Liu, D., Hollis, S. J., Dymond, H. C. P., McNeill, N., \& Stark, B. H. (2016). Design of 370-ps Delay Floating-Voltage Level Shifters With 30-V/ns Power Supply Slew Tolerance. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(7), 688-692. DOI: 10.1109/TCSII.2016.2530902

Peer reviewed version

Link to published version (if available):
10.1109/TCSII.2016.2530902

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7410045. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Design of 370 ps Delay Floating Voltage Level Shifters with 30 V/ns Power Supply Slew Tolerance

Dawei Liu, Student Member, IEEE, Simon J. Hollis, Member, IEEE, Harry C. P. Dymond, Neville McNeill, and Bernard H. Stark

Abstract

A new design method for producing high performance, power rail slew-tolerant floating voltage level shifters is presented, offering increased speed, reduced power consumption, and smaller layout area compared to previous designs.

The method uses an energy-saving pulse-triggered input, a high-bandwidth current mirror, and a simple full latch composed of two inverters. A number of optimizations are explored in detail, resulting in a presented design with a $d V_{\mathrm{dd}} / \mathbf{d t}$ slew immunity of $30 \mathrm{~V} / \mathrm{ns}$, and near-zero static power dissipation in a 180 nm technology.

Experimental results show a delay of below 370 ps for a level-shift range of 8 V to 20 V . Post-layout simulation puts the energy consumption at $2.6 \mathrm{pJ} / \mathrm{bit}$ at 4 V and $7.2 \mathrm{pJ} / \mathrm{bit}$ at 20 V , with near symmetric rise and fall delays.

Index Terms-area efficient, $\mathrm{dV} / \mathrm{dt}$ slewing immunity, energyefficiency, floating level shifter, high speed, low power

I. Introduction

A\mathbf{S} the communication bridge between different power rails, floating voltage level shifters are used to shift the potential of control signals from circuits powered by low voltage power rails to the potential of circuits with floating power and ground rails. A particularly challenging application with high on-chip power-rail slew-rates and strict delay demands is in a gate driver IC for the driving of two power semiconductor devices in a bridge leg, as used in switched mode power supplies.

Fig. 1 (a) illustrates such an application, producing an output voltage "SW". The slew-rate of the switch-node voltage, and hence on-chip power supplies is typically of the order of volts per ns. This is set to increase with the introduction of new power devices such as GaN HEMTs, which promise to reduce switching losses. In practice, the floating low voltage $\mathrm{V}_{\text {SSH }}$ is usually connected to the SW node [1, 2], or clamped by the SW node [3] with a diode or by $V_{D D H}$ with resistors [4]. $\mathrm{V}_{\text {SSH }}$ swings from around $V_{S S L}$ to DC_Link, whilst the differential voltage between $V_{D D H}$ and $\mathrm{V}_{\text {SSH }}$ remains constant. Delay is also critical, since it affects timing resolution of the output channels.

[^0]

Fig. 1. Level shifters control the high-side devices of half-bridge circuits. (a) Driving off-chip discrete N -channel power devices. (b) Driving on-chip half-bridge with PMOS high-side.

Fig. 1 (b) represents an on-chip system, where the high-side device is a PMOS, and a floating voltage level shifter is working as the pre-driver of the half-bridge circuits [5-8]. In this circuit topology, $V_{D D H}$ and $\mathrm{V}_{\text {SSH }}$ are typically biased to constant potentials, therefore power-rail slew capability is not required, however low power, low delay, and small layout area are important. In $[5,6] \mathrm{V}_{\text {SSH }}$ is biased with an extra voltage source, but [7, 8] employ a diode or diode connected PMOS to clamp $V_{S S H}$ to within a fixed voltage from $V_{D D H}$.

