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Abstract. For a large ×n m Gaussian matrix, we compute the joint statistics, 
including large deviation tails, of generalized and total variance—the scaled 
log-determinant H and trace T of the corresponding ×n n covariance matrix. 
Using a Coulomb gas technique, we find that the Laplace transform of their 
joint distribution ( )P h t,n  decays for large n, m (with / ⩾=c m n 1 fixed) as 
ˆ ( ) ( ( ))β≈ −P s w n J s w, exp ,n

2 , where β is the Dyson index of the ensemble 

and J(s, w) is a β-independent large deviation function, which we compute 
exactly for any c. The corresponding large deviation functions in real space 
are worked out and checked with extensive numerical simulations. The results 
are complemented with a finite n, m treatment based on the Laguerre–Selberg 
integral. The statistics of atypically small log-determinants is shown to be 
driven by the split-o of the smallest eigenvalue, leading to an abrupt change 
in the large deviation speed.
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1. Introduction

The standard deviation σ of an array of m data Xi is the simplest measure of how 

spread these numbers are around their average value ¯ ( / )= ∑ =X m X1 i
m

i1 . Suppose that 

the Xi’s represent the final ‘Physics’ marks of m students of a high-school. Most wor-
risome scenarios for the headmaster would be a low X̄ and/or a high σ, signaling an 
overall poor and/or highly non-uniform performance.

What if ‘Physics’ and ‘Arts’ marks are collected together? Detecting performance 
issues now immediately becomes a much harder task, as data may fluctuate together 
and in dierent directions. A two-dimensional scatter plot may help, though. The 
‘centre’ of the cloud gives a rough indication of how well the students perform on aver-
age in both subjects. But how to tell in which subject the gap between excellent and 
mediocre students is more pronounced, or whether outstanding students in one subject 
also excel in the other?

In figure 1 (Bottom) we sketch two scatter plots of marks adjusted to have zero 
mean. A meaningful spread indicator seems to be the shape of the ellipse enclosing 
each cloud. For example, an almost circular cloud—like School 1—represents a rather 
uninformative situation, where your ‘Arts’ marks tell nothing about your ‘Physics’ 
skills, and vice versa. Conversely, a rather elongated shape—like School 2—highlights 
correlations between each student’s marks in dierent subjects.

For a bunch of many scattered points it would be desirable to summarize the overall 
spread around the mean just by a single scalar quantity, like the perimeter or area of 
the enclosing ellipse. Not surprisingly, however, these indicators (taken individually) 
have evident shortcomings [30]. Surely a wiser choice is to combine more than a single 
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spread measure (like perimeter or area alone), to obtain a more revealing indicator. 
These issues arise naturally in multivariate statistics, and more mathematical tools and 
techniques are required compared to the univariate setting.

In this work, we compute the joint statistics of ‘perimeter’ and ‘area’ enclosing 
clouds of random high-dimensional data. Why this is a crucial (and so far unavailable) 
ingredient for an accurate data analysis will become clearer very shortly.

In the more general setting of n subjects and m students, their marks can be 
arranged in a ×n m matrix X , adjusted to have zero-mean rows. We then construct the 

normalized ×n n covariance data matrix ( / ) †=S XXn1 , with non-negative eigenvalues 

( )λ λ…, , n1 , which is precisely the multi-dimensional analogue of the variance σ2 for a 
single array. The surface and volume (‘perimeter’ and ‘area’ in the two-dimensional 
example) of the enclosing ellipsoid are related to the scaled trace and determinant of S:

/= =S ST
n

G
1

Tr and det .n1
 (1)

In statistics, these objects are called total and generalized variance respectively [2]. As 
discussed before, blending both estimators together would be preferable, like in the 
widely used positive scalar combination

= − −L T H 1, (2)
called likelihood ratio [2], where H is the log-determinant of S

= = SH G
n

ln
1

Tr ln . (3)

Values of L for dierent shapes of the data cloud are sketched in figure 1 (Bottom).

Figure 1. Top: sketch of the probability density of the likelihood ratio L of a 
Gaussian iid data set. In yellow, the typical region around the mean of order 

( / )O n1 . Larger fluctuations are referred to as atypical large deviations. Bottom: 
sketch of two multivariate data sets with n  =  2 and m  =  35. Each point represents 
a student, for two dierent schools, and his/her marks in Arts and Physics. The 
two datasets have same generalized variance H, but dierent total variance T. The 
likelihood ratio L of school 1 is compatible with the iid hypothesis, while the value 
of L for School 2 is atypically far from the average L .

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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Now, suppose that we wish to test the hypothesis that the data Xij (yielding a cer-
tain empirical L) are independent and identically distributed. What if an atypically high 
or low L (with respect to a null i.i.d. model) comes out from the data? We would be 
tempted to reject the test hypothesis outright. However, this might lead to a misjudg-
ment, as atypical values of L for the null model can (and do) occur ( just very rarely). 
What is the probability of this rare event? Here we provide a solution to this problem, 
computing the joint statistics of total and generalized variance for a large Gaussian 
dataset.

The derivation of these results relies on techniques borrowed from statistical 
mechanics and random matrix theory (RMT). We express the large deviation functions 
of spread indicators as excess free energies of an associated 2D Coulomb gas, whose 
thermodynamic limit is analyzed in the mean-field approximation valid for → ∞n m,  
with m/n  >  1 fixed. This approach is complemented with a finite n, m analysis based on 
the ‘Laguerre’ version of the celebrated Selberg integral. The marriage between these 
two techniques provides an elegant solution to a challenging problem. In addition, our 
unifying framework recovers and extends some partial results earned by statisticians 
via other techniques.

