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Abstract

Morphing shells are nonlinear structures with the ability to change shape and adopt multiple
stable states. By exploiting the concept of morphing, designers may devise adaptable structures,
capable of accommodating a wide range of service conditions, minimising design complexity and
cost.

At present, models predicting shell multistability are often a compromise between compu-
tational efficiency and result accuracy. This paper addresses the main challenges of describing
the multistable behaviour of thin composite shells, such as bifurcation points and snap-through
loads, through an accurate and computationally efficient energy-based method. The membrane
and the bending components of the total strain energy are decoupled using the semi-inverse
formulation of the constitutive equations. Transverse displacements are approximated by using
Legendre polynomials and the membrane problem is solved in isolation by combining compat-
ibility conditions and equilibrium equations. The result is the total strain energy as function
of curvatures only. The minima of the energy with respect to the curvatures give the multiple
stable configurations of the shell.

The accurate evaluation of the membrane energy is a key step in order to correctly capture
the multiple configurations of the structure. Here the membrane problem is solved by adopting
the Differential Quadrature Method (DQM), which provides accuracy of results at a relatively
small computational cost.

Nomenclature

u, v In-plane displacements
w Transverse displacements
2Lx, 2Ly Dimensions of the shell along the Cartesian axes
Ω Surface area
n Vector normal to the surface Ω
h Shell thickness
ε Green-Lagrange strain tensor
ε Membrane strain tensor
k0 Curvature tensor of the undeformed configuration
k Curvature strain tensor of the deformed configuration
∆k Change in curvature from the undeformed to the deformed configuration
Ud, Vd,Wd Coefficients used to scale the displacements
E Coefficients used to scale the in plane strains
K Coefficients used to scale the curvatures
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σ Membrane stress tensor
N Membrane stress resultant
Σ Coefficients used to scale the membrane stress resultant
M Bending moment resultant
Q∗k Lamina stiffness matrix
A, B, D In-plane, coupling and bending stiffness matrices respectively
Π Total strain energy
Πd Coefficients used to scale the total strain energy
L Differential operator
ΣN Coefficients used to scale the thermoelastic stress resultant
ΣM Coefficients used to scale the thermoelastic bending moment resultant
α∗k Secant thermal expansion coefficients of the lamina
T0 Stress-free temperature
Tref Reference temperature
∆T0 Change in cure to room temperature
τ Parameter used to characterise the thermal field
Pl (φ) Legendre polynomials
qij Legendre parameters

Subscript
0 Undeformed reference surface
r Inelastic deformation e.g. thermal, piezoelectric or moisture effects
k Through the thickness position of the lamina

Superscript
∼ Non-dimensional parameters

1 Introduction

Multistable structures may play an important role in future engineering designs due to their
potential for reconfiguration between different states. Indeed, shape changing concepts may allow
the designer to devise morphing structures able to adapt to a wide range of service conditions,
minimising the design complexity.

A large variety of morphing concepts have been developed. These often utilise stiffness tailor-
ing to provide shape changing features, such as non-symmetric composite plates or pre-stressed
laminates [1–7].

However, non-linear models are often tailored for a specific case study, with a consequent limi-
tation in describing, and adapting, to the large variety of morphing concepts present in literature.
More general models, on the other hand, are often a compromise between computational efficiency
and accuracy of results.

For example, the models proposed by Hyer [1] and Hamamoto et al. [8] assumed the laminate
to be initially flat. Galletly et al. [9] and Guest et al. [10] relaxed this assumption, although restric-
tions on permissible constitutive equations or initial Gaussian curvatures still hold. In Eckstein et
al. [11], an efficient Rayleigh-Ritz method able to describe the multi-mode morphing of a thermally-
actuated initially cylindrical shell is presented, in which temperature-dependent material properties
have been taken into account. Simple shape functions are employed to keep the computational cost
to a minimum. For this reason, the inherent limitation of this model is the inability to accurately
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describe the multistability of shells with general non-constant curvatures. Pirrera et al. [12] devel-
oped a shell model in which higher order polynomials are used to approximate the displacements.
The large number of degrees of freedom due to the high order of the set of polynomials allows the
restriction of a constant Gaussian curvature to be relaxed. However, the high order of the set of
complete polynomials implied a large computational cost, thus loss of efficiency of the method.

Guest et al. [10] described the stability of a cylindrical shell with constant curvature by decou-
pling the contributions of the membrane and of the bending component of the total strain energy.
Seffen [13] generalised this approach to elliptic planforms with constant curvature, whilst Vidoli [14]
added quadratically varying curvature. Our approach builds upon these works by considering thin
laminated shells possessing any non-constant curvature.

Although we consider structures that display shell-like behaviour, the mathematical assumptions
behind the proposed model are the ones of initially curved plates. These assumptions are valid if the
shell is sufficiently shallow, as shown by Mansfield in describing the bending behaviour of initially
curved strips [15].

In the proposed model, the total strain energy is expressed as the sum of the stretching and
curvature contributions. Once the problem is decoupled into the membrane and the bending compo-
nents, one can solve an auxiliary set of membrane problems combining the membrane equilibrium
equations and the constitutive equation, which links strains and curvatures according to Gauss’
Theorema Egregium. This system of equations results in a strain field which is a function of the
curvatures. By substituting the strain field into the stretching energy, one obtains an expression of
the total strain energy which is now a function of the curvatures only. Finally, the Hessian of the
total strain energy with respect to the curvatures evaluates the stability scenario.