In this paper, we introduce a new floating-voltage level shifter design, capable of tolerating $30 \mathrm{~V} / \mathrm{ns}$ of $\mathrm{V}_{\text {SSH }}$ slew, whilst offering data latency of just 370 ps . This design combines several of the positive features of the reviewed literature, and demonstrates an overall better trade-off between latency, layout area, and power consumption and offers significantly improved immunity to slew of its power rails. The relevant literature is summarized in the next section.

II. Review of Floating Voltage Level Shifters

Three types of floating voltage level shifters are illustrated in Fig. 2. Their operation is based on the low voltage clamping technique of their output Vout. Red dashed boxes show isolation areas provided by deep N -wells. Fig. 2(a) shows the conventional low voltage (LV) to high voltage (HV) level shifter [6]. This level shifter uses cascaded HV NMOS to protect and clamp the LV input transistors, and HV PMOS to protect and clamp the output floating LV transistors. As graphically analyzed in [9], this class of floating voltage level shifters has a large propagation delay and occupies a large layout area. The level shifter presented in [9] makes significant improvements in these aspects, but at the expense of additional complexity and a control signal to set the initial state, which may not be suitable in some applications. Fig. 2(b) shows a
second type of floating voltage level shifter [8]. This topology uses diode-connected floating LV PMOS transistors to clamp the potential at nodes N1 and N2 to one gate-to-source voltage drop (V_{GS}) below the floating high voltage rail $V_{D D H}$. This clamping technique allows the level shifters of [8] to operate at high speed, but the drawback is continuous power dissipation due to the alternate turn on of HNM1 and HNM2.

Fig. 2. Three floating voltage level shifters with different floating low voltage clamp techniques. (a) biased HV PMOS clamping. (b) diode connected PMOS clamping. (c) diode clamping. ($V_{D D H}$ is the floating power supply rail, $\mathrm{V}_{S S H}$ the floating ground rail, and $V_{D D L}$ is the low voltage supply rail).

A third kind of floating voltage level shifter [3] is illustrated in Fig. 2(c). It uses narrow pulse triggers as input signals to decide the output state. This level shifter has low power dissipation, a simple circuit and a small layout area. However, this circuit uses diodes with their anodes connected to the floating low voltage rail $\mathrm{V}_{\text {SSH }}$ to clamp the potential at nodes N 1 and N 2 . This clamping technique leads to the $\mathrm{V}_{\text {OUT }}$ swing of Fig. 2(c) being $V_{\text {OUT }}=\left(V_{D D H}-V_{S S H}+V_{F}\right)$, where V_{F} is the forward diode voltage. This $V_{\text {OUT }}$ exceeds safe operating limits of the following circuit, which reduces device life time and induces reliability problems. The level shifter in [10] also has this problem. The pulse trigger method is also used in [4-5] with resistors clamped by $V_{D D H}$. The output swing can be controlled by the value of the load resistor and the pulse current. However, the choice of resistor value leads to a trade-off between latency and power dissipation.

III. Basic Design of the
 Floating Voltage Level Shifter

A. Design Approach

In Section II, it is shown that: 1) it is advantageous to employ the diode connected PMOS clamp of the level shifter of Fig. 2(b), and 2) that the pulse-triggered technique is simple and consumes low power. It is therefore desirable to merge these two aspects into one design.

Fig. 3. Gate voltage clamping, current mirror and latch circuit.
The gate voltage clamping circuit (Fig. 3 left), clamps the gate voltage so that $V_{\mathrm{G}}=V_{\mathrm{DDH}}-\left|\mathrm{V}_{\mathrm{GS}}\right|$. When V_{IN} goes high, a
current $I_{\text {IN }}$ will flow through PM1 and HNM1 to ground. Its mirrored and level-shifted current $I_{\text {OUT }}$ triggers the output latch, thus providing fast, current-driven level-shifting.

In this method the diode connected PMOS PM1 has two functions: clamping its gate voltage, and detecting the input high voltage pulse. The current mirror circuit copies the input current information, and the latch circuit captures the output state accurately.

