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ABSTRACT: Projector-based embedding has recently emerged as a
robust multiscale method for the calculation of various electronic
molecular properties. We present the coupling of projector embedding
with quantum mechanics/molecular mechanics modeling and apply it
for the first time to an enzyme-catalyzed reaction. Using projector-based
embedding, we combine coupled-cluster theory, density-functional
theory (DFT), and molecular mechanics to compute energies for the
proton abstraction from acetyl-coenzyme A by citrate synthase. By
embedding correlated ab initio methods in DFT we eliminate functional
sensitivity and obtain high-accuracy profiles in a procedure that is
straightforward to apply.

■ INTRODUCTION

Electronic structure calculations are becoming essential for
identifying and testing reaction mechanisms in enzymes1,2 and
are finding ever wider application in biology and biochemistry.
To reach accurate chemical results in biological systems a
common approach is to combine a quantum mechanics (QM)
treatment of the reacting center of an enzyme combined with a
molecular mechanics (MM) approach for the enzyme environ-
ment (QM/MM).1,3,4 Such calculations allow for the
examination of short-lived species, such as transition states
and reaction intermediates, that are often not directly accessible
through experimental methods.5,6

It is known that for some enzyme reaction mechanisms
Hartree−Fock (HF) theory can give barriers up to two times
higher than experiment.4,7 Second-order Møller−Plesset
perturbation theory (MP2) is more accurate, but tends to
underestimate barriers.8,9 Density functional theory (DFT) is
an attractive alternative, but its accuracy can be hard to predict,
and often it is useful to validate models against coupled-cluster
calculations.10,11 Reliable calculations require high-level meth-
ods: “chemically accurate” (within 1 kcal mol−1 of experiment)
predictions of reaction barriers require coupled-cluster theory.
Such accurate QM calculations are possible using local coupled
cluster methods (e.g., LCCSD(T0)).4,7,12 An alternative is to
use (nonlocal) spin-component-scaled MP2 (SCS-MP2)13 in
QM/MM calculations,14,15 as this method correlates reasonably
well with LCCSD(T0) results for reaction barriers, often
compensating for the underestimation of MP2.7,12

DFT is successfully used as an efficient QM method in many
research communities, but picking the “right” approximate
exchange-correlation functional can be problematic, and many
popular approximations lead to considerable errors in

calculated reaction barriers.7−9 Despite ongoing improvements
to density functional approximations,16−21 the choice of
functional can strongly affect the calculated result.22−24 While
in some cases DFT errors may be limited to underestimation of
energy barriers for reactions, in others, barriers may be
overestimated. In some cases, DFT with many standard
functionals leads to qualitatively incorrect conclusions, for
example by predicting the wrong mechanism for some enzyme-
catalyzed reactions.9,25 DFT can also give poor prediction of
spectroscopic properties in transition-metal complexes, such as
spin-state and zero-field splittings, and g-tensors.26−28 Ab initio
methods have the potential to be more accurate.28

In contrast to ab initio wave function methods, no scheme for
systematic improvement of DFT has been found. Most
functionals lack an inherent description of van der Waals
interactions arising from dispersion (although various correc-
tions are available to overcome this; the most commonly used
is the empirically corrected B3LYP-D and related var-
iants29−31). Inclusion of dispersion effects has been shown to
improve DFT results for modeling enzyme-catalyzed reac-
tions.15,32−34 Also, the self-interaction error in DFT can result
in unphysical delocalization of orbitals.35−37 Ab initio theories
remove ambiguity in the choice of functional and improves the
predictive power of QM/MM reaction calculations. Ideally,
approaches to remove such ambiguity should fit in with
standard workflows and have a low overhead for adoption.
For large systems such as proteins even the relatively low

scaling of DFT38,39 or local correlation methods becomes a
problem, although linear scaling implementations are avail-
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able.40 Two routes around this are possible: the system can be
truncated into a model system with the assumption that the
removed moieties do not affect the electronic structure, or one
can utilize a multiscale approach that is capable of combining
speed and accuracy with the aim of capturing the majority of
long-range effects. The most common multilevel approach is
the QM/MM approach pioneered by Karplus, Warshel, and
Levitt.1,3,41,42 Many applications of this approach in bio-
molecular systems use DFT in a subsystem of chemical
significance for the highest accuracy energy calculations, while
the rest of the system is treated with a low-cost MM empirical
“force field”. The coupling between the regimes is typically
achieved by polarizing the QM one-electron Hamiltonian by
the MM point charges and using (MM) Lennard-Jones terms
for van der Waals interactions.1,42 This simple QM/MM
approach can give good results for biomolecular interactions43

and reactions.4 It can be necessary to optimize Lennard-Jones
parameters for QM/MM interactions44 and the consistency and
compatibility of QM and MM methods should be considered.45