By assuming constant curvature over the surface, Seffen [13] gave the closed form solution of
the membrane strains for an elliptic planform. He solved the compatibility condition in terms of
the Airy stress function by expressing the membrane stress as a second order polynomial, which
upholds the boundary conditions of zero force and zero shear normal and tangent to the free
boundary. Vidoli [14] relaxed the assumption of constant curvature over the surface, but he also
observed that the limitation given by solving a series of auxiliary elliptic problems still holds, since
the boundary conditions are satisfied exactly only for special geometries, i.e. shells with elliptic
planforms or shells with lenticular cross section, as illustrated in Mansfield [15].

The investigation of a membrane problem with more general geometries calls for a numerical
solution, as suggested in Vidoli and Maurini [16]. Following this observation, the present work
solves the membrane problem by adopting an accurate and computationally efficient numerical
method i.e. the Differential Quadrature Method (DQM). Moreover, the DQM allows the boundary
conditions to be imposed in a point-wise fashion, whereas in Vidoli [14] are satisfied only in an
average sense.

DQM was introduced by Bellaman and Casti [17] and it is based on the assumption that any
continuous function can be approximated by a high-order polynomial in the overall domain, and
that the derivative of a function can be expressed as a linear combination of the functional values
at all the mesh points of the domain. Owing to the higher-order polynomial approximation, DQM
usually requires fewer degrees of freedom in comparison to other approximation methods, such as
Finite Element Method (FEM) or Finite Difference Method (FDM), to achieve accurate results [18].

The accuracy of the numerical method adopted to solve the membrane problem is crucial in
order to evaluate the importance of each term in the energy functional. Other approximation
methods, as polynomial expansions for the in-plane displacement fields, leads to loss of efficiency,
as shown in Mattioni et al. [19], Aimmanee et al. [20] and Pirrera et al. [7]. In this sense, DQM
guarantees accuracy at lower computational cost.

In Section 2 and Section 3 of this paper, we illustrate the general model and its non-dimensional
form. By validating the model against available benchmark results in Section 4, we also show the
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advantages of the proposed model compared to the ones present in literature. These advantages
are summarized as follows:

• Accuracy of results: The transverse displacements have been approximated by using Legendre
polynomials. This assumption allows the membrane and the bending components of the total
strain energy to be accurately captured, as opposed to results obtained by using low orders
of complete polynomials [11].

• Boundary conditions satisfied point-wise: The in-plane equilibrium equations have been dis-
cretised by using the DQM. This method allows the boundary conditions to be satisfied in a
point-wise fashion, as opposed to a weak form [14].

• Computational efficiency : The computational cost is kept at acceptably low levels since the
membrane problem is solved by simply inverting a sparse matrix of DQM weighting coeffi-
cients. The efficiency of the proposed model is particularly evident from the ability to capture
the snap-through load with greater accuracy and using fewer degrees of freedom compared to
the solution found using standard polynomial basis function [7].

Finally, Section 5 concludes the paper.

2 Methodology

2.1 Kinematic Equations and Total Strain Energy

In a Cartesian reference system x-y-z, the strains are defined in the usual form as a non-linear
combination of linear deformations [21]. Under the assumptions of small strains and moderate
rotations, the non-linear deformations for thin shallow shells are fully described by the Föppl-Von
Kármán formulation of the strain field ε, defined as [22]:

ε = ε + zk, (1)

where

εxxεyy
εxy

 =



∂u

∂x
+

1

2

(
∂w

∂x

)2

∂v

∂y
+

1

2

(
∂w

∂y

)2

1

2

(
∂v

∂x
+
∂u

∂y
+
∂w

∂y

∂w

∂x

)

 ,

kxx

kyy

kxy

 =


−∂

2w

∂x2

−∂
2w

∂y2

−2
∂2w

∂x∂y

 , (2)

are the mid-plane strains and the curvatures respectively. Here u, v are the in-plane and w the
transverse displacements.

The total potential energy is defined by using Claperyon’s theorem [23] as:

Π =

∫
Ω

h/2∫
−h/2

1

2
σ>εdzdΩ, (3)

where the stress tensor is:
σ = Q (ε − εr) . (4)

Here Q is the plate stiffness, Ω is the surface area and h is the plate thickness. The subscript
r describes the contribution of any inelastic deformation as for example thermal, piezoelectric or
moisture effects.
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For a laminate plate, assuming A, B and D to be the in-plane, coupling and bending stiffness
matrices [22], and defining N r and M r as the in-plane stress and moment resultants of the inelastic
deformations, the total strain energy is written as [24]:

Π =

∫
Ω

(
1

2

[
ε

∆k

]> [
A B
B D

] [
ε

∆k

]
−
[
N r

M r

]> [
ε

∆k

])
dΩ, (5)

where ∆k = k−k0 describes the change in curvature from the reference undeformed configuration,
having curvature k0, to the current deformed configuration k.