B. Realisation

Fig. 4. The basic floating high-voltage level shifter $\left(V_{D D L}=\left(V_{D D H}-V_{S S H}\right)=\right.$ 1.8 V. Red dashed boxes are deep N -wells).

The basic floating voltage level shifter circuit is shown in Fig. 4. The first stage is the pulse generator. On each transition of an input signal, only one path triggers and a pulse is produced at either IN1 or IN2. On the rising edge of IN, IN1 pulses high once, switching HNM1 on, with PM2 mirroring the current flow through PM1, pulling up node N2. As the voltage at node N 2 exceeds the trigger voltage of the latch composed of Inv_{1} and $\mathrm{Inv}_{2}, \mathrm{~N} 1$ is thus set to $\mathrm{V}_{\mathrm{SSH}}$. The positive feedback of the latch accelerates node N2's rise to $V_{D D H}$. Simultaneously, the output states at nodes N 1 and N 2 are maintained. Then output OUT will be held at $V_{D D H}$, even when HNM1 turns off at the end of the IN1 pulse. Thus, a rising edge on the input signal triggers the latch to lock N 2 to $V_{D D H}$ and N 1 to $V_{S S H}$. To change the state of N 1 and N 2 , a falling edge can be applied to the input. This results in a pulse signal at node IN2, triggering a similar sequence via HNM2, PM4, and PM3, pulling N1 to $V_{D D H}$ and forcing OUT to $V_{S S H}$.

C. Propagation delay analysis and device sizing

We sub-divide the IN-to-OUT signal delay into components t_{1} to t_{4} defined in Fig. 4. The intrinsic delay t_{1} of HNM1 and HNM2 is minimized by using the minimum channel width and length ($5 / 0.2$), whilst providing 0.9 mA of drain current when triggered. This presents the minimum load to the pulse generator, thus minimizing its delay t_{2}. The main advantage of the presented topology over reported level shifters is the reduction of the level-shifting delay $t_{3}=t_{3 a}+t_{3 b}$ due to the use of a current mirror. Using G_{1} as an example, $t_{3 a}$ is the time taken to charge the gate of PM1 from $V_{D D H}$ to $V_{D D H}-V_{T H}$:

$$
\begin{equation*}
\mathrm{t}_{3 a}=\frac{\mathrm{C}_{1} \times V_{T H}}{I_{d 1}} \tag{1}
\end{equation*}
$$

where $V_{T H}$ is the gate voltage threshold.
The second component $t_{3 b}$ is the time that $I_{P M 1}$ and $I_{P M 2}$ take to rise from zero to the value that triggers the latch.
PM1 in the saturation region

$$
\begin{equation*}
I_{\mathrm{PM} 1}(t)=\frac{1}{2} \mu C_{o x} \frac{W}{L}\left(V_{G S(P M 1)}(t)-V_{\mathrm{TH}}\right)^{2} . \tag{2}
\end{equation*}
$$

The resistance $R_{\mathrm{G} 1}$ seen from node G_{1} to the power rail is:

$$
\begin{equation*}
R_{\mathrm{G} 1}(t)=\frac{V_{G S(P M 1)}(t)}{I_{d 1}}=\frac{2 V_{G S(P M 1)}(t)}{\mu C_{o x} \frac{W}{L}\left(V_{G S(P M 1)}(t)-V_{\mathrm{TH}}\right)^{2}} \tag{3}
\end{equation*}
$$

The simplifying assumption that $R_{\mathrm{G} 1}$ is constant leads to:

$$
\begin{equation*}
I_{\mathrm{PM} 2}(s)=I_{\mathrm{PM} 1}(s)=I_{\mathrm{d} 1}\left(\frac{1}{1+\mathrm{s} \times R_{\mathrm{G} 1} \times \mathrm{C}_{1}}\right) \tag{4}
\end{equation*}
$$