The article is organized as follows. In section 2 we introduce the notation and we 
summarize our main results. We then elaborate at length on its consequences. Finally, 
we briefly discuss the relation of our findings with earlier works. Section 3 contains 
the derivations. First we summarize the ‘Coulomb gas method’ and we present a quite 
general algorithm to find the large deviation functions of linear statistics on random 
matrices (section 3.1). Then, in section 3.2 we turn to the actual proof. In section 4 
we discuss two issues that are not captured by the Coulomb gas method. Finally we 
conclude with a summary and some open questions in section 5.

2. Setting and formulation of the results

We consider an ensemble of ×n m matrices X  whose entries are real, complex or qua-
ternion independent standard Gaussian variables3, labeled by Dyson’s index β = 1, 2 
and 4 respectively, and we form the ×n n (real, complex or quaternion) sample covari-
ance matrix

†=S XX
n

1
. (4)

This ensemble of random covariance matrices (positive semi-definite by construction) 
is known as the Wishart ensemble [55] with rectangularity parameter / ⩾=c m n 1. 
Remarkably, in the Gaussian case, the joint probability density ( )λ λ…P , , n1  of the posi-
tive ( )O 1  eigenvalues of S is known explicitly [2, 25]

P
Z

( ) [ ] ( )[ ] ∑ ∑λλ λ λ λ λ… = = − | − | +λβ−

≠

E n V, ,
1

e ,
1

2
ln ,n

n

E

i j

i j

k

k1 (5)

3 The assumption of independence is not restrictive. If the entries of X  are centered correlated Gaussian variables 
with positive definite covariance matrix Σ our methods can be applied to the matrix SΣ Σ− −1/2 1/2.

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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where the energy function [ ]λE  contains the external potential

( )       (   ⩾     )

 

⎧
⎨
⎪

⎩⎪
λ

λ
α λ λ α λ α α

β
= − > > =

+∞
=

−
+ −V

c

n n
2

ln for 0 if 0 or 0 if 0

otherwise

with
1

2

1

2

1
.

 
(6)

The normalization constant [ ]∫ λ= λβ−Z e dn
E  is also known for any finite n from the 

celebrated Selberg integral [3, 26, 45]. The joint law of the eigenvalues (5) is the 
Gibbs–Boltzmann canonical distribution of a 2D Coulomb gas (logarithmic repulsion) 
constrained to stay on the positive half-line and subject to the external potential V 
at inverse temperature β (we adopt the usual physical convention that probabilities 
are zero in regions of infinite energy). As we shall see, the derivation of our result is 
independent of the restriction β = 1, 2 or 4. Therefore, from now on we shall consider 
non-quantized values4 β> 0.

We consider the scaled log-determinant H and trace T of the covariance matrix S. 
In terms of the eigenvalues λ λ…, , n1 , they read

∑ ∑λ λ= =
= =

H
n

T
n

1
ln and

1
.

i

n

i

i

n

i

1 1
 (7)

Their joint probability law and Laplace transform are denoted respectively by

( ) ( ) ( ) ( ) ( )δ δ= − − = β− +�P Ph t h H t T s w, , , e ,n n
n sH wT2

 (8)

where the average is taken with respect to the canonical distribution of the eigenvalues 

(5). Here we are interested in the large n behavior of ( )P h t,n  and ( )�P s w,n  at logarithmic 
scales. More precisely, we show that for large n

( ) ( )( ) ( )≈ ≈β β− Ψ −�P Ph t s w, e and , e ,n
n h t

n
n J s w, ,2 2

 (9)

where ≈a bn n stands for / →a bln ln 1n n  as → ∞n .
The functions ( )Ψ h t,  and J(s, w) are called rate function and cumulant generating 

function (GF) respectively [21, 51]. It is a standard result in large deviation theory that 
the functions ( )Ψ h t,  and J(s, w) in (9) are related via a Legendre–Fenchel transformation.

Here we compute explicitly, for all β> 0 and / ⩾=c m n 1, the cumulant GF

( ) ( )
→ β

= −
∞

�PJ s w
n

s w, lim
1

ln , .
n

n2 (10)

From now on we shall denote sc  =  (c  −  1)/2. The main results of the paper are as 
follows.

A (Joint large deviation function of generalized and total variances). Let 
( )λ λ…, , n1  be distributed according to (5)–(6) and let H and T as in (7). Their joint cu-
mulant generating function J(s, w) defined by (10) exists for ⩽s sc and w  >  −1/2 and is 
given by

( ) ( ) ( ) ( )= + − +J s w J s J w s w, ln 1 2 ,H T (11)
4 Eigenvalues obeying the Wishart statistics with general β> 0 can be generated eciently using Dumitru–Edelman 

tridiagonal construction [19].

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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where JT (w) and JH (s) are the individual GF of cumulants of T and H. They are given 
explicitly by

( ) ( ) ( ) ( )
→ β

φ φ= − = − − −
∞

�PJ s
n

s s s slim
1

ln , 0 ,H
n

n c c2 (12)

( ) ( ) ( )
→ β

= − = +
∞

�PJ w
n

w
c

wlim
1

ln 0,
2

ln 1 2 ,T
n

n2 (13)

with ( ) ( ) ( )( )φ = − + − − −−
x x x x xln 2 ln 1 2

x3

2
2 1 2

4

2

 for ⩽x 0.

We first discuss some consequences of this result. The derivation is postponed to 
section 3.

Remark 1. The large deviation functions J(s, w), JH(s) and JT(w) are independent of 
β. This property is standard for 2D Coulomb gas systems.

Remark 2. The joint cumulant GF is not the sum of the single generating functions: 
( ) ( ) ( )≠ +J s w J s J w, H T  (T and H are not independent for large n).