In some cases artifacts can arise in QM/MM, such as
overpolarization due to the point charge approximation,
although newer force fields are actively being developed.46−48

While it is common to check that answers are converged with
respect to the size of the quantum subsystem,49 it does not
guarantee that the quantum method has captured the
underlying chemistry.15,25,50 We aim to address this by
highlighting a method to calculate high-level quantum chemical
properties, which also provides an accurate description of the
environment through quantum polarization that is obtained
from standard DFT.
Wave function (ab initio) methods allow for precise

conclusions to be drawn about mechanistic pathways and
spectroscopic assignments. Another attractive feature is that
wave function methods allow for an easy interpretation of the
sources of error due to their systematic improvability. Wave
function methods such as the complete active space self-
consistent field (CASSCF) method are able to tackle strongly
correlated problems such as when a near degeneracy of the
HOMO−LUMO (highest occupied molecular orbital−lowest
unoccupied molecular orbital) occurs (i.e., bond stretching and

transition metal complexes), which are usually out of the reach
of DFT.28 The cost of utilizing accurate wave function methods
such as the gold standard CCSD(T) is that they scale poorly
with system size (N7). While approximations exist that take
advantage of the local nature of correlation to significantly
improve scaling,51−53 it is attractive to have a method that can
return accurate properties for all post-HF methods from MP2
all the way up to full configuration−interaction without
strongly scaling cost with the size of the surrounding
environment.
Several methods exist that are forms of quantum embedding:

a simple example is the frozen core approximation for wave
function correlation.54 Embedding methods can be constructed
using the one-particle density matrix,55,56 Green’s functions,57

or, in a DFT formalism, the electronic density.58−63 An
alternative is to use region-based local coupled-cluster
methods.64

This work focuses on the use of a conceptually simple and
computationally cheap embedding technique that uses
projection operators to exactly embed high-accuracy wave
function methods inside DFT potentials, here called WF-in-
DFT; further we incorporate this embedded treatment of the
active site into an MM treatment of the wider protein
environment. This multilevel approach enables us to utilize
the most accurate wave function methods for chemically critical
regions (subsystem A; see Figure 1), more approximate DFT
methods (subsystem B) for chemical moieties that are not
directly involved in the reaction but that can affect the
electronic structure of subsystem A, and MM for the longer
range effects from the protein environment (subsystem C).
For this study, we examine a well-characterized enzyme-

catalyzed reaction, which has become a testbed for computa-
tional modeling,7,9,65−67 namely the deprotonation of the acetyl
coenzyme A (acetyl-CoA) in citrate (Si-)synthase. Overall this
reaction forms citric acid from acetyl-CoA and oxaloacetate, the
first step of the citric acid cycle. Citrate synthase is crucial for
most forms of life, and it has been studied extensively both
experimentally68−71 and computationally.7,9,65−67 The first step
in the reaction mechanism of citrate synthase involves proton
abstraction from the α-carbon of acetyl-CoA by an aspartate

Figure 1. Transition state structure of the first step in the reaction catalyzed by citrate synthase: proton abstraction from acetyl-coenzyme A by
Asp375.7 Left: The model of chicken citrate synthase used in this study (truncated to a 15 Å sphere, and previously optimized at the B3LYP/6-
31+G(d,p)//CHARMM27 level). The protein environment (treated with MM) is depicted with bonds as lines (carbon atoms in green) and
encompassing subsystems A, B, and C. Right: The QM subsystem with the densities of subsystem A are highlighted in red and of subsystem B in
blue.
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residue (Asp375, in the numbering for the pig enzyme). The
enolate intermediate that is thus formed7,67 then performs a
nucleophilic attack on the carbonyl carbon of oxaloacetate,
forming a stable citryl-CoA intermediate. Finally, hydrolysis of
the thioester bond produces citrate and coenzyme A. For
efficient catalysis of the overall reaction, stabilization of the
enolate intermediate by the enzyme active site is crucial.7,9

Here, we examine the performance of WF-in-DFT calculations
coupled to molecular mechanics calculations, leading to
unprecedented canonical CCSD(T)-level QM/MM calcula-
tions on an enzyme catalyzed reaction.

