

ii. Run STDMA algorithm for [tm1 tm2] of the next sector 

to find suitable free slots in next sector, 
 

2. If you have entered into your current sector without 

planning  

i. Calculate the available time before exiting the current 

Minn, 

ii. Implement STDMA algorithm for [t  tm2] current sector 

to find suitable free slots in your current sector. 

5 Simulation 

For simulation of ad hoc distributed control in context of air 

traffic management, a control area including nine airspace 

sectors has been considered. At starting time, t0, four agents 

are produced in the random start positions at four sides of the 

control area. Destinations of these agents are placed in the 

random locations on the opposite side of the start points. The 

method outlined in section 4 has been implemented in 

MATLAB. The program is simulating a network of vehicles 

for 1000 seconds. Every T seconds, four new agents which are 
produced in the random places on different sides of the control 

area, are added to the network. Each agent generates an initial 

trajectory for itself, before entering into the control area. It is 

unlikely that the initially generated trajectory be feasible. 

Therefore, it is used for specifying the agents’ first airspace 

sector in the control area. When agents have found their first 

sector, they attempt to get a time slot in the first margin area.  

Different population densities have been examined for 

performance analysis of the proposed method. Figure 5 

provides a snapshot of the control area during the programs 

run.  

 
Figure 5. A snapshot of the control area during program run 

 

A key criteria used for evaluation of method’s competency is 

the ratio of travelling time of each agent without having any 

time slot in the control area to its entire flight time. Figure 6 

compares the results for different populations. As it can be 

seen in this figure, when the network is more populated the 

competition for getting time slots in all sectors becomes 

tighter. Accordingly, more agents might travel without having 

a time slot for re-planning in a sector. For example, when four 

agents are added to the network every 10 seconds, just 35% of 

agents always have time slots whiles in the case of adding four 

agents per 50 seconds almost all agents are successful in 

getting time slot prior the entering the into a new sector.  Thus, 

limiting the incoming traffic flow is one option for enhancing 

the chance of agents in getting the time slot.  

Another theoretical suggestion for improving this performance 

metric is increasing the number of slots which could be 

achieved by decreasing the length of each time slot. So, in the 

same time interval, more slots will be available. Outcomes of 

enhancing the resources which are existing time slots have 

been demonstrated by figure 7. As it was expected, travelling 

 ( Fig 4.a) ( Fig 4.b) ( Fig 4.c) ( Fig 4.d) 

agent 

a 

Needs a free slot 
in frame 1 & 2 

at [tm2(2,a)  
tf(2,a)] 

Needs a free 
slot in frame 1 

& 2 at      [t    
tf(2,a)] 

Needs a free 
slot in frame 
1 & 2 at      [t  

tm1(1,a)] 

Needs a free 
slot in frame 

1 at                
[t   tf(1,a)] 

agent 

b 

Needs a free slot 
in frame 1 & 3 

at [tm2(3,b)  
tf(3,b)] 

Needs a free 
slot in frame 1 

& 3 at     [t    
tf(3,b)] 

 Needs a free 
slot in frame 
1 & 3     at [t  

tm1(1,b)] 

Needs a free 
slot in frame 

1 at                
[t   tf(1,b)] 



 

 

     

 

time without having slot has been reduced in all cases. 

However, the length of each time slot cannot be shorter than 

the required time for optimization and sharing the new plan 

with the other agents.   

Table 2 summarizes the overall travelling time without having 

slot per entire travelling time of the whole population in 

different densities and different time slot lengths.  

 

Figure 6. 

 

Figure 7. 
 

Table 2. Comparison of overall travelling time without having slot per entire 
travelling time of the whole population in different densities 

 
dt = 1 dt = 0.5 

4 new agents per 10 sec % 4.38 % 1.52 
4 new agents per 20 sec % 2.76 % 0.44 
4 new agents per 30 sec % 0.74 % 0.10 
4 new agents per 40 sec % 0.71 % 0.04 
4 new agents per 50 sec % 0.23 % 0.07 

6 CONCLUSION 

Ad hoc distributed control scheme for air traffic management 

has been proposed in this paper. Specifying the times of 

optimization are left to each aircraft. The origin of establishing 

ad hoc DMPC idea was from network systems. The suggested 

algorithm is based on Space-TDMA and Self-Organized 

TDMA. To resolve planning collision, where two agents plan 

at the same time, the specific procedure based on CSMA/CD 

is followed.  

Applying the proposed algorithm in some air traffic scenarios 

shows that it works better in low traffic densities. However, 

there is still some aircraft who might fly without an updated 

plan for a portion of their flights. These results show that in the 

most populated situation travelling time without having a slot 

for 30% of aircraft is more than 5% of their entire flight time. 

This situation could be improved by decreasing the network 

population density or/and decreasing length of time slots. As a 

result, about 90% of the agents always have time slot.  

Future work includes the finding an alternative safe solution in 

the case of travelling without slot. It would be of interest to 

explore adaptive ad hoc distributed control in which the tuning 

parameters are investigated by the agents to find the best time 

slots for acting in the network. Also, slot allocation process 

could be coupled with trajectory optimization problem to have 

more achievements by optimizing at the certain times.  
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