Remark 3. For c  >  1 the GF is analytic at s  =  w  =  0 and the joint cumulants of T 
and H are obtained by evaluating the derivatives of J(s, w) at (s, w)  =  (0, 0). More pre-
cisely, to leading order in n for ⩾κ �, 0

β= −
∂

∂ ∂
|κ

κ
κ

κ
− +

+

= =C H T n
s w

J s w, , .s w,
2 1

0( ) ( ) ( )ℓ
( ℓ)

ℓ

ℓ (14)

Note that J(0, 0)  =  0. Extracting the first cumulants, we obtain to leading order in n

( ) ( )= = − − − − +T c H c c c c, 1 1 ln 1 ln , (15)

( )
( )

( )
( )

( )
( )ω ω ω

= =
−

=
β β β

T

n
c

H

n

c

c

T H

n

var

, 2
,

var

, 2
ln

1
,

cov ,

, 2
1, (16)

where we set ( ℓ) ( )ℓω β=β
−n n, 2/ 2 1. The correlation coefficient ( )( ) ( ) ( ) =H T T Hcov , / var var   

( ( ))−c c c1/ ln / 1 , independent of β, is positive for all values of c (if the ‘area’ increases, 
typically so does the ‘perimeter’). Notice that the expression of ( )Hvar  does not cover 
the case c  =  1 (square data matrices). This case will be treated separately in section 4.

The decay of the higher order mixed cumulants ( )κ �C H T,,  for κ+ >� 2 is given to 
leading order in n by

( ) ( ℓ){( ) [( ) ( ) ]  (ℓ ) (ℓ ) }ℓ ℓω κ κ δ δ δ= + − − − − + − + −κ β
κ κ

κ κ
− −C H T n c c c, , 3 ! 1 1 ! 1 ! .,

2 2
,0 ,0 ,1

 
(17)

Remark 4. The marginal probability densities δ= −h h HHP ( ) ( )  and δ= −t t TTP ( ) ( )   
behave as

( ) ( )( ) ( )≈ ≈β β− Ψ − ΨP Ph te and e ,H
n h

T
n tH T

2 2

 (18)

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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where ( )Ψ hH  and ( )Ψ tT  are the individual rate functions of T and H. These individual 
rate functions should also be in principle computable as inverse Legendre–Fenchel 
transform of (12) and (13). However, for the scaled log-determinant H this is only pos-
sible for ‘not too small’ values (h  >  −1); this point will be discussed in more details in 
section 4. The expression of ( )Ψ tT  in the full range is instead remarkably simple

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠Ψ =

−
+ >t

t c c c

t
t

2 2
ln , 0 .T (19)

This analytic function is strictly convex and positive and it attains its unique minimum 
(zero) at t  =  c (the asymptotic mean value of T, see (15)). This rate function provides 
information on the large n full probability density of T. We can identify three regimes:

 (i) typical fluctuations of order ( / )O n1  about the average are described by the quadratic 
behavior of ( )Ψ tT  around its minimum at t  =  c, corresponding to asymptotically 
Gaussian fluctuations with mean and variance as in (15) and (16);

 (ii) large deviations for �t c (atypically large ‘perimeters’) exhibit an exponential 
decay (independent of the rectangularity parameter c);

 (iii) for �t c (atypically small ‘perimeters’) we find a c-dependent power law.

Summarizing:

≈ ∼ ∼

+∞

β

β

β

β

− Ψ − −

−

⎧

⎨
⎪⎪

⎩
⎪⎪

t

t t

t c

t

e

, 0

e ,

e , .

T
n t

n c

n
t c

c

n t

/2

4

/2

T
2

2

2
2

2

P ( )

  ( → ) 

  ( ) 
  ( → )

( ) ( )
 (20)

These predictions have been confirmed by extensive numerical simulations. A sample 
size of about N  =  108 spectra of complex (β = 2) Wishart matrices has been efficiently 
generated using a tridiagonal construction [47]. The data are plotted in figure 2 and 
show a very good agreement with the behavior in (18).

Once the joint large-n behavior of generalized and total variances is known, one 
may easily derive a large deviation principle for any continuous function of them. For 
instance, from ωs,�P( ), it is easy to compute the Laplace transform of the likelihood 

ratio L = T −H −1 as = = −β β−s e s se ,L
n sL n s2 2� �P P( ) 〈 〉 ( ). Hence we have the following 

result.

B (Large deviations of the likelihood ratio). The likelihood ratio cumulant GF is 
given by

( ) ( ) ( ) / ⩽
→ β

= − = − − − <
∞

�PJ s
n

s J s s s s slim
1

ln , for 1 2 ,L
n

L c2 (21)

with J as in (11). With the same notation as above, the cumulants of L at leading order 
in n follow by differentiations

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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δ δ ω θ δ= + − + =
−

− −βC L C T C H C C n1 with ,
!

1
1 ,,1( ) ( ) ( ) ( ) ( ℓ) ℓ

( ℓ)
(ℓ )ℓ ℓ

ℓ
ℓ ℓ ℓ ℓ

 

(22)

(θ is the Heaviside step function) for 1ℓ ⩾ . This corresponds to typical fluctuations on a 
region ( / )O n1  around the mean

( ) ( )= + − − −L c c c c c1 ln 1 ln , (23)

with variance 5

( ) ( ) [ ( /( )) ]ω= + − −βL n c c cvar , 2 ln 1 2 . (24)

Note that, since T and H are not independent, the cumulants (22) of L involve the 
extra term δ �C .

From result A, extracting the asymptotics of the first moments of T and H for �c 1 
we recover classical results in multivariate analysis, valid when the sample size m is 
much larger than the number of variates n.