■ THEORY

To embed wave function methods in DFT, we utilize a
projector-based embedding scheme that has the property that
the DFT-in-DFT (e.g., PBE-in-PBE) energy is the same as the
full DFT calculation.72 This is achieved without having to resort
to numerically challenging, iterative procedures such as
optimized effective potentials.59−63 A further advantage of
this method is that it only requires modification of the core
Hamiltonian, so practically any wave function method can be
used in the high-accuracy subsystem.
The total electronic density (ρT) can be directly partitioned

into subsystem contributions as

ρ ρ ρ= +T A B (1)

The DFT energy decomposes into contributions from the two
subsystems and a nonadditive component that describes the
interaction between them:

ρ ρ ρ δ ρ ρ= + +E E E E[ ] [ ] [ ] [ , ]T A B A B (2)

The nonadditive component is made up of the nonadditive
Coulomb, kinetic, and exchange-correlation energies; of these
terms, the kinetic energy is the most challenging contribution.72

Although methods exist to calculate this term, they are either
expensive59−63 or are not yet accurate enough to be used for
partitions that cut covalent bonds.73−77

In projector-based embedding72,78−82 the requirement to
calculate the kinetic energy contribution is avoided by
constructing the subsystem densities from orthogonal subsets
of orbitals: thus, the nonadditive kinetic energy interaction is
exactly zero. In our implementation, orthogonality is achieved
by applying a projection operator that elevates all subsystem B
orbitals to high energy, making them unavailable to the
electrons of subsystem A. The subsystem-A core Hamiltonian is
given by

ρ ρ ρ ρ ρ

ρ μ

= + − +

− + +

h h J J v

v P h

[ , ] [ ] [ , ]

[ ]

A in B in C A B A
xc

A B

xc
A B

QM/MM
C

(4)

where h is the original core Hamiltonian; J[ρA, ρB] − J[ρA]
describes the Coulomb interaction with electrons of subsystem
B; vxc[ρ

A, ρB] − vxc[ρ
A] similarly describes the exchange

correlation interaction; PB is the projector onto orbitals in B; μ
is a large, positive parameter; and hQM/MM

C is the usual
Hamiltonian describing electrostatic interaction with the MM
charges in subsystem C.
The total energy for a WF-in-DFT calculation is given by
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(5)

where hA in B in C is the embedding Hamiltonian in eq 4 used by
the high-level wave function method; the central terms describe
a correction for exchange-correlation double-counting;72 and
EQM/MM
coupling and EMM

C are the QM/MM contributions from
subsystem C.
The canonical Kohn−Sham orbitals tend to be delocalized

over the system, so to define subsystems the orbitals are first
localized and then automatically assigned to atomic centers by
population analysis. Previous work has shown that the intrinsic
bond orbitals (IBOs) of Knizia83 provide reliable and
chemically meaningful localized orbitals.78

To substantially reduce the size of the virtual space in the
WF calculation on subsystem A, we also use basis truncation to
reduce the number of two-electron integrals (and wave
function amplitudes) in a systematic and controllable fashion.78

Asymptotically, this leads to the computational cost of the high-
level calculation in subsystem A becoming independent of the
size of the environment. Two truncation methods are
available:78,81 we use the form proposed by Bennie et al.78 A
single parameter based on the net Mulliken population is used
to screen atomic orbitals; for various chemical systems we were
able to achieve submillihartree truncation errors with the
threshold set to 10−4.
The procedure for CCSD(T)-in-DFT/MM requires only the

definition of atomic centers in the active (A) subsystem as an
extra step in the input. Overall, the procedure takes the
following form:

1. Take a molecular structure (e.g., previously optimized
with QM/MM).

2. Perform single point DFT on the QM subsystem (A+B).
3. Localize the orbitals.
4. Select the atoms to be in subsystem A for the high level

(e.g., CCSD(T)) calculation.
5. Perform high-level (e.g., CCSD(T)) calculations on

subsystem A, using the embedding Hamiltonian given in
eq 4, which results in the embedded WF-in-DFT/MM
energy.