By substituting into equation (5) the semi-inverse formulation of the constitutive relations
expressed as [24]: [

ε
M +M r

]
=

[
A∗ B∗

−B∗
′

D∗

] [
N +N r

∆k

]
, (6)

where A∗ = A−1, B∗ = −A−1B and D∗ = D −BA−1B, and where N and M are the in-plane
stress resultants and bending moments, the total strain energy becomes:

Π =

∫
Ω

1

2

([
N
∆k

]> [
A∗ 0
0 D∗

] [
N
∆k

]
−
[
N r

2M r

]> [
A∗ B∗

0 I

] [
N r

∆k

])
dΩ. (7)

The semi-inverse formulation of the constitutive relations expressed in equation (6) allows the
total strain energy to be decoupled into the membrane and bending components, since the stiffness
matrix is now a diagonal matrix and the element of coupling is embodied in D∗. In general, the
membrane and bending effects in a shell are coupled via the initial curvatures. The effects of this
geometrical coupling are shown in the translation of the neutral axis in the deformed shape. In fact,
the neutral axis might no longer be in the middle of the shell after deformation, especially if the
deformed shape is not symmetric with respect to it. However, if the shell is sufficiently shallow, it is
possible to capture this effect by mean of the semi-inverse formulation of the constitutive equations.
Hence, each point of the neutral axis in the deformed configuration can be expressed as a linear
combination of stretching and bending contributions.

2.2 Membrane Component

2.2.1 Theorema Egregium and Equilibrium Equations

A generic Riemannian manifold is completely characterised by its first and second fundamental
form [25]. The components of the first and second fundamental form are not independent since
they satisfy the compatibility (or integrability) conditions. In two dimensions, this conditions
reduce to three non-vanishing differential equations [26], i.e. Gauss’ Theorema Egregium and the
Codazzi-Mainardi equations. These equations can be obtained from the Riemann tensor recast for
a two-dimensional space. Physically, the compatibility relations between strains and curvatures
represent the conditions of uniqueness of the normal vector at each point of the surface.

In the adopted Cartesian reference system and assuming small strains and moderate rotations,
the compatibility condition for a thin shell is:

∂2εyy
∂x2

+
∂2εxx
∂y2

− 2
∂2εxy
∂x∂y

= det∆k. (8)

Equation (8) links the in-plane variation of the strain field with the change in Gaussian curva-
ture, given by the determinant of the curvature tensor.
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Introducing the differential operator L1 defined as:

L1 =

[
∂2

∂y2
,
∂2

∂x2
,−2

∂2

∂xy2

]
, (9)

and the semi-inverse formulation of the membrane strains expressed as in equation (6), the com-
patibility condition in terms of membrane stress resultants and curvatures becomes:

L1 [A∗ (N +N r) + B∗∆k] = det∆k. (10)

The membrane equilibrium equations for a free-free plate are [22]:

∂Nx

∂x
+
∂Nxy

∂y
= 0, on Ω,

∂Nxy

∂x
+
∂Ny

∂y
= 0, on Ω,

N · n = 0, on ∂Ω,

(11)

where ∂Ω is the boundary of the plate and n its normal.
Introducing the differential operators L2 and L3 defined as:

L2 =

 ∂

∂x
0 0

0 0
∂

∂x

 , L3 =

 0 0
∂

∂y

0
∂

∂y
0

 , (12)

the equilibrium equations are recast as:

(L2 + L3)N = 0. (13)

2.2.2 Membrane Problem

Combining equation (10) and equation (13), the solution of the membrane problem in terms of
stress resultants is given by:

LN =

[
det∆k − L1A

∗N r − L1B
∗∆k

0

]
, (14)

where the differential operator L is defined as:

L =

[
L1A

∗

L2 + L3

]
. (15)

In order to solve equation (14), we discretise the matrix of differential operators defined in
equation (15) by using the matrix formulation of DQM. A comprehensive description of the DQM
in matrix form can be found in Lamacchia et al. [27]. By applying the DQM to equation (15),
the differential operators L1, L2 and L3 become matrices of DQ weighting coefficients. The DQ
weighting coefficients have been evaluated by following the approach presented by Shu [28]. In
particular, the matrices of weighting coefficients for the first order derivatives in x and y have
been evaluated by using Chebyshev polynomials, which have been shown to be numerically efficient
and well behaved. The matrices of the higher order derivatives have been evaluated by using the
recursive formula presented by Shu [28], which allows the weighting coefficients for the derivative of
order n to be evaluated by simply applying n times the matrix multiplication rule to the weighting
coefficients of the first order. Moreover, the Runge’s phenomenon of oscillation at the edges of the
domain [29] has been avoided by evaluating the DQ weighting coefficients on a Chebyshev-Gauss-
Lobatto mesh grid [28,30–32].
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2.3 Equilibrium and Stability

In order to find a general curvature field that satisfies equation (14), the transverse displacements
w have been approximated by using the Legendre polynomials defined as:

w (x, y) = w0 (x, y) +
n∑

i=0

n∑
j=0

qijPi (x)Pj (y) , (16)

where w0 is the reference (undeformed) shell configuration and qij are the Legendre parameters.
Here Pi (x) and Pj (y) are the shape functions of order n given by the Legendre polynomials and
they are defined using binomial coefficients [33] as:

Pl (φ) =

l∑
k=0

(
l

k

)(−l − 1

k

)(
1− φ

2

)k

, for l = i, j and φ = x, y. (17)

Legendre polynomials are a complete set of orthogonal functions which have been shown to
provide great robustness of results [34], both in terms of accuracy and flexibility to describe the
deformed shape of the laminate. For each value of n, w is a 2n order polynomial in x and y. Hence
we approximate w with (n+ 1)2 degrees of freedom, i.e. all the distinct combinations of the i and
j indices of the qij parameters, from 0 to n.