Figure 2. Numerical simulations (black circles) of complex (β = 2) Wishart 
matrices S of size n  =  15 with c  =  2. Here the sample size is = ⋅N 2.5 108. Left: the 

numerical values (black circles) for the total variance λ= ∑−T n i i
1 . The Gaussian 

approximation (orange line) with average T  (15) and standard deviation 

( )σ = TvarT  (16) fits well the data for fluctuations of order σ∼ 3 T but deviates 

strongly for atypical fluctuations. The global behavior is captured instead by the 
large deviation function (blue line) ( )Ψ tT  of (19). Right: numerical values (black 

circles) for the log-determinant λ= ∑−H n lni i
1 . Again, the Gaussian approximation 

(green line) with average H  (15) and standard deviation ( )σ = HvarH  (16) 
describes well the data for fluctuations of order σ∼3 H but deviates for larger 
fluctuations. The large deviation function (red line) ( )Ψ hH  of (45) provides a global 
description of the data. The critical point h  =  −1 (below which the large deviations 
change speed from n2 to n) is not visible in the picture (for n  =  15 and c  =  2 the 
critical point is at σ∼ 25 H to the left of H ).

5 Again, these results are not valid for c  =  1.

http://dx.doi.org/10.1088/1742-5468/2016/04/043306
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C (Classical statistics). In the regime � �m n 1, T and H become asymptotically 
Gaussian. More precisely, as → ∞c

β β
− −

n

c
T c

cn
H c

2
0, 1 , and

2
ln 0, 1 ,

2 2

N N( ) → ( ) ( ) → ( ) (25)

in distribution, where 0, 1N ( ) denotes a standard Gaussian variable.

To conclude this introductory section, we remark that our findings reproduce some 
known results for the typical fluctuations (mean and variance) of T, H and L separately, 
in the real case (β = 1) [2, 4, 29, 31, 32]. Moreover, the variances and covariances (16) 
and (24) can be computed for generic β using covariance formulae valid for one-cut  
β-ensembles of random matrices [6, 12].

A precious tool in classical statistics is the Barlett decomposition [5], which is 
useful to transform functions of strongly correlated eigenvalues of Wishart matri-
ces (see (5)) into functions of independent (but not identical) chi-squared random 
variables. In the asymptotic regime �m n this decomposition becomes suciently 
manageable to derive some interesting results. For real matrices, the limits (25) 
agree with classical theorems based on the Barlett decomposition (see e.g. [40]). 
From the results on H, the statistical behavior of the scaled determinant =G eH can 
be easily derived. For statistics of determinants of random matrices (more general 
than the sample covariance matrices considered here), see [10, 33, 43, 49]. For more 
details on the classical methods in multivariate analysis we refer to the classical 
books [30, 40] and the excellent review [31] on the applications of RMT in multi-
variate statistics.

3. Derivation

We now turn to the derivation of result A. Results B and C follow as corollaries and 
hence their proof will be omitted. In section 3.1 we set up the variational problem in 
the framework of the 2D Coulomb gas thermodynamics. The Coulomb gas analogy 
for spectra of random matrix ensembles goes back to the seminal works by Wigner 
[54] and Dyson [20]. In particular, it was Dyson who first used this analogy to com-
pute large random matrix statistics. This idea has been developed later and used 
in several areas of physics [8, 9, 11, 13–18, 22, 23, 28, 34–37, 50, 53]. In section 3.2 
we solve the saddle-point equations and we compute explicitly J (s, w), thus proving 
result A.

3.1. 2D Coulomb gas problem

The Coulomb gas calculation goes as follows. First we observe from (5) and (6) that the 
joint Laplace transform (8) is finite for ⩽ ( )α = + −Os s nc

1  and w  >  −1/2. From (5) and 
(7)–(8), this Laplace transform can be written as the ratio of two partition functions

�P Z Z( ) [ ( ) ( )]=s w s w, , / 0, 0 ,n n n (26)
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( ) [ ]∫ λ λ= λβ−�Z s w, d d e .n n
E s w

1
; ,

 (27)

( )Z s w,n  is the partition function of a constrained Coulomb gas, where the energy func-
tion [ ] [ ] ( )λ λ λ= + ∑E s w E U; , k s w k,  contains now the additional single-particle potential

( )λ λ λ= +U s wln .s w, (28)

Note that ( )Z 0, 0n  is the partition function of the unconstrained gas and therefore it 
coincides with the normalization constant in (5).

Hence, the computation of the joint cumulant GF J (s, w) amounts to evaluating the 
leading order in n of the partition function ( )Z s w,n . More precisely, from (26) and (27), 
J (s, w) may be expressed as the excess free energy

( ) [ ( ) ( )]
→ β

= − −
∞

Z ZJ s w
n

s w, lim
1

ln , ln 0, 0
n

n n2 (29)

of the Coulomb gas in the eective potential ( ) ( )λ λ+V Us w,  with respect to the unper-
turbed Coulomb gas (s  =  w  =  0). This eective potential is bounded from below for 

⩽ ( )α = + −Os s nc
1  and w  >  −1/2 (the domain of existence of the Laplace transform ( )�P s w,n , 

of course). For any finite n, m, the excess free energy (29) can be computed exactly in terms 
of a Laguerre–Selberg integral [45] (see section 4). How to deal with the limit of large n? We 
show now how the task of computing J(s, w) can be reduced to a variational problem.

First, we introduce the normalized density of the gas particles ( ) ( )ρ λ δ λ λ= ∑ −−
=nn i

n
i

1
1 , 

in terms of which any sum function on the eigenvalues λ λ…, , n1  can be easily expressed. 
For instance, the log-determinant and trace (7), both linear statistics on S, are conve-
niently expressed as linear functionals on ( )ρ λn  as

( ) ( )∫ ∫ρ λ λ ρ λ λ= =H Td ln and d .n n (30)

Second, for large n, the energy function [ ]λE s w; ,  of the 2D Coulomb gas can be 

converted into a mean-field energy functional λ ρ∼E s w n s w; , ; ,n
2E[ ] [ ], where

E[ ] ( ) ( ) ( ) ( ) ( ) ( )∫∫ ∫ ∫ρ ρ λ ρ λ λ λ ρ λ λ ρ λ λ= − | − | + +′ ′
λ λ≠ ′

s w V U; ,
1

2
d d ln d d .s w,

 
(31)