■ METHODS
To study the proton abstraction of acetyl-CoA by Asp375 in
citrate synthase with projector embedded QM/MM, we used
previously optimized QM/MM geometries (at the B3LYP/6-
31+G(d)//CHARMM27 level).7 These were obtained by
employing a reaction coordinate defined as RC =
d(CAcetyl‑CoA−H) − d(OAsp375−H). This reaction coordinate
has been shown to represent the reaction pathway accurately
(e.g., by comparison to the nudged elastic band method).7

We used geometries that were obtained between RC = −1.4
Å and RC = 1.4 Å with a step size of 0.1 Å. For the majority of
the calculations, the QM region consisted of the methyl-
thioester part of acetyl-CoA, the side chain of Asp375, and
oxaloacetate (OAA) (see the right-hand side in Figure 1). We
also performed calculations with larger QM regions (regions
2−4 in Figure 4). Single-point QM/MM and WF-in-DFT/MM
calculations were performed using the Molpro 2015.1 software
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package.84,85 The MM energy and QM/MM van der Waals
contributions were taken from the previous B3LYP/6-31+G-
(d)//CHARMM27 calculations.7

All the calculations in this work used the aug-cc-pVDZ or
aug-cc-pVTZ basis sets86−88 for all atoms in subsystems A and
B. QM/MM calculations were performed using the LDA,89,90

PBE,91 B3LYP,92 and BH&HLYP93 functionals, as well as HF
theory, for the QM subsystem. WF-in-DFT/MM calculations
used each of these mean-field methods for subsystem B and
CCSD(T),94,95 MP2,96 SCS-MP2,13 and CCSD levels on
subsystem A.
The smallest QM region size we consider here is the

equivalent of “region 2” in the previous high-level QM/MM
work;7 we designate it as our “region 1”. This selection was
made in order to have a sufficient region to show the effect of
the choice of the functional: here the oxaloacetate molecule is
included in subsystem B because QM treatment of oxaloacetate
has been shown to influence the reaction profile significantly.7

Region 1 is then subdivided into subsystems A and B,
representing the CCSD(T) and DFT subsystems.
When choosing the size of subsystem A in embedding

calculations it is important to ensure that enough electrons are
included to obtain an accurate description of WF correlation in
the reacting moiety. In the present citrate synthase case we use
a selection that we have found to be widely applicable:
subsystem A consisted of the three atoms directly involved in
the reaction, plus all atoms up to two bonds away from these.
This region is shown in Figure 1 in red, and contains 72
electrons, with the sulfur valency satisfied in the embedded
calculation by including the covalent bond with the methyl
group. The 1s, 2s, and 2p electrons on the sulfur atom were
treated as core electrons and were not correlated in the post-
HF methods. All other electrons, including the 1s electrons on
carbon, nitrogen, and oxygen atoms, were correlated. The basis-
set truncation scheme uses a threshold to determine how many
basis functions to discard. With the threshold set to 0 the entire
basis is retained, and as the threshold in increased, more
subsystem B functions are discarded. The threshold values used
for this study were 10−4 and 10−3. All timing comparisons were
conducted in serial on a dedicated workstation with 32GB of

RAM. Density plots were generated by the Molekel 5.4
program97 with an isovalue of 0.05. Enzyme geometries were
visualized using the PyMOL software package.98

■ RESULTS AND DISCUSSION

Previous LCCSD(T0) QM/MM calculations indicate that the
potential energy barrier for the proton abstraction in this
structure is 11 kcal mol−1 at the complete basis set limit.7 The
transition state was found to be between 0.2 and 0.3 Å along
the reaction coordinate. Although the oxaloacetate is merely a
spectator in the enolate formation, it has a strong effect due to
its proximity, and its inclusion in the QM region was found to
be essential (treating it at only the MM point charge level leads
to an increase in barrier height of ∼3 kcal mol−1).66

