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Abstract

A novel robust adaptive control algorithm is proposed and implemented in
real-time on two degrees-of-freedom (DOF) of the humanoid Bristol-Elumotion-
Robotic-Torso II (BERT II) arm in joint-space. In addition to having a sig-
nificant robustness property for the tracking, the algorithm also features a
sliding-mode term based adaptive law that captures directly the parameter
estimation error. An auxiliary filtered regression vector and filtered com-
puted torque is introduced. This allows the definition of another auxiliary
matrix, a filtered regression matrix, which facilitates the introduction of a
sliding mode term into the adaptation law. Parameter error convergence to
zero can be guaranteed within finite-time with a Persistent-Excitation (PE)
condition or Sufficient Richness condition for the demand. The proposed
scheme also exhibits robustness both in the tracking and parameter estima-
tion errors to any bounded additive disturbance. This theoretical result is
then exemplified for the BERT II robot arm in simulation and for experi-
ments.
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1. Introduction

For several years, many researchers have been interested in the adaptive
control of rigid robot manipulators. Due to the fact that, robot manipulators
are inherently nonlinear, multi-input-multi-output (MIMO) with significant
couplings between its link members, the task of capturing this vital informa-
tion for control purposes can become challenging. This calls for the incor-
poration of adaptive methods whereby adaptive control is used to estimate
parameters of the manipulator model recursively and use the estimates in
the control scheme, e.g. [1, 2, 3, 4, 5]. Work in adaptive control of robot
manipulators began with controlling a linear perturbed model with adaptive
high gains [6, 7, 8, 9] followed by globally convergent adaptive control results
as summarised in [10].

A turning point in adaptive robotic control research took place in the
mid 1980s when linear parametrisation of the nonlinear robot dynamics was
explicitly introduced [2]. A repertoire of adaptive control schemes for robot
manipulators has been formulated of which three main classes of adaptive
control can be classified; direct adaptive control [11, 12, 13], indirect adaptive
control [14, 15] and composite adaptive control [2]. Work in [13] demonstrates
computed-torque based adaptive control and proves its global convergence.
What limits the practical applicability of such direct adaptive control is that
the approach requires joint acceleration measurements and an inverse of the
estimated inertia which is susceptible to noise. Moreover, reliance on the
inversion of the estimated inertia is computationally expensive. Such restric-
tive assumptions as outlined in [13] can be resolved by methods introduced
in [2, 16] and will be discussed briefly in our paper as part of the adaptive
algorithm formulation framework.

Work on an indirect model based adaptive control of a humanoid ma-
nipulator arm is demonstrated in [17]. Most of the indirect and composite
adaptive control approaches presented in [11, 12, 14] demonstrate that the
tracking and prediction/estimation error can be utilised to extract parameter
information. The objective is to guarantee convergence and performance, in
particular, the tracking control of a robotic arm. Previous restrictive assump-
tions were resolved. Their approaches, with the condition of persistent exci-
tation (PE) or under the assumption of a sufficiently rich demand, guarantee
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the convergence to zero of both the tracking error and prediction error by the
introduction of the bounded-gain-forgetting method and the cushioned-floor
method. However, only exponential convergence of tracking and parameter
error are theoretically proven in their proposed scheme [14, 2]. This moti-
vates us to investigate further and propose to use a novel adaptive algorithm
[18] that guarantees a finite-time convergence in particular for the parameter
error convergence to zero for a practical robotic arm control problem.

In this paper, inspired by the work in [19] and extending our previous
work in [18],[20] and [21], a novel robust adaptive algorithm is proposed for
control of a robotic manipulator. This controller utilises the parameter es-
timation error in the adaptive control scheme through the incorporation of
an auxiliary regression matrix and vector that reconstruct the parameters to
be estimated. A sliding-mode like adaptation term is introduced for finite-
time convergence of the estimated parameter to the true value. With the
addition of sliding-mode terms in the tracking (in constrast to [21]) and in
the parameter estimation algorithm, robustness is introduced both in the
tracking as well as in the parameter estimation performance. The introduc-
tion of a disturbance into the analysis also requires a different approach, in
contrast to [21], to the proof of stability to guarantee boundedness in partic-
ular for the auxiliary (filtered) regressor matrix. In contrast to [22] of mere
σ-modification, a special leakage term is incorporated in our work, that cap-
tures the parameter estimation error and aids robustness. Moreover, inspired
by [16], acceleration measurements are avoided in the regressor formulation
by the virtue of torque filtering through the use of strictly proper monic
stable filters. The use of torque filtering has several wide applications in
robotics such as impedance control [23] (generating a generic unified error
equation), parameter estimation [16] (to form a prediction error to be used
in LS estimator), fault detection [24] (to form a prediction error) and others.
However, the use of torque filtering in this paper is unique in a sense that
the formulation of the filtered regressor avoids acceleration information and
permits parameters to be estimated within finite time. As proven in [25], the
filtered regressors, i.e. the filtered computed torque and dynamic regressors
inherit the PE characteristics of the original signal. It can be also proven,
that the PE condition can be fulfilled by proper selection of the demand tra-
jectory signal that satisfies the PE condition or sufficient richness condition
(SR).

This paper is divided into four sections. The first section, which is the
problem formulation section, presents the dynamic model of the robot being
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investigated. The second section which is the Adaptive Control Algorithm
section discusses the main contribution of the paper, i.e. the formulation of
the novel robust adaptive control algorithm for a robotic system. The third
section discusses the experimental setup and results; it exemplifies the per-
formance of the proposed algorithm by careful simulation and experimental
setup. The last section concludes the findings.