The gate capacitance $\mathrm{C}_{1}=2 C_{G S}=\frac{4}{3} W L C_{o x}$.
Under the assumption that $R_{\mathrm{G} 1}$ is the resistance seen when
$V_{G S(P M 1)}=V_{G S 1}$, the single pole is:

$$
\begin{equation*}
\mathrm{p}_{1}=\frac{1}{R_{\mathrm{G} 1} \times \mathrm{C}_{1}}=\frac{\mu\left(V_{G S 1}-V_{\mathrm{TH}}\right)}{\frac{2}{3} L^{2}} \frac{1}{4}\left(1-\frac{V_{\mathrm{TH}}}{V_{G S 1}}\right) . \tag{5}
\end{equation*}
$$

Setting $V_{G S 1}=2 V_{T H}=0.8 \mathrm{~V}$, this simplifies to:

$$
\begin{equation*}
\mathrm{p}_{1}=\frac{1}{8} \frac{\mu\left(V_{G S 1}-V_{\mathrm{TH}}\right)}{\frac{2}{3} L^{2}}=\frac{1}{8} f_{T} \tag{6}
\end{equation*}
$$

where f_{T} is the unity current gain frequency.
From (4) and (6) we see the high bandwidth of the current mirror. The choice of minimum channel length for PM1 and PM2 leads to the maximum possible f_{T} and the minimum $I_{\mathrm{PM} 2}$ settling time. As C_{1} is proportional to channel area, the channel width of PM1 and PM2 is chosen so that V_{GS} of PM1 is near 1.8 V when HNM1's drain current $I_{\mathrm{d} 1}$ is 0.9 mA , which in turn, was determined by HNM1's dimensions. This guarantees the minimum C_{1} and hence $\mathrm{t}_{3 a}$. $I_{\mathrm{PM} 2}$ is used to trigger the latch composed of Inv_{1} and Inv_{2}. The delay t_{4} is the sum of latch and Inv $_{3}$ delay. The choice of device size for the latch is a trade-off between speed and reliability. Smaller sizes reduce the required trigger current, however are more susceptible to triggering by slew-rate-induced parasitic current. With this consideration, the PMOS width of 0.4 times of that of PM1 is chosen, and the NMOS size is chosen to have the same current ability of the PMOS. The post-layout simulation delay from IN to OUT is 391 ps , with $t_{1} / t_{2} / t_{3} / t_{4}=84 / 100 / 44 / 163 \mathrm{ps}$ when $\mathrm{V}_{\mathrm{SSH}}=12 \mathrm{~V}$

IV. Optimized Level Shifter for Power Converter Applications

A. Limitations of the basic design

The floating level shifter in Section III gives a better trade-off between speed, power dissipation and layout area than the level shifters in Fig. 2. However, specifically for the deployment in power conversion applications, three areas for further improvement are identified:

1) Symmetry of rising and falling propagation delays

A lack of symmetry can lead to data-dependent jitter, and so a symmetric design is desirable. The cause of asymmetry is that the rising edge signal path is via $\mathrm{IN} 1, \mathrm{~N} 2$, and the latch
composed of Inv_{1} and Inv_{2}, whereas the falling edge path is via IN2 and N1.

2) Immunity to $d V_{S S H} / d t$ slewing

The basic level shifter could be used in the high-side driver of a half-bridge circuit as shown in Fig. 1 (a). The voltage rail $\mathrm{V}_{\text {SSH }}$ will have high $\mathrm{dV} / \mathrm{dt}$ slewing, potentially disrupting the level shifter's operation. Consider Fig. 4, in the case where HNM1 and HNM2 are both off, and the voltages at N1 and N2 are $V_{S S H}$ and $V_{D D H}$ respectively. When $V_{S S H}$ rises, currents $I_{\mathrm{d} 1}$ and $I_{\mathrm{d} 2}$ will charge parasitic capacitors C_{2} and C_{4}, with $I_{\mathrm{PM} 2}$ and $I_{\text {PM3 }}$ mirroring the charging current. Since V_{ds} of PM2 is near zero, $I_{\mathrm{PM} 2}$ is also near zero, and the voltage at N 2 is held at $V_{D D H}$. However, the voltage at N 1 is pulled up by $I_{\mathrm{PM} 3}$. A high enough value of $I_{\mathrm{PM} 3}$ will cause OUT to erroneously change to $\mathrm{V}_{\text {SSH }}$. Post-layout simulations show rising edges failing to propagate with $V_{\text {SSH }}$ slew-rates $\geq 15 \mathrm{~V} / \mathrm{ns}$.