We first explore the reaction barrier and reaction energies
using various traditional methods. Our selection is broad and
includes the rather primitive local density approximation
(LDA) functional, a general gradient approximation functional
(PBE), two hybrid functionals (B3LYP and BH&HLYP), as
well as HF theory. The resulting energy profiles vary
significantly (Figure 2A) in line with previous work.4,7 For
example, a barrier of 20 kcal mol−1 was found when using HF
while LDA gives a small barrier of 2.5 kcal mol−1. Pure DFT
calculations underestimate the barrier and do not strongly
indicate a minimum for the enolate intermediate. BH&HLYP is
4 kcal mol−1 closer to the HF answer compared to B3LYP,
presumably due to the higher proportion of exact exchange
(50% vs 20%).
Using projector embedding to perform CCSD(T) in

subsystem A (Figure 2B) largely removes the variation due to
choice of functional in subsystem B. Across all methods the
energy profiles are now quantitatively similar, particularly for
the (approximate) activation energy, which has a maximum
variance of 1 kcal mol−1 between B3LYP and HF. Variation for
the reaction energy of the enolate intermediate with respect to
the reactant state is somewhat larger. This variance is due to
HF and LDA, which may be producing poorer oxaloacetate
densities, and thus failing to model the stabilization of the CoA
by the oxaloacetate ketone. The GGA and hybrid functionals
(PBE, B3LYP and BH&HLYP) are in much closer agreement

Figure 2. QM/MM potential energy profiles of the proton transfer from acetyl-CoA to Asp375 in citrate synthase: comparison of different methods
for embedding. Left (A): Results with various traditional DFT methods and HF in subsystems A and B (no correlated wave function method
employed in subsystem A). Center (B): The CCSD(T) embedding barrier with the default basis truncation threshold (10−4) in various DFT
functionals and HF. Right (C): The embedding barrier with an energetically looser (computationally cheaper) truncation of the basis for various
functionals; truncation level 10−3. The basis set was aug-cc-pVDZ in all cases.
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for the reaction energy, with a variation of under 0.4 kcal mol−1,
compared to 6 kcal mol−1 without embedding. Notably, the
locations of the reactant state minima, the transition state
maxima, and the enolate intermediate minima are very
independent of functional in the embedding calculations
(reaction coordinate values of −1.0, 0.3, and 1.0 Å,
respectively). This contrasts to the results without embedding,
with which widespread values are found for the reactant
minimum, between −1.3 (HF) and −0.4 Å (LDA), and for the
product minimum, which ranges between 0.6 and 1.1 Å. This
again highlights the consistency of projector-based WF-in-DFT
embedding compared to traditional DFT.
Previously, LCCSD(T0)/aug-cc-pVDZ//MM energy calcu-

lations with the same geometries (with LCCSD(T0) employed
for subsystems A and B) indicated an activation barrier of 13.2
kcal mol−1 and a reaction energy of 8.4 kcal mol−1. Here,
CCSD(T)-in-DFT calculations with all functionals for the
environment were found to be within 2 kcal mol−1 of
LCCSD(T0) for the activation barrier, and the calculations
using PBE, BH&HLYP, and B3LYP were within 1 kcal mol−1

for the reaction energy. The CCSD(T)-in-DFT methods
resulted in a barrier of between 11.4 and 12.1 kcal mol−1.
This includes CCSD(T)-in-LDA, which in sharp contrast to the
unembedded LDA result has both the correct qualitative shape
for the transition state as well as barrier height. The HF method
resulted in a barrier 0.3−1.0 kcal mol−1 higher than obtained
with the density functionals. A contributing factor to this
difference is probably that the underlying HF method lacks
correlation and therefore provides a poorer embedding
environment; this is also reflected in the HF barrier being a
factor of around two too high in Figure 2A. Using B3LYP and
BH&HLYP as the subsystem B method resulted in reaction
profiles that differed by a maximum of 0.1 kcal mol−1, showing
that the density from a reasonable functional results in almost
identical barriers, despite the intrinsic difference between these
two functionals being up to 4 kcal mol−1.
The basis truncation default of 10−4 reduced the number of