2. Problem Formulation

The humanoid Bristol Elumotion Robotic Torso II ( Bristol Elumotion
Robotic Torso II is developed by Elumotion Ltd ) or BERT II robotic arm
is a highly nonlinear and coupled system. We assume the general structure
of the robot dynamics is given by:

M(q)q̈ + c(q, q̇) +G(q) + Td = τ (1)

where q = q(t), q̇ = q̇(t), q̈ = q̈(t) ∈ R
n are the robot arm joint position,

velocity and acceleration vectors respectively; n is the number of degrees of
freedom (DOF) of the robot, τ ∈ R

n, the input torque vector; M(q) ∈ R
n×n,

M(q) > 0, is the inertia matrix, a function of the n joint positions q. Td is
an n× 1 vector representing an additive bounded disturbance. The vector

c(q, q̇) = V (q, q̇)q̇ = (In ⊗ q̇T )Cv(q)q̇ ∈ R
n (2)

employs Cv(q) = [CT
1 (q), · · · , CT

n (q)]
T ∈ R

nn×n which represents the Cori-
olis/centripetal torque, viscous and nonlinear damping. G(q) ∈ R

n is the
torque vector due to gravity. Several essential properties for (1) facilitate the
adaptive control system design:

Property 1. Passive mapping from input τ to output q̇ implies that Ṁ(q)−
2V (q, q̇) is a skew-symmetrical matrix [26],[16]:

ξT
(

Ṁ(q)− 2V (q, q̇)
)

ξ = 0 (3)

Property 2. The left hand side of (1) can be linearly parameterised as such,

M(q)q̈ + c(q, q̇) + G(q) = φ(q, q̇, q̈)Θ (4)

where Θ ∈ R
l is the system parameter vector containing l parameters to

be estimated; φ(q, q̇, q̈) ∈ R
n×l is the known dynamic regression matrix, a

Lipschitz continuous function of (q, q̇, q̈) [1].
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Property 3. It is assumed that the demand qd is at least twice continuously
differentiable with time t and qd is sufficiently rich (SR) over a finite interval
[t, t+ T ] of the specific length T > 0 with respect to φ(qd, q̇d), i.e. there exist
at least l time instances ti, i = 1, 2, . . . so that for t1, t2, . . . , tl ∈ [t, t + T ]

Φ(qd(·)) = [(φ(qd(t1)))
T , (φ(qd(t2)))

T , · · · , (φ(qd(tl)))T ] (5)

is of rank l and there is a finite constant δ > 0 so that the following matrix
inequality holds [25], [27],

ΦT (qd(·))Φ(qd(·)) ≥ δI, δ > 0 (6)

Remark 1. Some further derivation implies from Property 3 that

∫ t+T

t

φT (qd(ν), q̇d(ν))φ(qd(ν), q̇d(ν))d(ν) > δ̃I (7)

for some δ̃ > 0. Note that this property (7) implies Persistent Excitation
(PE), once the tracking controller follows this trajectory. This is to be dis-
cussed later. ◦

The regression matrix φ is given in Property 2. It has the acceleration
as argument. Note that in our proposed adaptive control algorithm, the
regression matrix is to be reformulated, eradicating the need for the joint
acceleration unlike in [28]. This is inspired by [16] where similar approaches
are used to avoid acceleration measurements.

3. Adaptive Control Algorithm

Define the auxiliary command vector as,

u = q̇d − Λe, e = qd − q (8)

u̇ = q̈d − Λė, ė = q̇d − q̇ (9)

with e, ė ∈ R
n denoting the error in tracking the desired joint position qd(t)

and velocity q̇d(t) respectively. Λ = diag(λ1, λ2, . . . , λn) is a positive diagonal
matrix to be chosen in the design. A sliding-mode error can be written for
each joint in a form of,

ri = ėi + λiei, i = 1, · · · , n, r = [r1, . . . , rn]
T (10)
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where λi is the sliding mode gain for each respective joint that defines the
sliding manifold ri. For control, the following input is proposed,

τ = M̂(q)u̇+ V̂ (q, q̇)u+ Ĝ(q) +Kr1

r

‖r‖ +Kr2r (11)

where Kr1 and Kr2 are scalar tracking gains. The matrices M̂(q) and V̂ (q, q̇)
are the estimates of the mass matrixM(q) and the Coriolis, centrifugal matrix
V (q, q̇). The computed torque in (1) would yield,

M(q)q̈+V (q, q̇)q̇+G(q)+Td = M̂(q)u̇+V̂ (q, q̇)u+Ĝ(q)+Kr1

r

‖r‖+Kr2r (12)

Subtracting M(q)u̇+ V (q, q̇)u+G(q) on both sides of equation (12) implies,

M̃(q)u̇+Ṽ (q, q̇)u+G̃(q)−Kr1

r

‖r‖−Kr2r = M(q)(−q̈+u̇)+V (q, q̇)(−q̇+u)−Td

(13)
where M̃(q) = M(q)− M̂(q), Ṽ (q, q̇) = V (q, q̇)− V̂ (q, q̇) and G̃(q) = G(q)−
Ĝ(q). Therefore, the closed-loop computed torque equation is:

M̃(q)u̇+ Ṽ (q, q̇)u+ G̃(q) + Td = M(q)ṙ + V (q, q̇)r +Kr1
r

‖r‖ +Kr2r (14)

φ(q, q̇, u, u̇)Θ̃ + Td = M(q)ṙ + V (q, q̇)r +Kr1
r

‖r‖ +Kr2r (15)

where Td = 0 and φ(q, q̇, u, u̇) ∈ R
n×l is the regressor from (2) but now with

arguments u and u̇ instead of q̈. Thus, the regressor forms a function of joint
position q, velocity q̇, and the command vectors u, u̇. Θ̃ = Θ − Θ̂ ∈ R

l is
the parameter estimation error. The next section provides some preliminary
results for the adaptation algorithm in particular the regressor φ(q, q̇, q̈) is
investigated.