Equation (14) involves the solution of a set of independent membrane problems whose number
depends on the order n of the Legendre polynomial. In particular, for n = 1, 2, 3, 4, ..., one needs
to solve 2, 17, 80, 233, ... independent membrane problems respectively.

The differential operator L takes into account also the boundary conditions. Hence, the matrix
expressed in equation (15) is a rectangular matrix.

Finally, the in-plane stress resultants as function of curvatures only are obtained by solving
equation (14):

N = L−1

[
det∆k − L1A

∗N r − L1B
∗∆k

0

]
, (18)

where L−1 denotes the Moore-Penrose pseudo inverse of the differential operator L [35, 36].
The in-plane stress resultants N of equation (18) are functions of the Legendre parameters qij .

By substituting N in equation (7) we have an expression of the total strain energy as function of
the qij only. The minima of the energy with respect to the qij give the equilibrium configurations:

∂Π

∂qij
= 0. (19)

The Hessian of the total potential energy with respect to the qij gives the stability positions:

∂2Π

∂q2
ij

> 0. (20)

Finally, the stable or unstable configurations that the laminate assumes are given by substituting
the qij obtained from equation (19) back into equation (16).

3 Non-dimensional Formulation

In order to reduce possible numerical ill-conditioning of the non-linear model and to analyse
the relative importance of each term in the governing equations, the following non-dimensional
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quantities are defined with the symbol tilde (˜):

x = Lxx̃, y = Lyỹ,
u = Udũ, v = Vdũ, w = Wdw̃,

ε = Eε̃, ∆k = K∆k̃, N = ΣÑ .
(21)

The dimensional parameters introduced in equation (21) are defined as:

• 2Lx and 2Ly are the dimensions of the plate along the Cartesian axes.

• Ud, Vd and Wd are coefficients used to scale the displacements [7, 37,38] defined as:

Ud = 1
Lx

2
√

A∗11A
∗
22D

∗
11D

∗
22,

Vd = 1
Ly

2
√

A∗11A
∗
22D

∗
11D

∗
22,

Wd = 4
√

A∗11A
∗
22D

∗
11D

∗
22,

(22)

where A∗ and D∗ are in-plane compliance and reduced bending stiffness terms, respec-
tively [24].

• E and K are used to scale the in plane strains and curvatures respectively and are defined
as:

E =



1

2

W 2
d

L2
x

0 0

0
1

2

W 2
d

L2
y

0

0 0
W 2

d

LxLy

 , K =


−Wd

L2
x

0 0

0 −Wd

L2
y

0

0 0 −2
Wd

LxLy

 . (23)

• Σ scales the membrane stress resultant N and it is defined as Σ = AE.

For sake of simplicity, let us consider the presence of a thermoelastic field as the inelastic
contributions in the total strain energy. We define the thermoelastic in plane stress resultants and
bending moments as:

N r = ΣN τ̃ and M r = ΣM τ̃ , (24)

respectively, where

ΣN =

Nply∑
k=1

zk+1∫
zk

Q∗k (T )α∗k (T ) ∆T0dz,

ΣM =

Nply∑
k=1

zk+1∫
zk

Q∗k (T )α∗k (T ) ∆T0zdz,

(25)

in which Q∗k (T ) and α∗k (T ) are the laminate reduced stiffness matrix and the coefficients of thermal
expansion respectively and they are both functions of the temperature. Moreover, ∆T0 = T − Tref

is the thermal gradient from cure temperature to room temperature and τ̃ is a non-dimensional
parameter defined as:

∆T0τ̃ = T − Tref .
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Substituting the parameters defined in equation (21) and (25) into equation (7), the non-
dimensional form of the total strain energy is:

Π̃ =

1∫
−1

1∫
−1

[
1

2
Ñ
>

Ã∗Ñ +
1

2
∆k̃
>

D̃∗∆k̃ − 1

2
τ̃ Ã∗r τ̃ − τ̃ b̃∗r∆k̃ − τ̃ d̃∗r∆k̃

]
dx̃dỹ, (26)

where the non-dimensional matrices are defined as:

Ã∗ =
LxLy

Πd
Σ>A∗Σ =

LxLy

Πd
EAE,

Ã∗r =
LxLy

Πd
Σ>NA∗ΣN ,

b̃∗r =
LxLy

Πd
Σ>NB∗K,

D̃∗ =
LxLy

Πd
K>D∗K,

d̃∗r =
LxLy

Πd
Σ>MK.