The mean-field functional (31) has been intensely studied in several fields. We refer to [16, 
44, 46] for a detailed exposition and collection of known results. In particular, it is known 

that for large n the partition function ( )Z s w,n  is dominated by ( )ρ λs w, , the unique mini-
mizer of the mean-field energy functional ρ s w; ,E [ ] in the space of normalized densities:

( ) ( [ ] ) [ ] [ ]
⩾

β ρ ρ ρ≈ − =

∫
ρ
ρ=

Z E E Es w n s w s w s w, exp ; , with ; , min ; , .n s w s w
2

, ,
0

d 1
 

(32)

The meaning of the saddle-point density is the following: ( )ρ λs w,  is the typical configuration 
of the eigenvalues yielding a prescribed value of log-determinant and trace
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( ) ( ) ( ) ( )∫ ∫ρ λ λ ρ λ λ= =h s w t s w, d ln , d .s w s w, , (33)

Hence, a possible route to evaluate J (s, w) consists of finding for all s, w the saddle-

point density ( )ρ λs w,  and inserting it back into the energy functional (31) to evaluate the 
leading order of ( )Z s w,n  as in (32). This technique has been exploited in the last decade 
in many physical problems, mainly to compute the large deviations of single observ-
ables. However, this route entails the explicit computation of the mean-field energy (31) 
at the saddle-point density, which is not necessarily an easy task. The situation gets 
even worse in the case of joint statistics.

In certain situations one can use a shortcut (see [16]) based on a thermodynamic 
identity that has been stated rigorously in the language of large deviation theory [51] 
by Gärtner [27] and Ellis [21]. It is known that, if a cumulant GF ( )→J s  is dierentiable 
in the interior of its domain, then the rate function ( )→Ψ x  is the Legendre–Fenchel trans-
form of the cumulant GF (and hence, ( )→J s  is the inverse Legendre–Fenchel transform 
of ( )→Ψ x ). This relation between rate function and cumulant GF can be exploited in our 
problem as follows (for a general mathematical discussion we refer to [16]). We assume 
first that J (s, w) is dierentiable. Therefore, the Gärtner–Ellis theorem ensures that 

( )Ψ h t,  is also smooth and given from J (s, w) by the Legendre–Fenchel transformation

( ) [ ( ) ( )]Ψ = − +h t J s w sh wt, sup , .
s w, (34)

The identity (34) can be written in the (almost) symmetric form

( ) ( )− Ψ = +J s w h t sh wt, , . (35)
This equation should be interpreted with care. Indeed, in (35), there are only two inde-
pendent variables, for instance s and w or h and t. The relation between the conjugate 
variables (h, t) and (s, w) is provided by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∂
∂

=
∂

∂
=

∂Ψ
∂

=
∂Ψ

∂
=

J s w

s
h s w

J s w

w
t s w

h t

h
s h t

h t

h
w h t

,
, ,

,
, or equivalently

,
, ,

,
, ,

 
(36)

where h (s, w) and t (s, w) are given in (7) and s (h, t), w (h, t) are the corresponding 
inverse maps. Hence, we can write the dierential relations

( ) ( ) ( )= +J s w h s w s t s w wd , , d , d (37)

( ) ( ) ( )− Ψ = +h t s h t h w h t td , , d , d , (38)

supplemented with the normalization condition J (0, 0)  =  0 (and hence ( ( )Ψ h 0, 0 ,  
( )) =t 0, 0 0). The expressions (37) and (38) can be interpreted as Maxwell relations among 
thermodynamic potentials, in our case the Helmholtz free energy and the enthalpy. 
However it is somewhat astonishing that these relations have not been applied in the 
Coulomb gas computations until very recently (for applications of (37) and (38) in 
physical models see [13, 14] and also [28]).

Using (37) and (38) one can use the following shortcut to compute the large  deviations 

functions (for a detailed exposition we refer to [16]). For instance, in order to compute  
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J (s, w) we only need to find the saddle-point density ( )ρ λs w,  and compute h (s, w) and 
t (s, w) from (7). Then, J(s, w) follows from integration of (37)

( ) ( )
( )

( )

∫=J s w J s w, d , .
s w

0,0

,

 (39)

This shortened route of the Coulomb gas method provides an eective tool to evaluate 
large deviations functions. A large amount of unnecessary computations can be avoided 
and the task of computing joint large deviations becomes feasible. In the next section, 
we will use this strategy to derive our main result.

3.2. Saddle-point equation and large deviation functions

The first problem to overcome is to find the saddle-point density ρs w,  of the mean-field 
functional [ ]ρE s w; , . From (31), the stationarity condition of ρs w,  reads

∫ ρ λ λ λ λ λ λ ρ| − | − − = ∈′ ′ V Ud ln const, for supp ,s w s w s w, , ,( ) ( ) ( ) (40)

where ρsupp s w,  denote the support of ρs w,  (for λ ρ∉ supp s w,  the left hand side is greater 
than or equal to the same constant). The physical meaning of (40) is clear: at equilib-
rium, the 2D Coulomb gas arranges itself in such a way that each particle has equal 
electrostatic energy (the left hand side of (40)).

Taking one further derivative with respect to λ, the resulting singular integral equa-

tion can be solved for ( )ρ λs w,  using a theorem due to Tricomi ([52, section 4.3]), and 
the result reads

( ) ( )( ) ( )ρ λ
πλ

λ λ λ λ=
+

− − λ λ λ− + ∈ − +

w
1

1 2

2
,s w, , (41)

where the edges λ± of the support depend on s and w as

( )( ) ( )λ =
+

± − −± s w
w

s s,
1

1 2
1 1 2 .c

2

 (42)

For s  =  w  =  0 the density of the unperturbed gas ( )ρ λ0,0  coincides with the Marčenko–
Pastur distribution [38] with edges ( )± c1 2. For s  <  sc the saddle-point density is 
bounded while at s  =  sc the lower edge ( )λ =− s w, 0c  reaches the origin and ρs w,  acquires 
an inverse square root divergence there.