3.1. Auxiliary Torque Filters

In this section, an auxiliary filtered regression matrix and suitable fil-
tered vectors for the adaptation algorithm will be formulated based on the
torque measurement. By having the torque measurement filtered, accelera-
tion measurements for the regressor φ(q, q̇, q̈) can be avoided. Indeed, the
regressor φ(q, q̇, q̈) in (4) uses joint accelerations which generally is not prac-
tical. Hence, the equation (1) can be written as,

τ = ḟ + h (16)
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The components of torque can be split and defined as,

ḟ =
d

dt
[M(q)q̇] (17)

h = −Ṁ(q)q̇ + Vm(q, q̇)q̇ +G(q) = h1 + h2 (18)

where h1 = −Ṁ (q)q̇ and h2 = Vm(q, q̇)q̇ + G(q). By virtue of the linearity-
in-the-parameter assumption, the split terms can be parameterised as such,

f = M(q)q̇ = ϕm1(q, q̇)Θ (19)

h1 = −Ṁ(q)q̇ = ϕm2(q, q̇)Θ (20)

h2 = Vm(q, q̇)q̇ +G(q) = ϕvg(q, q̇)Θ (21)

Filtering the terms ϕm1, ϕm2 and ϕvg above provides:

κϕ̇m1f (q, q̇) + ϕm1f (q, q̇) = ϕm1(q, q̇), φm1f |t=0 = 0 (22)

κϕ̇m2f (q, q̇) + ϕm2f (q, q̇) = ϕm2(q, q̇), φm2f |t=0 = 0 (23)

κϕ̇vgf (q, q̇) + ϕvgf (q, q̇) = ϕvg(q, q̇), φvgf |t=0 = 0 (24)

To aid the analysis in the case of a disturbance, the introduced additive
bounded disturbance Td is also assumed to be filtered,

κṪdf + Tdf = Td, Tdf |t=0 = 0 (25)

Eventually, the torque will be then filtered,

κτ̇f + τf = τ, τf |t=0 = 0 (26)

to yield the filtered computed torque equation of the form,

τf = F ∗ τ =
1

κ
e−t/κ ∗ [ϕ̇m1(q, q̇) + ϕm2(q, q̇) + ϕvg(q, q̇)] Θ (27)

+
1

κ
e−t/κ ∗ Td

where ∗ is the convolution operator F is the impulse response of a linear
stable, strictly proper filter with κ denoting the time constant of the filter
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for {ϕ̇m1(·), ϕm2(·), ϕvg(·)} ∈ R
n×l,Θ ∈ R

l. The filtered computed-torque
equation can be rewritten as,

[

ϕm1(q, q̇)− ϕm1f (q, q̇)

κ
+ ϕm2f (q, q̇) + ϕvgf (q, q̇)

]

Θ+ Tdf = τf (28)

φf(q, q̇)Θ + Tdf = τf

where φf (q, q̇) ∈ R
n×l,Θ ∈ R

l. By comparison to (1), the filtered system
equation of (28) clearly avoids the acceleration measurements which are some-
times practically unavailable. Note that φ(q, q̇, q̈) is the unfiltered regressor
for φf(q, q̇).

3.2. Auxiliary Integrated Regressors

The filtered torque formulation is now considered for an auxiliary regres-
sor used for the adaptation algorithm. Define a filtered regressor matrixW (t)
and vector N(t) as,

Ẇ (t) = −kFFW (t) + kFFφ
T
f (q, q̇)φf(q, q̇), W (0) = kI, (29)

Ṅ(t) = −kFFN(t) + kFFφ
T
f (q, q̇)τf , N(0) = 0 (30)

where, kFF ∈ R
+, can be interpreted as a forgetting factor. The initial

condition of N(t) is N(0) = 0 whereas the initial condition of W (t), i.e.
W (0) is set to kI where k > 0 is some constant and I ∈ R

l×l is the identity
matrix. Practically, k should be chosen small. Note that (30) is equivalent
to:

Ṅ(t) = −kFFN(t) + kFFφ
T
f (q, q̇) [φf (q, q̇)Θ + Tdf ] , (31)

Consequently, we can find the solution to (29) and (30),

W (t) =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)φf(r)dr + e−kFF tkI

N(t) =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)τfdr

(32)

The solution to the auxiliary regressor vector N(t) in (32) can be also ex-
pressed as,

N(t) = W (t)Θ + TdN − e−kFF tkΘ, (33)

where TdN =
∫ t

0
e−kFF (t−r)kFFφ

T
f (r)Tdf (r)dr.

Referring to the solution of Ẇ (t) in (32), it is apparent that W (t) ≥
kIe−kFF t for k > 0. This bound will be exploited in the Lyapunov analysis
section later.
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3.3. Adaptive Control Law

The control law of (11), can be rewritten as,

τ = φ(q, q̇, u, u̇)Θ̂ +Kr1

r

‖r‖ +Kr2r (34)

where Θ̂ is the estimate of the parameter vector Θ. An adaptive update law
˙̂
Θ is proposed, for Θ̂:

˙̂
Θ = ΓφT (q, q̇, u, u̇)r − ΓR. (35)

In (35), Γ is a positive definite and diagonal design matrix:

Γ = diag(γ1, · · · , γl). (36)

The term R(t) contains a sliding mode type term to ensure fast parameter
convergence whereby parameter estimates are constructed from the auxiliary
regressor matrix W (t) and vector N(t),

R(t) = ω1
W (t)Θ̂−N(t)

∥

∥

∥
W (t)Θ̂−N(t)

∥

∥

∥

+ ω2(W (t)Θ̂−N(t)) (37)

where ω1 and ω2 are positive scalars which are to be chosen large enough to
achieve robust stability. It will be proven that the parameter error vector,
Θ̃, converges to zero in finite time in case of Td = 0. The following theorem
summarizes the main result:

Theorem 1. Given the control in (34) and the adaptation law in (35) and
a suitably chosen bounded twice continuously differentiable, sufficiently rich
(SR) demand qd in (3), we can achieve

1. The trajectories, q(t), converge to the demand qd in a semiglobal sense,
i.e. there exist a sliding mode gain matrix, Λ and gainsKr1, Kr2 , ω1, ω2 ∈
R

+ large enough so that exponential convergence is guaranteed for bounded
disturbance, Td.