(27)

The parameter Πd is used to scale the total strain energy, so that Π = ΠdΠ̃, where Πd is defined
as [7]:

Πd = tr

([
E 0
0 K

] [
A B
B D

] [
E 0
0 K

])
. (28)

The compatibility condition expressed in equation (8) in terms of non-dimensional parameters
is:

1

2

∂2ε̃xx
∂ỹ2

+
1

2

∂2ε̃yy
∂x̃2

− 2
∂2ε̃xy
∂x̃∂ỹ

= k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
. (29)

Introducing the differential operator L̃1 defined as:

L̃1 =
1

2

[
∂2

∂ỹ2
,
∂2

∂x̃2
,−4

∂2

∂x̃∂ỹ

]
, (30)

and the non-dimensional form of equation (6), equation (29) becomes:

L̃1

(
Ñ − B̃∗∆k̃ + Σ−1ΣN τ̃

)
= k̃xxk̃yy − 4k̃2

xy −
(
k̃0xxk̃0yy − 4k̃2

0xy

)
. (31)

where
B̃∗ = Σ−1BK. (32)

Similarly, the equilibrium conditions expressed in equation (13) becomes:√
LxLy

tr(Σ)

[
1

Lx
L̃2Σ +

1

Ly
L̃3Σ

]
Ñ = 0. (33)

Finally, combining equation (31) and equation (33), the membrane problem is given by: L̃1√
LxLy

tr(Σ)

[
1

Lx
L̃2 +

1

Ly
L̃3

]
Σ

 Ñ =

[
L̃1B̃

∗∆k̃ + k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
0

]
,

(34)
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As already observed in Section 2, of great significance is that equation (34) gives the in-plane
stress resultants Ñ as functions of curvatures k̃. Let us define

L̃ =

 L̃1√
LxLy

tr(Σ)

[
1

Lx
L̃2 +

1

Ly
L̃3

]
Σ

 , (35)

and

f =

[
L̃1B̃

∗k̃ + k̃xxk̃yy − 4k̃2
xy −

(
k̃0xxk̃0yy − 4k̃2

0xy

)
0

]
. (36)

The solution of the membrane problem is simply given by:

Ñ = L̃−1
f , (37)

which is a function of x, y and the curvature field ∆k̃.
Analogously to Section 2.3, by substituting equation (37) into equation (26) we obtain and

expression of the total strain energy as function of the curvatures only. The equilibrium positions
are obtained by minimising equation (26) with respect to the Legendre parameters.

It is interesting to observe that the operator expressed in equation (30) is a second order
differential operator. Hence, in equation (31) the effects of any constant or linearly varying external
field in x and y vanish. In other words, any external field contributes to the development of
curvatures if and only if it is at least of the second order in x or y.

In order to visualise this property, we consider a constant and a quadratically-distributed ther-
mal field applied to the cylindrical shell depicted in Figure 1a. For sake of simplicity, and to avoid
any membrane-bending coupling due to stiffness properties, we consider an isotropic Aluminium
(Al 6061-T6) shell, having in plane dimensions 1m×1m and thickness 0.005m. The initial curvature
is 3m−1 about the x axis. The magnitude of the applied thermal gradient is 100◦C and the shell is
clamped at the centre.

Figure 1b and Figure 1c show the deformations of the two orthogonal cross sections of the
cylindrical shell represented by the blue and red lines in Figure 1a. In particular, Figure 1b shows
that the originally curved cross section deforms both in-plane and out-of-plane independently of
the distribution of the external thermal field. Conversely, by observing Figure 1c, it is evident that
the originally flat cross section deforms just in-plane along the y axis under a constant external
thermal load, whereas it deforms both in-plane and out-of-plane when a quadratically distributed
thermal field is applied.

Hence, the Gaussian curvature of the deformed configuration does not change with respect to
the reference configuration if the distribution of the external thermal field is constant (or linear) over
the surface. Conversely, the initially cylindrical shell deforms by changing its Gaussian curvature
to accommodate the inelastic stress if the external field is at least of the second order in x or y.

4 Validation

4.1 Case-Study 1: Multi-mode Morphing

In Eckstein et al. [11] the deformation of an initially cylindrically curved unsymmetric [04/904]
laminate under thermal loads is studied. The combination of initial curvature and opposite thermal
moments was found to give rise to multiple deformation modes. The laminate shows two orthogonal
bending modes at curing and room temperature, and an intermediate twisting mode.

The authors formulated a Rayleigh-Ritz analytical model assuming a second order polynomial
to approximate the out of plane displacements, with a resulting constant curvature tensor as in
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Figure 1: Figure 1c and Figure 1b show respectively the displacements of the initially curved cross section
(blue line in Figure 1a) and of the initially flat cross section (red line in Figure 1a) due to a constant and
quadratically-varying thermal field over the shell surface. From Figure 1c is evident that the initially flat
cross section deforms just in-plane under a constant thermal load, whereas it deforms both in-plane and
out-of-plane due to the quadratically-distributed thermal field over the shell surface. From Figure 1b is
evident that the initially curved cross section deforms both in-plane and out-of-plane independently of the
distribution of the thermal field. Here u, v and w are the displacements along y and z respectively.
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Dano et al. [39]. The model was validated against a FEM simulation consisting of 256 ABAQUS

S8R elements, using a uniformly distributed mesh. The FEM and the Rayleigh-Ritz analytical
model showed excellent agreement in predicting the two orthogonal cylindrical shapes. However,
the analytical model overpredicted the values of curvatures in the range of temperatures when
twisted configurations are present. The authors claimed that this limitation was due to the simple
functions that were used to describe the in-plane strains, resulting in an overestimation of the
membrane stiffness. This constraint makes it preferential for the laminate to store strain energy
in the form of the bending component, hence the overprediction of the curvatures. The authors
also observed that the approach adopted in Fernandes et al. [40] would likely yield more accurate
results, because the membrane problem is first approximated with more degrees of freedom and then
solved separately using a FEM. This model relies on the simplifying hypothesis of uniform curvature
throughout the morphing process. Following the work done by Guest and Pellegrino [10], Seffen [13]
and Seffen et al. [41], the global stability scenario can be described as function of curvature only.