From ρs w,  the corresponding values of scaled log-determinant H and trace T are

( ) ( ) ( ) ( )

( ) ( )

⎧

⎨
⎪

⎩
⎪

∫
∫

ρ λ λ ϕ

ρ λ λ

= = − − +

= =
−
+

h s w s s w

t s w
c s

w

, d ln ln 1 2

, d
2

1 2
,

s w c

s w

,

,

 
(43)

with ( ) ( ) ( ) ( )ϕ = − + − − + −x x x x x1 1 2 ln 1 2 2 ln 2  for ⩽x 0 (hence h (s, w) is defined for 
⩽s sc). Combining (43) and (39) we obtain the cumulant GF J (s, w) as in result A.

In principle, one may also compute the rate function ( )Ψ h t,  in the same way. 
However, it is not possible to write down s (h, t) and w (h, t) (the inverse maps of (43)) 
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in terms of elementary functions. For simplicity, however, we show how to carry out 
the explicit computation for trace and log-determinant separately and establish the 
large n decay as in remark 4. Setting s  =  0 we find t (0, w)  =  c/(1  +  2w) from (43), and 
we immediately get the rate function of the scaled traces from (39) by integrating w(t) 
(the inverse of t (0, w))

( ) ( )
( )

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ ∫Ψ = − = − =

−
+′ ′

′
′t w t t

c

t
t

t c c c

t
d

1

2
1 d

2 2
ln .T

t

t

c

t

0,0
 (44)

This proves (19). Similarly, for the log-determinant H we have

( ) ( )
( )∫Ψ = − ′ ′h s h hd ,H

h

h

0,0
 (45)

valid for h  >  −1 (see discussion in the next section), where s (h) is the inverse of h (s, 0).

4. Further results and discussion

The treatment in the previous section does not cover the following two issues:

 • The case c  =  1 (square data matrices), for which the leading term of the variance 

of = SH ln det  (computed from the approach described above) is not defined (see 
equation (16)). What is the origin of this hitch?

 •	 The origin of the condition h  >  −1 for the validity of the rate function ( )Ψ hH  
in (45) seems mysterious. What is the mechanism governing the statistics of 
‘anomalously small’ log-determinants, then?

We discuss these two issues in detail here.

4.1. The case c  =  1 (square data matrices)

As already disclosed, if S is a Wishart matrix with c  =  1 (m  =  n) the limiting vari-
ance of = SH ln det  is not described by our large deviations result (see equation (16)). 
The origin of this hitch is as follows. Recall that the cumulant GF JH (s) is defined for 

⩽ ( )/= −s s c 1 2c . Hence, for c  =  1 (i.e. m  =  n) JH (s) is non-analytic in s  =  sc  =  0 and the 
cumulants cannot be obtained by dierentiation.

A way to circumvent this problem is to first compute ( )Hvar  for finite n, and then 

evaluate its large n asymptotics. The joint Laplace transform ( )�P s w,n  of H and T can 
be indeed evaluated exactly also at finite n, m, using the Laguerre–Selberg integral  
[3, 26, 45]:

∫ ∫ ∏ ∏ ∏| − | =
Γ + Γ +

Γ
>

+∞ +∞

< =

− −

=

−

n
x x x x

q jp j p

p
p q

1

!
e d

1
, , 0.

i j

i j
p

i

n

i
q x

i

j

n

0 0

2

1

1

0

1
i�

( ) (( ) )
( )

 (46)
Using this identity, one may evaluate the Laplace transform ( )�P s w,n  as
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( )
( )( ) ( / )

( )

( ( ))

( )( )

⎛

⎝
⎜

⎞

⎠
⎟ ∏

β α

α
=

+

Γ + − +

Γ + +α

β β

β+ − +
=

−
�P s w

n

w

j n s

j n
,

2

2 1

2 1

2 1
,n

s

s

n

j

n

0

1
2

2
n

1
2

1
2

2

 (47)

with α as in (6). We have verified that our large n formulae reproduce with good acc-
uracy the finite n, m result even for moderate values of n.

From (47) it is possible to extract the large deviation functions for the scaled trace 
T (this corresponds to s  =  0). On the other hand, the asymptotic in the variable s is 
not trivial.

However we can use this exact result to deduce ( )Hvar  for symmetric data matrices 

(c  =  1), the case that was not covered by our result A. Setting c  =  1 and w  =  0 in (47), 
we denote by ( ) ( ) ⟨ ⟩≡ = β−� �P Ps s, 0 en n

n sH2
 the Laplace transform of H at finite n  =  m. We 

can compute the derivatives of ( )�P sn  as

( )   ( ) ( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∑β

β
β ψ

β
= − + −′

=

−
� � �P s n

n
P s nP s j nsln

2 2
1 2 ,n n n

j

n
2

0

1

0 (48)

� � �

�

( ) ( ) ( ) ( )

( ) ( ) ( )

∑

∑

″ β
β

β ψ
β

β ψ
β

= − + −

+ + −

′ ′
=

−

=

−

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

P s n
n

P s nP s j ns

n P s j ns

ln
2 2

1 2

2
1 2 ,

n n n
j

n

n

j

n

2

0

1

0

2

0

1

1

 

(49)

where ( ) ( )ψ = ∂ Γ+z zlnm z
m 1  is the m-Polygamma function [1]. In principle one can com-

pute higher derivatives recursively, and evaluate the asymptotic values of the cumu-

lants of H. For instance, average and variance of H are related to the derivatives ( )′�P sn  

and ( )″�P sn  at s  =  0. Using the normalization ( ) =�P 0 1n  we get

⟨ ⟩ ( ) ( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∑β

β
ψ
β

= − = − + +′
=

−
�H

n
P

n

n
j

1
0 ln

2

1

2
1 .n

j

n

2
0

1

0 (50)