2. The estimation error Θ̃ converges to an ultimately bounded set in case
of a bounded disturbance, Td.

3. The estimate Θ̂ converges to their true values, in case of Td = 0, within
finite-time.
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♦
Proof . A suitable Lyapunov function is,

V(t) = Vr + VΘ (38)

=
1

2
rTM(q)r +

1

2
ÑTW−1Γ−1W−1Ñ

where,

Ñ(t) = N(t)−W (t)Θ̂ = W (t)Θ + TdN −W (t)Θ̂− e−kFF tkIΘ (39)

= W (t)Θ̃ + TdN − e−kFF tkIΘ

This Lyapunov function contrasts to [21] in particular the second term, as it
allows for analysis of a bounded disturbance. Note that,

W (t) ≥ e−kFF tkI (40)

and

σ̄(W−1(t)) ≤ 1

k
ekFF t (41)

where σ̄(·) denotes the largest singular value of a matrix. Thus, the inverse
of W (t) exists at time, t > 0. Differentiating the Lyapunov function with
respect to time yields,

V̇(t) = rTM(q)ṙ +
1

2
rTṀ(q)r + ÑTW−1Γ−1 ∂

∂t

[

W−1Ñ
]

(42)

as r = ė + Λe and ṙ = ë + Λė. Computing the derivative of W−1Ñ =
Θ̃ +W−1TdN −W−1e−kFF tkIΘ provides

∂

∂t

[

W−1Ñ
]

= ˙̃Θ +W−1ẆW−1
[

TdN − e−kFF tkIΘ
]

(43)

+W−1
[

ṪdN + kFFe
−kFF tkIΘ

]

= ˙̃Θ + ξ (44)

where ξ = W−1ẆW−1
[

TdN − e−kFF tkIΘ
]

+ W−1
[

ṪdN + kFFe
−kFF tkIΘ

]

.

Substituting (14) and (44) into (42) produces,

V̇(t) = rTφ(q, q̇, u, u̇)Θ̃− rTV (q, q̇)r − rTKr1

r

‖r‖ − rTKr2r (45)

+
1

2
rTṀ(q)r + ÑTW−1Γ−1

[

˙̃Θ + ξ
]
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Applying the skew-symmetric property, (1), yields,

V̇(t) = rTφ(q, q̇, u, u̇)Θ̃ + ÑTW−1Γ−1
[

˙̃Θ + ξ
]

− rTKr1

r

‖r‖ − rTKr2r. (46)

Adopting the proposed novel adaptive law in (35), ˙̃Θ = − ˙̂
Θ = −ΓφT (q, q̇, u, u̇)r+

ΓR into (46) yields,

V̇ = −rTKr1
r

‖r‖ − rTKr2r + rTφ(q, q̇, u, u̇)Θ̃

+ÑTW−1Γ−1
[

−ΓφT (q, q̇, u, u̇)r + ΓR + ξ
]

= −rTKr1
r

‖r‖ − rTKr2r −W−1TdNφ(q, q̇, u, u̇)r

+W−1e−kFF tkIφ(q, q̇, u, u̇)r + ÑTW−1[R + Γ−1ξ]

(47)

Replacing R(t) via (37), it follows from (39),

V̇ = −rTKr1

r

‖r‖ − rTKr2r −W−1TdNφ(q, q̇, u, u̇)r

+W−1e−kFF tkIφ(q, q̇, u, u̇)r + ω1Ñ
TW−1 W Θ̂−N

‖W Θ̂−N‖
(48)

+ω2Ñ
TW−1(W Θ̂−N) + ÑTW−1Γ−1ξ

≤ −‖r‖Kr1 − ‖r‖2Kr2 + σ̄(W−1)‖TdN‖‖φ‖‖r‖
+ke−kFF tσ̄(W−1)‖φ‖‖r‖ − Ñ

[

ω1σ(W
−1)− σ̄(W−1)‖Γ−1‖‖ξ‖

]

−ω2σ(W
−1)‖Ñ‖2 (49)

≤ −‖r‖
[

Kr1 − σ̄(W−1)‖TdN‖‖φ‖ − ke−kFF t‖σ̄(W−1)φ‖
]

−‖Ñ‖
[

ω1σ(W
−1)− σ̄(W−1)‖Γ−1‖‖ξ‖

]

(50)

−‖r‖2Kr2 − ω2σ(W
−1)‖Ñ‖2

The proof is now continued in two steps: The first will show that finite-time
convergence of r to zero is achieved. This will result in persistent excitation
of the plant via a sufficiently rich demand, qd, within a given time interval
[0, T ]. From the definition of r (37), it is evident that q converges to qd in
an exponential sense once r = 0. The second step shows that W−1(t) and
W (t) remains always bounded in terms of its largest singular values. This
guarantees item 1 and 2 of Theorem 1. Item 3 then easily follows.