Negative $\mathrm{dV} / \mathrm{dt}$ of $V_{S S H}$ has no effect on the level shifter. In this event, C_{2} and C_{4} discharge currents flow via PM1 and PM4, with G1 and G2 clamped to $V_{D D H}+V_{F}$ where V_{F} is the forward voltage drop of the bulk to source parasitic diodes of PM1 and PM4. The effect is to ensure that PM2 and PM3 remain turned off so no changes occur at N 1 or N 2 .
3) Balancing the delay against the need to avoid high resistance nodes, current mirror mismatch

Taking node G_{1} as an example: When HNM1 is off, G_{1} becomes a high resistance node and is more easily disturbed by noise or transient currents. C_{1} discharges through the drain to source current of PM1. When C_{1} voltage falls below the threshold voltage of PM1, the discharge current reduces to the very small sub-threshold value of PM1. If there is a mismatch between the thresholds of PM1 and PM2, with $\mathrm{V}_{\mathrm{TH}(\mathrm{PM} 2)}<$ $\mathrm{V}_{\mathrm{TH}(\mathrm{PM1})}$, this will prolong the time that PM2 conducts, leading to higher power consumption. Such a mismatch also results in higher current in PM2 during mirroring operation.

B. Improved design

Fig. 5 shows an optimized floating high voltage level shifter, which addresses the three issues outlined in Section IV A. The current mirror architecture is improved whilst ensuring ultra-low propagation delay. Asymmetry is addressed and $V_{S S H}$ slew immunity improved by adding N -type current mirrors (in the dark dashed boxes).

Fig. 5. The optimized high-voltage floating level shifter $\left(V_{D D L}=\left(V_{D D H}-\right.\right.$ $\left.V_{S S H}\right)=1.8 V$). Red dashed boxes are deep N -wells).

The AND gates in the pulse generator block are carefully designed to guarantee the time delays from IN to IN1 and IN2 are matched. To reduce the impedance of the node and the impact of current mirror mismatch, resistors R1-R4 are added between the gates of the current mirror transistors and the power rails.

1) Rise/fall symmetry optimization

On a rising edge at input IN , nodes N 2 and N 1 are pulled up and down by PM5 and NM2 respectively. On the falling edge, N 1 and N 2 will be pulled up and down with the same principle. This optimization removes the need to consider the propagation delay of the latch, equalizing T_{R} and T_{F} at the faster speed of the two seen for the original circuit of Fig. 4

2) $V_{S S H}$ slew immunity improvement

Here, slewing of $V_{S S H}$ mirrors a parasitic current to PM5 \& PM6, and NM2 \& NM3. If the initial state of N1 is $V_{S S H}$, PM6 will pull up N1, but NM2 will pull down N1 at the same time. The voltage at N1 will greatly reduce, and OUT remains high.
3) Reducing high resistance node and current mirror mismatch problems

When HNM1 and HNM2 are off, nodes G_{1} and G_{2} (shown in Fig. 5) are high resistance. R1-R4 provide low resistance paths from $V_{D D H}$ and GND to the gates of PM1-PM6 and NM1-NM4. At node G_{1} for example, upon HNM1 turning off, R1 supports the sub-threshold drain current in PM1 in discharging C_{1} and reducing $V_{G S(P M 1)}$. This speeds up the decay of the sub-threshold currents in PM1, PM2 and PM5. The resistor values are $300 \mathrm{k} \Omega$, which leads to a small efficiency cost due to current through the resistor when the current mirror is triggered; this is greatly outweighed by reducing the static current. Larger values increase static current and susceptibility to noise, lower values reduce the trigger current and thus speed.