As discussed in Section 1, the present work follows a similar approach. Hence, the multi-mode
morphing presented in Eckstein et al. [11] is used to validate our model and eventually show further
insight. In particular, in this section we show the benefits provided by the Legendre polynomials in
accurately capturing the membrane and the bending component of the total strain energy compared
to lower order basis functions. This choice results in the correct estimation of the membrane stiffness
as opposed to adopting second order polynomials [11].

For the sake of simplicity, we have adapted the work done in Eckstein et al. [11] by consid-
ering material properties which are constant with the temperature as reported in Table 1. Shell
dimensions and curvatures have remained unchanged from reference [11]. A FE analysis has been
performed by using ABAQUS, a commercially available software for non-linear analysis. The shell
is modelled using 8100 S4R elements with a total of 8281 nodes, which provides convergence of re-
sults. The cooling-down process has been simulated by using both Static-General and Riks steps
with Nlgeom on. An imperfection in the form of a corner force has been introduced in order to drive
the deformation towards the stable twisted configuration. The effect of the imperfection is negligi-
ble since the shell assumes a cylindrical (non-twisted) configuration outside the bifurcation region.
In order to achieve convergence, it has been necessary to introduce numerical dissipation [12]. The
dissipation factor has been chosen to be sufficiently small so that the ratio between dissipated
energy and total strain energy was always below 1E-03.

Figure 2 shows the convergence of results given by the proposed model in terms of the order
n of the Legendre polynomials compared to the FE analysis. Note that the convergence in terms
of number of nodes has been reached by using a Chebyshev-Gauss-Lobatto mesh grid consisting
of 31× 31. Figure 2 shows the displacements of two adjacent corners of the shell as function of
temperature. The shell is initially cylindrical in its stress free configuration at 180◦C. During the
cooling down process, the shell approaches the first bifurcation point at 124◦C when the twisted
configuration appears. The shell remains in its twisted configuration until the second bifurcation
point at 54◦C when a new cylindrical configuration appears, orthogonal to the initial one. By
decreasing the temperature up to 0◦C, the shell keeps its cylindrical configuration and no further
bifurcation points are present. Convergence has been reached by using the sixth order of the
Legendre polynomials. Results for n = 6 are in excellent agreement with FE Static-General.
Is it interesting to observe that the FE simulation performed using Riks was unable to capture
the stable twisted configurations, despite the presence of the imperfection. Conversely, the analysis
carried out using Static-General steps describes perfectly the twisted behaviour, although without
net bifurcation points, as it is clear from the insets of Figure 2.

As already observed, the shape functions used in Eckstein et al. [11] describe accurately the
cylindrical shapes. However, they revealed to be not flexible enough to accurately describe the
twisted deformations. Hence the overestimation of the values of curvature for the range of temper-

12



Table 1: Material properties for the unsymmetric [04/904] laminate.

E11 E22 G12 ν12 α11 α22

[GPa] [GPa] [GPa] [−] [10−6/◦C] [10−6/◦C]

129.55 8.85 5.28 0.33 -2.26 23.4

ature where the twisted configurations are expected. Conversely, the use of Legendre polynomials
in the present model are able to describe accurately the deformed shapes for all the values of
temperature considered, with a significant improvement of accuracy compared to reference [11] .

The accuracy of the Legendre polynomial in capturing the deformed shapes is shown in Fig-
ure 3. The colour maps plotted onto the deformed shells represent the norm of the error between
the displacements obtained by using the FEM Static-General and the order 6 of the Legendre
polynomials, for the three characteristic configurations at 0◦C, 90◦C and 180◦C. The norm of the
error on the displacement field is defined in percentage as:

‖e‖ =

∫ 2Lx

0

∫ 2Ly

0

√
(uFE − uLeg.)

2 + (vFE − vLeg.)
2 + (wFE − wLeg.)

2dxdy∫ 2Lx

0

∫ 2Ly

0

√
u2

FE + v2
FE + w2

FEdxdy
× 100. (38)

The largest difference in terms of displacements is ∼0.22%, localised at the edges of the shell
and any further increments of n do not lead to any significant improvement of results.

4.2 Case-Study 2: Tristable Shell

In this section, the proposed model is validated against the work done by Vidoli [14] on a ini-
tially doubly-curved shell having layup [45,−45,−45, 45,−45, 45, 45,−45] which provides a tristable
behaviour. The shell has free-free boundary conditions, it is clamped in the middle and it has a
0.25 m × 0.25 m squared planform with a ply thickness of 0.125 mm.