In step 1, we may consider first a compact set C in (q, q̇, (W−1Ñ)) which
is chosen to be large enough to contain the initial values of q(t = 0), q̇(t = 0)
and (W−1Ñ)(t = 0). From (48) and definition (10), it easily follows that q,
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q̇ and W−1Ñ will remain within C at least for finite-time T . Moreover, note
that for t ∈ [0, T ], σ̄(W−1) < 1

k
ekFFT from (40). It is now possible to find a

finite value Kr1a for t ∈ [0, T ] which satisfies;

Kr1a >
1

k
ekFFT‖TdN‖‖φ‖+ ekFF T‖φ‖ (51)

Equally, there must be also a finite value ω1a for t ∈ [0, T ] so that;

ω1a > k−1ekFFT σ̄(W )‖Γ−1‖‖ξ‖ (52)

We may now define,

ω1 = ω1a + ω1b, ω1b, ω1a > 0, (53a)

Kr1 = Kr1a +Kr1b , Kr1a , Kr1b > 0, (53b)

Then, it follows from (48) for t ∈ [0, T ],

V̇ ≤ −‖r‖Kr1b − ‖Ñ‖ω1bσ(W
−1) (54)

−‖r‖2Kr2 − ω2σ(W
−1)‖Ñ‖2 (55)

This implies,

V̇ ≤ −α
√
VrKr1b − γ

√

VΘω1b (56)

−‖r‖2Kr2 − ω2σ(W
−1)‖Ñ‖2 (57)

where α =
√
2

σ̄(M(q))
1
2

and γ =
√
2σ(W−1)

σ̄(W−1)‖Γ−1‖
1
2

.

Considering that (q, q̇, (W−1Ñ)) ∈ C for t ∈ [0, T ], it follows that ‖φ‖, ‖φf‖
(28), σ̄(W )(32) remain bounded within the time interval [0, T ]. Note that
φ is a Lipschitz continuous function of q, q̇, q̇d, q̈d. This also implies that
σ(W−1) is strictly bounded from below by a positive constant for t ∈ [0, T ].
Thus, Kr1b and ω1b can be chosen large enough so that the Lyapunov function
V(t) (38) converges to 0 within the finite interval [0, T

4
] (see for instance [29]

for finite-time convergence). Moreover, it is possible to choose the positive
elements of the diagonal matrix, Λ (8) and scalar, λ, large enough so that for
t ≥ T

2
for some arbitrary, small constants, δa, δb, δc and ǫ > 0, the following

inequalities hold,

‖q(t)− qd(t)‖ ≤ δa, ‖q̇(t)− q̇d(t)‖ ≤ δb, ‖q̈(t)− q̈d(t)‖ ≤ δc (58)
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‖φ(q, q̇, q̈)− φ(qd, q̇d, q̈d)‖ ≤ ε (59)

Since the reference trajectory qd is bounded, there exists a constant η > 0
for small enough k > 0 such that

∫ t+T∆

t

φT (q(ν), q̇(ν), q̈(ν))φ(q(ν), q̇(ν)q̈(ν))dν > ηI (60)

holds for all t ≥ T
2
, T∆ < T

4
and for suitable reference qd. Now, knowing

that the auxiliary regressor matrix W (t) in (29) is constructed by virtue of
a filtered regressor φf(q, q̇) whereby an impulse response stable filter F (t) =
1
κ
e−t/κ is used, one can assure for small κ > 0 that there is η̃ for t > 3T

4
;

∫ t+T∆

t

φT
f (q(ν), q̇(ν))φf(q(ν), q̇(ν))dν > η̃I (61)

The proof for such inheritance of the PE characteristic of a filtered signal
can be found in [25]. This also implies that, W (t) > ̺I where ̺ > 0 is not a
function of time t in contrast to (40). Moreover, σ̄(W (t)) remains bounded
due to the boundedness of q, q̇, q̇d, q̈d. Thus, a large enough choice for ω1a

and Kr1a will guarantee,

Kr1a > max(
1

k
ekFF T‖TdN‖‖φ‖+ ekFFT‖φ‖, (62a)

σ̄(W−1)‖TdN‖‖φ‖+ ke−kFF tσ̄(W−1)‖φ‖) (62b)

ω1a > max

(

σ̄(W−1)

σ(W−1)
‖Γ−1‖‖ξ‖, k−1ekFFT σ̄(W )‖Γ−1‖‖ξ‖

)

(62c)

similar to (51) and (52). This retains equation (62) valid and guarantees that
W (t) is invertible all time. Hence, it follows that the error Ñ(t) converges to
0 in finite time. Thus, Θ̃ remains bounded, where the bound is determined
by the magnitude of the disturbance, Td, i.e. by ξ. Clearly for ξ = 0, TdN = 0
and Θ̃ → 0 (see (39)) in finite time. �

Remark 2. The contribution of this paper can be exemplified in contrast
to other existing adaptive laws in the function R(t)(37) associated with Θ̃.
Thus, the actual parameter error is the driver of the adaptation algorithm
which permits finite-time convergence.

In contrast, the other standard adaptive laws, such as the gradient-based
and the least-square-based algorithm, are driven by the control error as out-
lined below:-
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Gradient-based adaptive law [27][30][26][31]: This is accomplished by
having Θ updated by means of steepest-descent method, i.e., the update

law is written as
˙̂
Θ = ΓφT (q, q̇, u, u̇)r with R = 0. The adaptation is

driven by the control error r and the adaptation gain Γ is fixed.

LS-based adaptive law [27][30][26][31]: This is accomplished similar to
the gradient-based approach but with the adaptation gain Γ being up-
dated by the following Γ̇ = βΓ−ΓφφTΓ, Γ(0) = Γ0 = Q−1

0 , where β is
a design parameter, a forgetting factor for Γ, i.e., discounting past data
and a penalty on the initial estimate Θ̂0. Q0 = QT

0 > 0 is the inverse of
the initial value of Γ0. The convergence of the LS-based algorithm can
be shown (as proven in [27] [25] [26]) to be exponential in comparison
to the proposed novel algorithm which provides finite-time convergence.