V. Simulation and Experimental Results

A. Experimental method

The proposed level shifter is fabricated with AMS 180 nm HV Process. A level-up and level-down shifter are configured as a ring oscillator, following the method in [9], to measure propagation delays. A 256-times divider permits off-chip measurement of the oscillation period $T_{O S C}$. The delay is then given by $T_{A V E}=T_{O S C} /(4 \cdot 256)$.

B. Post layout simulation and measurement results

Fig. 6 provides the post-layout simulation result of the basic level shifter. It shows how changes in the input IN result in corresponding changes at the output OUT. Also shown are the voltages at the internal nodes IN1 \& IN2, and the current $I_{V D D H}$ being drawn from the positive power rail.

A square output is reliably generated after a propagation delay of approximately 370 ps , whilst more rounded internal pulses trigger HNM1 \& HNM2. These pulses also represent almost all of the circuit's current consumption, which peaks at 1.6 mA for a maximum duration of 0.4 ns . A corner simulation provides $\pm 50 \mathrm{ps}$ around a 370 ps mean.

In Fig. 7, post-layout simulated data are provided for the basic level shifter (dashed lines), and the optimized level shifter (solid lines). Measured data points from the fabricated optimized level shifter are shown without lines. The figure
shows the rising (T_{R}) and falling (T_{F}) propagation delays, and the energy consumption per transition $\left(E_{T}\right)$, versus the floating low voltage $V_{S S H}$. Here, the load on a level-up shifter's output is the input of a level-down shifter, which has an input capacitance of 13 fF .

Fig. 6. Transient simulation results of the basic level shifter $\left(V_{S S H}=12 \mathrm{~V}\right.$, $\left.V_{\text {DDL }}=\left(V_{D D H}-V_{S S H}\right)=1.8 \mathrm{~V}\right)$, and simulated delay times.

Fig. 7. Post-layout simulated rising (T_{R}) and falling (T_{F}) propagation delays and energy per transition (E_{T}) of basic (dashed lines) and optimized (solid lines) level shifters, and measured average delay $T_{A V E}$ of optimized level shifter.

For the basic level shifter, the propagation delay drops to around 400 ps (rise) and 360 ps (fall) as $V_{S S H}$ increases from $0 \mathrm{~V}-4 \mathrm{~V} . T_{R}$ is greater than T_{F} since it also includes the latch response time. Increases in $V_{S S H}$ cause a linear increase in the per-transition energy. This is because the HV NMOS trigger currents stay almost constant, whilst $V_{D D H}$ increases linearly, and consumption is related to shoot-through current.

The optimized level shifter's simulated rising edge delay is seen to have reduced by around 30 ps , and is almost the same as the falling edge delay at each $V_{S S H}$ biasing condition.

The optimized level shifter's measured propagation delays $T_{A V E}$ are below 380 ps from a $V_{S S H}$ of 4 V , and below 370 ps from 8 V to 20 V . $T_{A V E}$ correlates well with the simulated
values. Compared to the performance of the original level shifter, E_{T} increases about 20% when $V_{S S H}$ is 0 V , but is nearly the same when $V_{S S H}$ is 20 V . Improvements in three performance aspects are achieved at the cost of at most 20% more power dissipation.

Fig. 8 shows simulated switching at $30 \mathrm{~V} / \mathrm{ns}$, with node N 1 's initial state being $V_{S S H}$.