system basis functions from 517 contracted functions to 412,
which corresponds to 62% of the environment (Figure 2B).
The looser threshold (10−3) retains 352 functions, correspond-
ing to 40% of the environment (Figure 2C). We find little effect
on the barrier height despite a reduction in computational cost
by a factor of 2 (averaged over the profile). It should be noted
that the enolate minimum energy differs by, at most, 1.2 kcal
mol−1 for HF, but for PBE and B3LYP is only 0.2 kcal mol−1

higher compared to the tighter truncation threshold of 10−4.
Calculations with a looser threshold (such as 10−3) may be
useful to explore the performance of WF-in-DFT/MM
calculations, but it is advisible to use an energetically tighter
threshold (such as the default 10−4) for final results.
Projector embedding only requires a modified core

Hamiltonian, so it is possible to use essentially any electronic
structure method in subsystem A. We can thus compare how
various approaches to include electron correlation in subsystem
A affect the reaction energy profile (Figure 3; PBE is used in
subsystem B). As expected, the absence of electron correlation
(HF) leads to the largest barrier of 20 kcal mol−1. It should be
noted that HF embedded in PBE (Figure 3) leads to a different
profile than unembedded HF (Figure 2A), this is because HF is
“restrained” by the PBE environment, leading to a decrease of
the barrier height of 1.6 kcal mol−1. When taking CCSD(T) as
the reference, MP2 underestimates the activation and reaction
energies by 1.7 kcal mol−1 and 1.0 kcal mol−1, respectively.

Spin-component-scaled MP2 (SCS-MP2) is more accurate with
activation and reaction energies 0.6 kcal mol−1 and 0.1 kcal
mol−1 higher than CCSD(T), respectively. The relative
performance of MP2 and SCS-MP2 compared to CCSD(T)
is consistent with what was found previously for the same
reaction7 and the two other enzyme reactions studied at this
level,4,12 with (L)MP2 underestimating activation barriers and
SCS-(L)MP2 showing activation barriers close to the LCCSD-
(T0) result. Increasing the basis size from aug-cc-pVDZ to aug-
cc-pVTZ was found to decrease the barrier height by 0.1−0.3
kcal mol−1 and to move the transition state to RC = 0.2 Å for
all methods other than HF.
Previous work by Van der Kamp et al. showed the SCS-MP2

results to be insensitive to the basis size, while the LCCSD(T0)
results were found to be more strongly affected by the size of
basis, changing by up to 1.5 kcal mol−1 with aug-cc-pVTZ. Our
results here agree with the canonical SCS-MP2 of that work, in
that the basis size does not have a large effect on barrier height.
It is possible that the effect of increasing basis set size found
previously for LCCSD(T0) calculations may result from a
coupling between domain completeness and basis-set size. It
has been shown that the basis dependence of LCCSD(T0)/
aug-cc-pVTZ calculations of activation barriers for the
hydroxylation reaction catalyzed by p-hydroxybenzoate hydrox-
ylase can be circumvented by performing LCCSD/aug-cc-
pVTZ with a coupled cluster triples correction in the smaller
(aug)-cc-pVDZ basis but with the same domains as in the larger
basis.12 It may thus be “good practice” to use a large basis with
older domain-based local correlation methods to avoid an
artificially high barrier due to basis-set incompleteness effects,
or more advisably newer local methods with F12 explicit
correlation should be used.99−102

Truncated projector embedding has the attractive property
that the cost of the coupled-cluster calculation is not (formally)
linked to the size of subsystem B, provided that the active
subsystem A density does not become more delocalized over
the system as more fragments are added to subsystem B. The
decoupling occurs because the number of atomic functions
needed to describe the molecular orbitals in the active
subsystem becomes constant as atomic functions on increas-
ingly distant atoms are added. Figure 4 shows that for the
smallest region (encompassing the methylthioester part of