◦

4. Experimental setup and Results

The implementation environment of the proposed novel robust adaptive
control on BERT-II humanoid system is shown in Figure 1. The proposed
adaptive control algorithm was coded in Simulink blocks by a PC/notebook
and subsequently compiled into C code by RT-workshop and dSPACE soft-
ware. The compiled C code is then downloaded into a dSPACE 1006 embed-
ded system. The dSPACE system communicates at 1 kHz with the humanoid
BERT II robot arm system via a controller area network (CAN) communica-
tion bus. ControlDesk, a dSPACE software, is used as an interface to monitor
the signals sent across the CAN bus from the EPOS BLDC driver unit to the
dSPACE embedded system and to modify vital controller parameters. This
software allows data to be recorded to be analysed further using Matlab.
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dSPACE (DS1006)

EMBEDDED SYSTEM 

A NOTEBOOK AS A

CONTROL INTERFACE TO CODE 

THE ALGORITHM 

INTO DSPACE SYSTEM 

BERT-II HUMANOID SYSTEM

Figure 1: Bristol Elumotion Robot Torso II (BERT II) robotic arm system connected to
the dSPACE. CANopen communication is established between dSPACE and the robot’s
actuator system.

The 7-degrees of freedom BERT II robot arm is equipped with MAXON
high precision Brushless DC motors (BLDC) at each joint as actuators. Each
motor is driven by an EPOS BLDC motor driver unit and the angular posi-
tion of the motor is read by means of an incremental encoder (512cpr). The
EPOS motor drivers at each joint are in fact connected to the dSPACE sys-
tem by the CAN communication bus. The control signals sent via this CAN
bus, are managed by a CANopen communication protocol using a periodic
synchronisation signal. This allows a deterministic communication to be es-
tablished in the CAN network without polling. In this experiment, 2 joints
of the BERT II robot arm, the joints corresponding to shoulder flexion and
elbow flexion motion, are to be controlled. The other joints of the arm such
as shoulder abduction, humeral rotation, wrist pronation and other wrist
related motion are kept in a fixed and straight position (by means of local
PD controller regulation). Through these intended constraints, we are able
to assume a two-link planar robot system as depicted in Figure 2. A cylin-
drical body mechanical structure throughout the BERT II’s arm flexion and
abduction with uniform mass distribution for the estimated parameters 2 is
assumed. The mass of each robot link, the upper arm M1 and the forearm
M2, are the elements of the mass matrix to be estimated, i.e. the estimated
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parameter vector, Θ̂ = [M̂1, M̂2]
T . The actual values of the approximated

model of the BERT II arm is shown in Table 1.

+

+

q
1

q
2

M1

M2

l
1l

2

 

 

+

Figure 2: BERT II left arm can be modeled as two planar link system, using M =
M(q, q̇,M1,M2)

Table 1: The approximate model parameters of the BERT II arm

Description Link 1 Link 2
Mass (kg) 2.35 3
Link Length (m) 0.2735 0.44
Radius of approximate cylindrical body (m) 0.05 0.05

4.1. Parameter Choice

Table 2 shows all the tuning parameters of the proposed novel algorithm
used in the simulation and experiment. The parameter estimation adaptive
weights Γ are selectively chosen to increase the sensitivity of the algorithm
to the sliding error dynamics. Increasing Γ will definitely contribute to the
increase of the finite-time convergence rate γ, associated with

√
V Θ (see our

analysis in the preceding section, equation (56)). However, the increase in Γ
will make the estimation algorithm oversensitive to the sliding error dynam-
ics which we want to avoid especially in the practical robotic system. The
forgetting factor kFF is carefully selected so as to ensure that the inverse of
W (t) in (32) exists. A large forgetting factor kFF (associated with regres-
sor matrix W (t) and regressor vector N(t)) is desirable to allow for faster
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convergence of the parameter estimation error to zero. A reasonably large
value of kFF also prevents the regressor matrix from growing unboundedly,
compromising the need for conserving the immediate past horizon data (for
better learning) and at the same time, ensuring faster parameter conver-
gence. However, the value of kFF cannot be made too large to permit W (t)
to be nonsingular. Knowing this importance, the filter constant, κ should be
carefully selected so that the auxiliary filters in (22) - (26) works adequately
faster than the learning rate of the auxiliary regressors in (29) and (30), i.e.
κ < 1

kFF
. Sliding Mode adaptation gain, ω1 and ω2 should be chosen large

enough to overcome the inherent disturbance as analysed in (52). Increas-
ing ω2 in tandem with ω1 will assist to drive the system to be more stable
as analysed in (50). To guarantee finite-time convergence in the parameter
estimates to its true values, ω1 should be chosen as to satisfy (62c). The con-
trol gains, Kr1 and Kr2 , should be chosen large enough to effectively reject
disturbance whilst satisfying (53).

Table 2: Adaptation Mechanism Parameters

Parameter Description Symbols Values

Parameter Estimation Adaptive weights, Γ (36)
γ1 15

γ2 15

Forgetting Factor (29)(30) kFF 0.1

Filter Constant (22)-(26) κ 0.02

Sliding Mode Adaptive weights, Ω (37)
ω1 40

ω2 1

Control Gains, Kri (11)
Kr1 10

Kr2 5

Sliding Mode Gain (8)(10)
λ 0.5

Λ 0.5I

4.2. Algorithm Performance without disturbance, Td = 0- Simulation Results

Figure 3 [21] shows the simulated result of the novel robust adaptive
control in contrast to other two standard adaptive controls, i.e., gradient and
least-square (LS) based adaptive control [27] with the case of no disturbance,
Td = 0. Excellent tracking performances for both elbow flexion and shoulder
flexion are shown. M̂1 and M̂2 converge faster to the true value: 2.35 kg and
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3 kg as compared to the two traditional algorithms (gradient and LS)(see
Figure 3c and 3d). This is also confirmed in comparison to the standard
gradient and LS based algorithm usually used in this context.