Fig. 8. Post-layout simulation results with $V_{\text {SSH }}$ slew rate of $30 \mathrm{~V} / \mathrm{ns}$.
When N 1 is at $V_{S S H}, \mathrm{~V}_{\mathrm{DS}}$ of NM 2 is zero, so it has no pull down ability. With the voltage at N 1 pulled to higher than $V_{S S H}$ by PM6, the pull down current through NM2 increases. The final result is that the voltage at N 1 is pulled up to $V_{S S H}$ +550 mV , due to the fast slew of $V_{S S H}$. The same effect happens at N 2 , whose voltage is pulled down to $V_{D D H}-400 \mathrm{mV}$. Therefore, the optimized level shifter improves immunity to fast slewing in $V_{S S H}$ to $30 \mathrm{~V} / \mathrm{ns}$, compared to less than $15 \mathrm{~V} / \mathrm{ns}$ for the basic level shifter of Fig. 4.

C. Discussion

All the issues of the basic level shifter of Section III have been addressed. Further parallel pull-down NMOS could be added to reduce the delay at the expense of additional power consumption, slew-rate-capability, and layout area. The circuit layout measures $53.4 \mathrm{um} \times 90.8 \mathrm{um}$ with an active area of $0.0043 \mathrm{~mm}^{2}$.

TABLE I
Comparison with previous work
\(\left.$$
\begin{array}{ccccccc}\hline \hline & \text { Process } & \begin{array}{c}\text { Voltage } \\
(\mathrm{V})\end{array} & \begin{array}{c}E_{T} \\
(\mathrm{pJ})\end{array}
$$ \& \begin{array}{c}Delay

(\mathrm{ns})\end{array} \& FOM \& FOM*\end{array}\right]\)\begin{tabular}{cccccc}
{$[3]$} \& $0.5 \mu \mathrm{~m} \mathrm{BCD}$ \& 25 \& 50 \& 1.7 \& 0.14

{$[9]$} \& | $0.35 \mu \mathrm{~m}$ |
| :---: |
| HVCMOS | \& 10 \& 10^{1} \& 2.4 \& 0.69

\& 56^{1} \& Measured 1

{$[10]$} \& | $0.35 \mu \mathrm{~m}$ |
| :---: |
| HVCMOS |
| This |
| Work | \& 20 \& 6 \& 3 \& 0.43

HVCMOS \& 20 \& 7.2 \& 0.37 \& 0.1 \& 23^{1}

\hline \hline
\end{tabular}

FOM from [9]: (Delay)/(Process node•Voltage). Unit: (ns)/ $(\mu \mathrm{m} \cdot \mathrm{V})$
FOM*: $\left(E_{T} \cdot\right.$ Delay)/(Process node ${ }^{3} \cdot$ Voltage). Unit: $(\mathrm{pJ} \cdot \mathrm{ns}) /\left(\mu \mathrm{m}^{3} \cdot \mathrm{~V}\right)$
Note 1: E_{T} is simulated.
Table I shows the level shifter's performance exceeding those summarized in Section II using the Figure of Merit (FOM) of [9]. This FOM includes technology scaling for delays, however does not reflect power dissipation. FOM*, incorporating per transition energy E_{T}, reflects both speed and power consumption and is suitably scaled for process node [11]. The level shifter's FOM* is similar to the simulated results of [10], and $2.4 \times$ better than the measurements of [9].

VI. CONCLUSION

This paper presents a novel floating voltage level-shifter design method that offers symmetric propagation delays of 370 ps over a large range of operating voltage alongside $30 \mathrm{~V} / \mathrm{ns}$ power rail slewing immunity in 180 nm ASIC technology. The level shifter avoids continuous current flow, and does not use HV PMOS transistors, thereby saving significant layout area.

The design combines the benefits of an energy saving pulse-triggered input, a high-bandwidth current mirror and a full latch to stabilize the output state, whilst minimizing the adverse effects of possible current mirror mismatch.