Figure 3. WF-in-DFT/MM potential energy profiles of the proton
transfer from acetyl-CoA to Asp375 in citrate synthase: Effect of
different WF methods. In all cases, the WF method is embedded in a
PBE environment. Left: aug-cc-pVDZ basis on all atoms. Right: aug-
cc-pVTZ basis on all atoms.
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acetyl-CoA, the side chain of Asp375, and oxaloacetate), the
DF-LCCSD(T0), with a noniterative perturbative treatment of
triple excitations,103 has a lower cost than embedded-coupled
cluster with full perturbative treatment of triple excitations (T).
Once the region grows to encompass over ∼800 basis
functions, the lack of coupling to the environment size means
that embedding remains moderate in cost. When using full
triples, the local coupled cluster (DF-LCCSD(T)) calculation
has a much higher cost.
Despite the fact that embedding provides a reasonable degree

of decoupling between the active subsystem and the DFT
environment, some atomic orbitals from neighboring atoms are
needed, both for flexibility in the active subsystem wave
function, and for proper representation of the projection
operator. This effect can be minimized by using larger basis sets
in the active subsystem78 or by neglecting diffuse functions in
the environment.
The right-hand side plot of Figure 4 shows the effect when

neglecting the triples and doing the embedded CCSD
calculation with direct integral evaluation. Changing from the
density fitted104−106 LCCSD (dashed green) to the full 4-index
integrals (dashed orange) causes a ∼10-fold increase in cost for
the local correlation method. These results indicate that a
similar speedup would be possible if one was to embed a
density-fitted wave function, although the best approach to
obtain optimal scaling would be to use one of the CCSD(T)-
F12107,108 methods that are already available in Molpro with
density fitting. When the truncated basis has large numbers of
virtual functions retained we would expect an embedded
density-fitting regime to offer some advantage. We intend to
explore this in future work along with embedding some state-
of-the-art local methods.

■ CONCLUSIONS
We have shown that projector-based WF-in-DFT embedding,
coupled with basis-set truncation applied to the QM
component of the calculation, can be applied to large
biomolecular complexes, with little additional setup required
relative to conventional DFT-based QM/MM calculations. The
variability of results with respect to choice of approximate

exchange-correlation functional for the reaction profile has been
shown to be largely eliminated by embedding CCSD(T)-in-
DFT, even when CCSD(T) is only applied to a small number
of reacting atoms.
We also found that the basis truncation employed for the

embedding does not affect the barrier height and our results are
in line with previous LCCSD(T0) calculations. An important
aspect of this work is that for larger quantum subregion sizes,
projector embedding has reasonable scaling, meaning that it is
possible to have large amounts of electronic polarization from
DFT without greatly increasing the WF calculation cost.
Second we are able to use any correlation method in the active
subsystem, thus opening up the potential for using powerful
new multireference methods in biomolecular simulations that
call for the treatment of static correlation. CCSD(T)-in-DFT/
MM provides an alternative way to calculate coupled-cluster
level QM/MM reaction pathways that uses established
knowledge about DFT and corrects for its limitations. A
DFT treatment of the environment surrounding the CCSD(T)
system is clearly more accurate than an atom-centered invariant
point charge MM model, for example, because it includes
electronic polarization; thus the effects of the “link” atoms at
the QM/MM boundary will be minimized. Furthermore,
projector embedding can be used in situations where
subsystems cut across all types of bonding. In short, the
projector-embedding technique as applied in combination with
QM/MM calculations provides an attractive approach for
calculations on large biomolecular systems, because it has a
simple formulation, is flexible, and makes possible the routine
calculation of CCSD(T)-level energies (e.g., energy profiles for
reactions) and other electronic properties.

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail (S.J.B.): sb13343@bristol.ac.uk.
*E-mail (F.R.M.): fred.manby@bristol.ac.uk.
*E-mail (A.J.M.): adrian.mulholland@bristol.ac.uk.
Present Address
#M.S.: Physics Department, King’s College London, Strand,
London WC2R 2LS UK.

Figure 4. Timing benchmarks for increasing number of basis functions. Left: The molecular moieties encompassed by the increased region size going
from the smallest (region 1) to the largest (region 4). Centre: Timings for single point LCCSD(T0)/aug-cc-pVDZ (with density fitting) and
truncated PBE embedded-CCSD(T)/aug-cc-pVDZ for various region sizes. Right: Integral direct CCSD, density fitted LCCSD, and full 4-index
integral LCCSD under the same benchmarking conditions. Benchmarking was conducted on a dedicated workstation with 32GB of RAM and the
execution was performed in serial on an Intel Core i7−4790K CPU clocked at 4 GHz.
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