Convergence of parameter estimation errors denoted by Θ̃1=(M1 − M̂1)
and Θ̃2=(M2 − M̂2) to zero can be verified through performance index com-
putation, i.e., the mean Integral Absolute Error (E ¯IAEi

) as shown in Table
3. The E ¯IAEi

can be computed by:

E ¯IAEimass
=

∑

T ‖Mtruei − M̂i‖
T

, E ¯IAEiq̃
=

∑

T ‖qi(t)− qdi(t)‖
T

(63)

where T is the length of time of the estimation, Mtruei is the actual value
of the respective, i parameter, M̂i is the parameter estimate, qi is the joint
angle of the controlled limb and qdi is the joint angle setpoint. The tracking
performance of the proposed novel algorithm supersedes that of the gradient
and LS based estimation approach. However, it is apparent to see that the
estimation performance of the LS based algorithm is the worst although its
tracking performance gains a greater benefit from the parameter estimation
in comparison to the gradient algorithm: The LS based algorithm manages
to track the given setpoint qdi well (better than the gradient) only after
30 seconds. Nevertheless, the significant performance contrast of our novel
algorithm in comparison to these standard algorithms throughout simulation
in terms of robustness and convergence confirms the theoretical discussion in
Remark 2.
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Figure 3: Novel Adaptive Control of manipulator in the case of no disturbance, Td = 0

Table 3: E ¯IAEi
for the case of without disturbance, Td = 0

Associated Performance
E ¯IAEimass/q̃

Parameters Novel algorithm Gradient Least-Square

M̃1 0.1262 0.7178 2.0889

M̃2 0.0132 0.1270 0.5800

q̃1 0.0021 0.0417 0.0680

q̃2 4.7175e-004 0.0231 0.0205

Table 3 shows the tracking and parameter estimation performance mea-
sured by the given performance index in (63).
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4.3. Algorithm Performance with bounded disturbance, Td-Simulation Results

In contrast to [21], an additive bounded disturbance, Td, is introduced in
the robotic arm system. Td comprises of a Band-Limited White noise with
magnitude power of 0.1 and a sampling time ts = 0.02 sec. The inherent
robustness property (both in the tracking performance as well as in the pa-
rameter estimation) of the proposed algorithm is apparent in contrast to the
gradient-based and LS-based algorithm as seen in Figure 4. It is interesting
to see that the estimation by the LS-based algorithm is quite sensitive to
changes in joint angle of more than ±15◦ during the transient convergence
(between 0 to 10 seconds) of its Γ matrix (see Remark 2 for LS algorithm’s
structure) as evident in Figure 4. One of the design parameter in LS-based
algorithm β govern the speed of the parameter convergence. A compromise
should be made between robustness and fast convergence. Figure 4a and
Figure 4b show that the tracking performance of both the elbow and shoul-
der flexion motion for the novel adaptation algorithm are excellent despite
of the presence of disturbance. The command signal for the shoulder and
elbow flexion is,

q1d = 20 + sin(0.1t+ 2) + 16 sin(0.2t+ 10) + 18 sin(0.3t+ 12) (64a)

q2d = 24 + 8 sin(0.2t+ 2) + 6 sin(0.3t+ 10) + 9 sin(0.36t+ 12) (64b)

The command signal is specially chosen as to satisfy the Sufficient Richness
(SR) condition. The parameter estimation performance of the proposed al-
gorithm (in contrast to the gradient and LS based) is evidently very good,
exemplifying its ability to reject disturbance as seen in Figure 4c and 4d. For
the novel algorithm, the estimate for M̂1 converges in less than 20 seconds
whilst for M̂2, it achieves in a mere 3 seconds. By contrast, the gradient
based algorithm’s estimate for M̂1 converges at a much slower rate. The es-
timate of M̂2 by the LS-based algorithm shows a significant susceptibility to
the disturbance. Referring to Table 4, the novel algorithm estimation perfor-
mance (for the estimates M̂1 and M̂2) achieves the mean IAE values (E ¯IAE)
of 0.1457 and 0.0292 which are far better than that for the gradient based
algorithm which has the mean IAE of 0.6120 and 0.2394. With the case of
the LS-based algorithm, the mean IAE for estimating M1 and M2 is 0.4844
and 0.4290 respectively. Although the LS-based algorithm achieves a better
estimation performance in comparison to the gradient-based approach for the
mass estimation of the forearm mass M̂1, it suffers greatly when estimating
the mass of the upperarm M̂2, judged by its corresponding E ¯IAE in Table 4.
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The heavy reliance on the PE condition by the LS-based algorithm is evident
here as its E ¯IAE scores better in this simulation with the given SR-satisfied
command signal (64a)(64b) than its previous simulation without SR signal
and disturbance (Compare Table 3 and Table 4 ).
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Figure 4: Tracking and Estimation performance of Novel Adaptive Control of manip-
ulator(solid line for estimation) in contrast to Gradient-based approach(dashed line for
estimation) and LS-based approach(dash-dotted line for estimation) in the case of addi-
tive bounded disturbance, Td with command signal in (64a)(64b)
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Table 4: E ¯IAEi
for the case of SR demand signal with disturbance

Associated Performance
E ¯IAEimass/q̃

Parameters Novel algorithm Gradient Least-Square

M̃1 0.1457 0.6120 0.4844

M̃2 0.0292 0.2394 0.4290

q̃1 9.2315e-004 0.0271 0.0378

q̃2 5.2279e-004 0.0185 0.0150
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Figure 5: (a) The adaptive term R(t) vector, (b) The bounded estimation error, Ñ(t) and
the respective joint torque of (c) elbow and (d) shoulder in the case of disturbance, Td

Referring to Figure 5b, Ñ(t) constitutes the parameter estimation error
implicitly defined in the proposed algorithm. Clearly, Ñ(t) remains bounded
close to zero, while the initial value is at magnitudes well above 1. The torque
applied to both the BLDC motor at elbow and shoulder flexion are bounded
(Figure 5c and Figure 5d).