Measured delays are $340-370 \mathrm{ps}$ for a level-shift range of 8 V to 20 V , and 520 ps at 0 V level shifting. Post-layout simulation puts the energy consumption at $2.6 \mathrm{pJ} /$ bit at 4 V and $7.2 \mathrm{pJ} / \mathrm{bit}$ at 20 V , with near symmetric rise and fall delays.

Delay performance is validated with measured results and post-layout simulations. Detailed discussion of optimizations for the symmetry of output rise and fall delays, power rail $\mathrm{dV} / \mathrm{dt}$ slew immunity, and tolerance of process variation mismatch are given, presenting a designer with a family of designs, according to requirement.

References

[1] Haifeng Ma, R. van der Zee, and B. Nauta, "Design and Analysis of a High-Efficiency High-Voltage Class-D Power Output Stage," IEEE J. Solid-State Circuits, Vol. 49, no. 7, pp. 1514 - 1524, Apr. 2014.
[2] J.F. da Rocha, M.B. dos Santos, J.M. Dores Costa, and F.A. Lima, "Level Shifters and DCVSL for a Low-Voltage CMOS 4.2-V Buck Converter," IEEE Trans. Industrial Electronics, Vol. 55, no. 9, pp. 3315 - 3323, Sept. 2008.
[3] Yanming Li, Changbao Wen, Bing Yuan, Limin Wen, and Qiang Ye, "A High Speed and Power-Efficient Level Shifter for High Voltage Buck Converter Drivers," in Proc. IEEE ICSICT, Nov. 2010, pp. 309-311.
[4] M.A. Huque, L.M. Tolbert, B.J. Blalock, and S.K. Islam, "Silicon-on-insulator-based high-voltage, high-temperature integrated circuit gate driver for silicon carbide-based power field effect transistors, "IET Power Electronics, Vol. 3 , no. 6, pp. 1001 - 1009, Nov. 2010.
[5] Zhidong Liu, and Hoi Lee., "A synchronous LED driver with dynamic level-shifting and simultaneous peak \& valley current sensing for high-brightness lighting applications," in Proc. IEEE MWSCAS, Aug. 2013, pp. $125-128$.
[6] B. Choi, "Enhancement of current driving capability in data driver ICs for plasma display panels," IEEE Trans. Consumer Electron., vol. 55, no. 3, pp. 992-997, Aug. 2009.
[7] Won-Ki Park, Cheol-Ung Cha, and Sung-Chul Lee, "A Novel Level-Shifter Circuit Design for Display Panel Driver," in Proc. IEEE MWSCAS, Aug. 2006, pp. 391-394.
[8] M. Khorasani, L. van den Berg, P. Marshall, and M. Zargham, "Low-power static and dynamic high-voltage CMOS level-shifter circuits," IEEE Int. Symp. Circuits and Systems, May 2008, pp. 1946-1949.
[9] Y. Moghe, T. Lehmann, and T. Piessens, "Nanosecond delay floating high voltage level shifters in a $0.35 \mu \mathrm{~m}$ HV-CMOS technology," IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 485-496, Feb. 2011.
[10] T. Lehmann, "Design of fast low-power floating high-voltage levelshifters," IET Electronics Letters, Vol. 50, no. 3, pp. 202 - 204, Feb 2014.
[11] G. Baccarani, M. Wordeman and R. Dennard, "Generalized scaling theory and its application to a $1 / 4$ micron MOSFET design", IEEE Trans. Electron Dev., vol. 31, no. 4, pp. 452-462, Apr. 1984.

[^0]: Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org. This project is funded through the UK Engineering and Physical Sciences Research Council (EPSRC) grant number EP/K021273/1.

 The authors are with Faculty of Engineering, University of Bristol, BS8 1UB, Bristol, United Kingdom (e-mail: dawei.liu@bristol.ac.uk; simon@cs.bris.ac.uk; bernard.stark@bristol.ac.uk; harry.dymond@ bristol.ac.uk; n.meneill@ bristol.ac.uk).