Using the Euler–Maclaurin summation formula [1] ∫∑ + = += F a hk t F tdk
N

h a

b

0
1( ) ( )   

+ + …F b F a
1

2
[ ( ) ( )]  (with b  =  a  +  hN), and the classical asymptotic ( )( ) πΓ + ∼az bln ln 2   

( ) ( )− + + −az az b azln
1

2
, valid for → ∞z , with π| | <zarg  and a  >  0, we obtain for large  

n the limit value ⟨ ⟩ → −H 1, according to (15) for c  =  1. A similar analysis of the 
Laguerre–Selberg integral (for w  =  0) was performed in [10], but it was restricted to the 
computation of H  at leading order in n. Here we tackle the problem of the variance 
of H for square data matrices. From (49) we obtain

( ) ⟨ ⟩ ⟨ ⟩
( )

{ ( ) ( ) } ( )⎜ ⎟
⎛
⎝

⎞
⎠∑″

β
ψ
β

= − = − = +′
=

−
� �H H H

n
P P

n
jvar

1
0 0

1

2
1 .n n

j

n
2 2

2 2
2

2
0

1

1

 

(51)

After a somewhat lengthy calculation, we managed to extract the large n asymptotics
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( )
( )

( / ) ( / ) ( )
ω

β ψ β= + − + + +
β

β
H

n
n K o

var

, 2
ln ln 2 2 1 1 ,0 (52)

with a constant βK  given by

( ) ( )( ) ( )( )∫β β β= − + − − −β
β β β

∞
− − − − −K t t2/ e e 2e 2 1 e e 1 d .t t t t t2

0

2 1 1/ 2 / 1 2 / 2

 
(53)

Some special values are / /π π= − = = −K K K8 ln 2, 0, 1 81
2

2 4
2 . This result has been 

verified numerically, see figure 3. Note the logarithmic growth of (52) with n, in con-
trast to the ( )O 1  limiting behavior of ( )/ ( )ωβH nvar , 2  for c  >  1. Such a logarithmic 
divergent variance is customary for discontinuous spectral linear statistics in RMT, 
the paradigmatic example being the number variance [20, 34, 36, 39]. Notice that the 
function λln  is indeed discontinuous at λ = 0. However, as long as s  <  sc the support 

of the equilibrium measure ( )ρ λs w,  does not contain the origin and this singularity is 
ineective; only for s  =  sc we have ( )λ =− s w, 0c , and at that point the singularity of λln  
starts being felt. The central limit theorem with logarithmically divergent variance for 
H has been proved in [41, 42] for β = 1. The subleading corrections to ( )Hvar  in (52) 
are instead a new result.

4.2. The statistics of atypically small log-determinants

We have claimed earlier that the rate function ( )Ψ hH  of H can be computed as the 
inverse Legendre–Fenchel transform of JH (s) only for h  >  −1. Why is this the case? As 
a matter of fact, the Gärtner–Ellis theorem has two hypotheses: first, the cumulant GF 
is required to be dierentiable in the interior of its domain; second, the derivatives of 
the cumulant GF should diverge on the boundaries of the domain (a condition known 
as steepness [21, 51]). In our case, JH (s) is dierentiable for all s  <  sc but the left deriva-
tive attains a finite value at the boundary point sc: ( ) →∂ −J s 1s H  as → −s sc . Hence, only a 

Figure 3. Rescaled variance of the log-determinant ( )λ= ∑−H n lni i
1  for c  =  1. 

Each point is produced sampling N  =  106 Wishart matrices of size n for β = 1, 2 
and 4. The error for each point is of order ( )−O 10 2 , not visible in the picture. The 
solid lines are the exact result (52).
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local version of the Gärtner–Ellis theorem holds and ( ) ( ( ))β≈ − ΨP h n hexpH H
2  with ( )Ψ hH  

being the branch of the Legendre–Fenchel transform of JH (s) for h  >  −1.
The 2D Coulomb gas analogy provides a rather intuitive physical picture of this 

obstruction. We have seen that the saddle-point density ρs w,  is bounded as long as 
s  <  sc (see (41) and (42)). When s  =  sc, the lower edge of the saddle-point density 

reaches the origin ( )λ =− s w, 0c  and ( ) /ρ λ λ∼ −
s w,

1 2
c

 acquires an inverse square-root sin-

gularity there. For s  >  sc, the logarithmic part of the eective potential ( ) ( )λ λ+V Us w,  
becomes attractive, giving rise to an electrostatic instability of the gas. As already dis-

cussed, ( )ρ λs w,  is the typical distribution of the eigenvalues of S yielding a prescribed 

value of ( )∫ ρ λ λ=H d lns w, . Setting α= =w 0 to simplify the discussion, we see that 

( )∫ ρ λ λ> −d ln 1s,0  as long as s  <  sc and the critical value = −H 1cr  corresponds to the 

critical density ( ) ( )/ ( )ρ λ λ λ= −
π λ∈14s ,0
1

2 0,4c
 obeying ( )∫ ρ λ λ = Hd lns ,0 crc

. A solution 

to the problem of smaller log-determinant <H Hcr would be achieved if the typical 
distribution of the eigenvalues corresponding to this anomalously small H were known.