The algorithm is also examined by introducing demands in the form of
successive second order filtered steps in the presence of additive disturbance
as shown in Figure 6. The tracking performance of the proposed algorithm
(see Figure 6a, 6b) remains excellent whilst, the gradient-based algorithm
tracking performance deteriorates. For both joints, elbow flexion and shoul-
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der flexion, the proposed algorithm tracks the setpoint without compromising
the performance of the mass estimations. The mass estimation by the pro-
posed algorithm as presented in Figure 6c, 6d is acceptable. This contrasts to
the gradient and LS-based algorithm, for which the estimated values tend to
drift away. This can be accurately measured by the performance index, E ¯IAE ,
in Table 5 where the novel algorithm exhibits an acceptable robustness in
the presence of disturbance whilst the integrity of the tracking performance
is not compromised. Figure 7b shows that the estimation error Ñ(t) remains
bounded within 0.1% of the magnitude of the introduced filtered disturbance
TdN (33) and subsequent step changes in the setpoint. Figure 7a shows the
bounded adaptive term R(t), responsible in computing the parameter esti-
mation error, effectively reacts against disturbance. Figure 7c and 7d show
that the elbow and shoulder torque are bounded throughout the trajectories.
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Figure 6: Tracking and Estimation performance of Novel Adaptive Control of manipu-
lator (solid line for estimation) in contrast to Gradient-based approach (dashed line for
estimation) and LS-based approach(dash-dotted line for estimation) in the case of additive
bounded disturbance, Td with successive filtered steps demand

Table 5: E ¯IAEi
for the case of successive filtered steps demand with disturbance

Associated Performance
E ¯IAEimass/q̃

Parameters Novel algorithm Gradient Least-Square

M̃1 0.1417 0.9398 6.1916

M̃2 0.0188 0.1674 2.4887

q̃1 0.0025 0.0412 0.0771

q̃2 8.6191e-004 0.0242 0.0563
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Figure 7: (a) The adaptive term R(t), (b) The bounded estimation error, Ñ(t) and the
respective joint torque of (c) elbow and (d) shoulder in the case of disturbance, Td

To observe whether the system is persistently excited, the condition num-
ber of the auxiliary regressor, W (t) is computed by taking ‖W (t)‖‖W−1(t)‖
(see Figure 8). The condition number of W (t) remains mainly below 200,
which shows sufficient levels of persistent excitation for W (t), as W (t) is
clearly nonsingular. Figure 8 also shows that having a sufficiently rich com-
mand signal will assist in the parameter estimation performance by conse-
quently keeping the condition number small at values below 150. Referring
to the simulation results, it is evident that out of the three compared al-
gorithms, the LS-based algorithm is the worst in terms of tracking and es-
timation. Therefore, we practically test the performance of the two best
algorithms. Thus, relevant results are presented in the next section.
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Figure 8: The condition number, ‖W (t)‖‖W−1(t)‖, of the auxiliary regressor

4.4. Practical Implementation

Figure 9a shows the implementation results of the applied novel adap-
tive control algorithm on BERT II humanoid system in comparison to the
gradient based approach (Figure 9b). A sinusoidal command signal is given
as the reference signal. Tracking performance for joint elbow flexion is com-
parable between the novel adaptive control algorithm and gradient-based
approach. The E ¯IAE computed for elbow tracking shows that the novel al-
gorithm is slightly better,i.e. its respective E ¯IAE is 2.0066 in comparison
to the gradient-based approach which is 2.1547. In addition, the link mass
estimation of BERT II robot arm in Figure 11a hovers around acceptable
bounded values considering the fact that the proposed algorithm’s regressor
is formulated under the assumption that the robot arm has a uniform cylin-
drical shape (which they are not in the real case). The mass estimation as
with the case of gradient based approach settles at incorrect values below
zero as shown in Figure 11b. Figure 10a,b shows a bounded Ñ(t) with the
adaptive term R(t) in Figure 10c,d of the novel algorithm. As with the case
of successive step demands, Figure 12 reveals excellent tracking performance
for both joints, elbow and shoulder flexion. The compensation from the fast
finite-time parameter estimation algorithm is advantageous to the control
effort. The corresponding applied torque on the BLDC motor at both joints
show that the control signal is bounded and of acceptable value.
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Figure 9: The tracking performance of the applied novel adaptive control for elbow (a)
flexion of BERT II in comparison to the gradient-based approach (b).

5. Conclusion

A novel robust adaptive control algorithm featuring finite-time parameter
estimation for humanoid robot arm is presented. The sliding-mode feature
introduced both in the tracking and estimation scheme provides two-fold
benefits. One is to provide significant levels of robustness against bounded
disturbance both within the tracking error and estimation error. The second
benefit is that finite-time convergence in the parameter estimation error can
be guaranteed given sufficient PE or SR condition in the regressors. The
reconstruction of a special auxiliary matrix is shown here by the use of an
auxiliary filtered regression vector and filtered computed torque in the adap-
tive algorithm. This is instrumental to the machinery of the algorithm, from
which then the sliding term can be incorporated in the adaptive law, allow-
ing the unknown parameters, i.e. M1 and M2, to be estimated in finite-time.
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Figure 10: The bounded estimation error, Ñ(t) and the adaptive term, R(t)

As a direct consequence, parameter error convergence to zero can then be
guaranteed with the PE or SR condition fulfilled. Robustness of the algo-
rithm is also evident in the theoretical formulation by the subsumed leakage
term in the adaptive law. Finite-time convergence in parameter estimation
error is proven through a theoretical framework, simulation and practical
implementation on a BERT II humanoid arm system. Practical methods us-
ing a condition number analysis to verify persistent excitation are suggested.
The experimental results show that the adaptive scheme improves tracking
performance.
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