As already mentioned in Section 1, the work done by Vidoli [14] investigates the tristable
behaviour of a thin shell, assuming constant, linearly and quadratically-varying curvature over
the surface. As stated from the author, the aim of this study is to provide an efficient tool for
the qualitative analysis and the quick parametric study of multistable shells, with an intrinsic
renounce to highly accurate results. The model is extremely efficient in terms of computational
cost to capture the three stable configurations, using just two degrees of freedom. However, the
low number of degrees of freedom allows the boundary conditions to be solved just on average,
with a consequence loss of accuracy of results especially in the boundary layer regions. In this
Section, while we validate the model against Vidoli [14], we also show how to satisfy point-wise the
boundary conditions, keeping the computational cost at a relatively low level.

The proposed model has been validated against an FE simulation we performed using ABAQUS.
The shell is modelled using 8100 S4R ABAQUS elements with a total of 8281 nodes. The snapping
from the undeformed configuration into the two deformed configurations has been modelled sep-
arately in two different simulations. In the first simulation, the shell deforms from the initial
undeformed configuration, denoted as stable states 1 (SS1), into the second stable configuration
denoted as stable state 2 (SS2). In the second simulation, the shell deforms from (SS1) to the
stable state 3 (SS3). In each simulation, we set three Static-General steps, with Nlgeom on. In
the first step, the predicted deformed shape (SS2 or SS3) has been imposed over SS1 in terms of
displacements w. In the second step, the predicted displacements have been imposed just to the
four middle points of each side of the shell, which is free to deform elsewhere. In the third step, no
external displacements have been imposed, so that the shell is free to deform, finding its natural
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Figure 2: Displacements w of two adjacent corners of the cylindrical shell as function of temperature.
The dotted and bold line in the figure correspond to any two adjacent corners of the shell. From cure
temperature to the first bifurcation point at 124◦C, the shell has a cylindrical configuration and any two
adjacent corners displays the same out-of-plane displacement. In the region between the first bifurcation
point and the second bifurcation point located at 54◦C, the shell assumes a twisted configuration, hence
two adjacent points display different out-of-plane displacements. By decreasing the temperature below the
second bifurcation point, a new cylindrical configuration appears, orthogonal to the initial one. The Figure
shows the convergence of the results given by the various order of the Legendre polynomials compared to the
FE analysis. Results provided by using the sixth order of the Legendre polynomials (n = 6) are in excellent
agreement with the FE, and any further increment of n does not lead to any significant improvement.
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Figure 3: Difference in w between FE Static-General and the order 6 of the present model, for the three
characteristic configurations at 0◦C, 90◦C and 180◦C.

equilibrium configuration. This process avoids the need of introducing static dissipation to reach
convergence, hence the FE simulations provides high accuracy and reliability of results.

Table 3 shows the out-of-plane displacement w of a corner of the shell as function of the order
n of the Legendre polynomials. Results are in excellent agreement with FE and convergence is
reached for n=5 and for a 29×29 Chebyshev-Gaus-Lobatto mesh grid.

In order to show the three stable configurations of the shell, in Figure 4 we present some of
the results obtained using the second order Legendre polynomial (n = 2). The choice of using the
solution given by n=2 allows the energy to be plotted against the only two non vanishing Legendre
parameters q02 and q20, which play the role of constant curvatures for n = 2. The contour plot of
the energy shows three points of local minima, corresponding to the three stable configurations.
This plot is similar to the one present in Vidoli et al. [16] for an initially doubly-curved shell.

In Figure 5, the three stable configurations obtained using the fifth order Legendre polynomials
are shown. The contour plots reported onto each shape correspond to the difference in terms
of displacements with respect to the FE simulation. Results are in excellent agreement, with a
negligible difference of ∼0.8% at the corners of SS3. This order of accuracy is particularly due to
the flexibility of the Legendre polynomial and to the boundary conditions solved point-wise. As
already described in Section 2.2.2, the boundary conditions of zero force and zero shear normal
and tangent to the edges of the shell need to be introduced in the differential operator L̃ expressed
in equation (35). The differential operator L̃ is obtained by assembling the differential operators
L̃1, L̃2 and L̃3, and hence it is a 3N2 ×3N2 matrix containing the DQM weighting coefficients.
Each edge of the shell upholds two boundary conditions, i.e. the normal and the shear stress
resultants. Hence, eight equations have to be add to L̃, which becomes a rectangular matrix
having dimensions (3N2+8N)×3N2. This guarantees the boundary conditions to be implemented
in a point-wise fashion, with a negligible rise of the computational cost, since L̃ is a sparse matrix
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Figure 4: Contour plot of the total strain energy as function of the curvatures q02 and q20. The insets show
the three points of local minima, corresponding to the three stable states SS1, SS2 and SS3.

Table 3: Out-of-plane displacement w of a corner of the tristable shell as function of the order n of the
Legendre polynomials.

Polynomial Order SS1 w SS2 w SS3 w
[m] [m] [m]

2 -0.1148 -0.08721 0.05533
3 -0.1148 -0.08725 0.05591
4 -0.1148 -0.08730 0.05623
5 -0.1148 -0.08731 0.05624

FE -0.1148 -0.08732 0.05671

and the membrane stress resultants Ñ are still obtained by simply pseudo-inverting L̃, as in
equation (37).

Table 2: Material properties for the [45,−45,−45, 45,−45, 45, 45,−45] laminate.

E11 E22 G12 ν12

[GPa] [GPa] [GPa] [−]

207 5.17 2.59 0.25

4.3 Case-Study 3: Snap-Through Load

In this section, the proposed model is validated against the work done by Pirrera et al. [7] on the
bistability of thin unsymmetric cylindrical plates. In particular, here we focus on the ability of our
model in capturing the snap-through load in the bistable region. As illustrated in Diaconu et al. [42]
and Pirrera and al. [7], a high number of degrees of freedom is necessary in order to accurately
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(c) Position error for SS3.

Figure 5: Difference in terms of displacements between FE Static-General and the order 5 of the present
model, for the three stable states SS1, SS2 and SS3.

capture the value of the snap-through load, with a consequent loss of computational efficiency.
In particular, in Pirrera et al. [7], it was necessary to increase the order of the set of complete
polynomial approximation up to 11, corresponding to 62 degrees of freedom. This gives an error of
just the 5% with respect to the results obtained from the FE model, used as benchmark. However,
as stated from the authors, this level of accuracy required an extremely high computational cost,
and any further increment of the order of the polynomial approximation was unfeasible.

Here we show the efficiency of our model in capturing the snap-through load for the thin
unsymmetric [02/902] plate proposed by Pirrera et al. [7]. Material properties are listed in Table 4.
The plate is clamped in the middle node, it has a 0.25 m × 0.25 m squared planform and the ply
thickness is 0.131 mm. Four corner forces have been applied along the z-axis, and equation (26)
of the total potential energy is amended accordingly by adding the contribution of the external
force. The cooling down process from curing to room temperature has been simulated by applying
a thermal gradient of ∆T=−180◦C. The plate is initially flat and no external loads are applied. At
room temperature, the plate is in its bistable region and an external load has been progressively
applied up to the snapping point, where the unstable solution appears. The stability scenario
has been evaluated through the Hessian of the energy with respect to the Legendre parameters.
Figure 6 shows the force-displacements diagram at ∆T=−180◦C, corresponding to the region of
bistability. The order of the Legendre polynomials has been increased up to convergence, as shown
in Table 5. The insets of Figure 6 clearly shows that the solution given by n=6 (49 degrees of
freedom) approaches the FE closer than the solution obtained in Pirrera et al. [7].

From this case study, the efficiency of the proposed model is particular evident, since the value of
the snap-through load has been captured with greater accuracy and using fewer degrees of freedom
compared to the solution found using standard polynomial basis functions [7].
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Table 4: Material properties for the unsymmetric [02/902] laminate.

E11 E22 G12 ν12 α11 α22

[GPa] [GPa] [GPa] [−] [10−6/◦C] [10−6/◦C]

161 11.38 5.17 0.32 -1.8 3
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Figure 6: Force-displacement diagram at various approximation orders of the Legendre polynomial com-
pared to the results of reference [7]. The comparison in proximity of the snapping load is reported in the
insets. Solid and dotted lines represent the stable and the unstable solutions, respectively. The applied
thermal gradient is ∆T=−180◦C.

Table 5: Snapping load at various orders of Legendre polynomial compared with the results of reference [7].

Polynomial Order Number of unknowns Load Error
[N] [%]

Legendre 2 9 4.98 48.6
Legendre 3 16 4.32 28.9
Legendre 4 25 3.97 18.51
Legendre 5 36 3.65 8.96
Legendre 6 49 3.42 2.1
11, ref. [7] 62 3.51 5
FE, ref. [7] 15606 3.35 -
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5 Conclusions

By exploiting anisotropy of composite materials along with the inherent geometric nonlinearity
of curved shells, these structures display unique and interesting behaviours, including multistability
and temperature-triggered shape-morphing capability. In this paper, we have presented a robust
and accurate energy-based semi-analytical model to describe the multistable behavior of laminate
shells for morphing applications. The key step of the proposed method is the decoupling of the
total strain energy into the stretching and bending contributions.

The validation of the proposed model against available benchmark results showed how the
correct evaluation of the membrane and bending components of the total strain energy influences
the accuracy of the results. This accuracy has been achieved by using Legendre polynomials to
approximate the transverse displacements and by discretising the membrane problem using the
DQM. Moreover, the membrane stress resultants have been evaluated by simply inverting a sparse
matrix of weighting coefficients. This operation keeps the computational cost to acceptably low
levels and it allows the boundary conditions to be satisfied in a point-wise fashion.

The main advantages of the proposed model are summarised as follows:

• Accuracy of results: By using Legendre polynomials to approximate the transverse displace-
ments, we have been able to capture accurately the values of the membrane and of the bending
components of the total strain energy, as it is evident from the comparison with Eckstein et
al. [11].

• Boundary conditions satisfied point-wise: The discretisation of the membrane problem using
the DQM permits the satisfaction of the boundary conditions in a point-wise fashion, as
opposed to a weak form [14].

• Computational efficiency : The membrane problem has been solved combining compatibility
conditions and equilibrium equation. This keeps the computational cost at acceptably low
levels since the resulting differential operator is a sparse matrix of DQ weighting coefficients.
The efficiency is particularly evident from the ability to capture the snap-through load with
greater accuracy and using fewer degrees of freedom compared to the solution found by using
standard polynomial basis function [7].
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