What is then the behavior of the Coulomb gas constrained to have <H Hcr? As sug-
gested in [16], a failure of the steepness condition may be the hallmark of split-o phe-
nomena of random variables. Guided by numerics and intuition, since the function λln  

is divergent for λ ↓ 0, we expect that atypically small values of λ= ∑ <−
=H n Hlni

n
i

1
1 cr 

are driven by the statistical behavior of the smallest eigenvalue λmin. For >H Hcr the 
Coulomb gas particles behave ‘cooperatively’ to accommodate atypical values of H 
(each of the random variables λln i’s contributes to realize H  ). On the contrary, large 
fluctuations of <H Hcr are typically realized by fluctuations of λmin to the left (the ran-
dom variable λln min contributes macroscopically to H  ). This line of reasoning would 
imply a change of scaling (speed) in the large n behavior of the probability density of 
H. The idea is to split the contribution of the Coulomb gas to H in two parts:

∑ρ λ ρ ρ λ δ λ λ= + = −
λ λ≠

 H
n

H
n

1
ln , where

1
.

i

imin

: i min

[ ] [ ˜] ˜( ) ( ) (54)

The probability density of H can be written as

( ) ( ) ( )∫ λ= | = λ
+∞

P P Ph x h x xd .H H
0

min min (55)

At this point we need to understand the distribution of the smallest eigenvalue ( )λP xmin  
and the conditional probability ( )λ| =P h xH min . It is easy to show that the probability 
density function of the smallest eigenvalue behaves for large n as

( ) /≈λ
β−P x e ,n x 2

min

2

 (56)

corresponding to a typical value /( )λ β= n2min
2  and ( ) /( )λ β= nvar 4min

2 4  at leading 
order in n. Typical fluctuations of order ( )−O n 2  to the right of λmin  are irrelevant 
for the statistical behavior of H. On the contrary the typical fluctuations to the left 
(λ λ<min min ) play a significant role due to the divergent character of λln min for λ ↓ 0min . 
Roughly speaking, the typical fluctuations of order ( )−O n 2  of the smallest eigenval-

ues do not change the limiting macroscopic density of the eigenvalues ( ˜( ) ( )ρ λ ρ λ� s ,0c
, 
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irrespective of the value of ⩽H Hcrit), but nevertheless have dramatic consequences on 
the statistics of H.

Similar evaporation phenomena for both correlated and i.i.d. variables have been 
recently detected in a variety of contexts (see e.g. [7, 18, 23, 24, 48, 50, 53]). The 
new interesting twist here is that the split-o is realized by the smallest (and not the 

usual largest) of the random variables involved. Here, using [ ˜] [ ]ρ ρ = −�H H 1s ,0c
, for 

⩽ ⩽ λx0 min  we have:

λ λ ρ λ δ λ| = = = + = − −⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜ ⎛

⎝
⎞
⎠
⎞
⎠
⎟h x h

n
H x h

n

1
ln

1
ln 1 .H Hmin min min minP P( ) [ ˜] →

 (57)

Using the above result, from (55), we easily get

( ) ˜ ( )˜ ( ) ψ≈ = − −ψ−P h h he , with 1 ,H
n h

H
H (58)

for h  <  −1 (note the speed n in contrast to the speed n2 in the ‘democratic’ Coulomb 
gas setting).

A further argument in support of this change of speed can be obtained for β = 2 
and α = 0 using a finite-n approach based on the Laguerre–Selberg integral (46). It is 
convenient to work directly at the level of the determinant of S. Let ( ˆ)ˆP gG  be the prob-

ability density of the determinant ˆ ( ) λ= = ∏ =SG det i
n

i1  (without the power 1/n). Its 
Mellin transform is given by

ˆ ( ˆ) ˆ ( ˆ) ˆ ( ˆ) ( ˆ)
( ) ( ˆ)

ˆ
ˆ

( ˆ )
⎜ ⎟
⎛
⎝

⎞
⎠∫= =

+ Γ
+ +

∞
−

−
PM s g g g

n

G n s s

G n G s
d

1

1 1
,G

s
n s

0

1
1

 (59)

where G(x) is the Barnes G-function. Using the asymptotics [1]

( ˆ)
( )

[ ( ˆ) ˆ  [ ˆ ˆ ] ( )( ˆ) ( )]π
+
+

∼ − − + + − + − − +
G n s

G n
n s n n s n n n s s s o n

1
exp 1 ln ln ln 1/2 /2 ln 2 1 /2 1/ ,2

 
(60)

valid for → ∞n , we obtain (with logarithmic accuracy)

ˆ ( ˆ) ( ˆ )≈ − −M s e .n s 1 (61)

This Mellin transform can be written also in terms of the probability density ( )P hH  of 
ˆ= −H n Gln1 . Assuming ( ) ˜ ( )≈ ψ−P h eH

n hH  for h  <  −1 we have

Pˆ ( ˆ) ( )   [ ( ˜ ( ) ( ˆ ) )]( ˆ ) [ ˜ ( ) ( ˆ ) ]∫ ∫ ψ= ≈ ≈ − − −ψ

−∞

∞
−

−∞

−
− − −M s h h h n h s hd e d e exp min 1 .H

n s h n h s h

h
H

1
1

1H

 

(62)
Here the integral has been truncated at h  =  −1 since ( )P hH  decays faster (exponentially 
with speed n2 ) for h  >  −1, and Laplace’s approximation has been used in the last step. 

Matching (61) with (62), we eventually obtain ˜ ( )ψ hH  as in (58).
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5. Conclusions

In summary, we have considered the joint statistics (including large deviation tails) of 
generalized and total variance of a large ×n m Gaussian dataset. These observables are 
just the scaled log-determinant H and the trace T of the corresponding ×n n covariance 
matrix. We have employed a powerful combination of two techniques: the standard 
Coulomb gas analogy of statistical physics, which allowed us to represent the eigenval-
ues of the covariance matrix as an interacting gas of charged particles, whose excess free 
energy is the cumulant generating function for our observables in the limit → ∞n m,  
with c  =  m/n fixed, and a finite n, m approach based on the Laguerre–Selberg integral. 
Combining these two approaches, we complemented the Coulomb gas method with 
two interesting cases that fell out of its domain: (i) the case c  =  1 (square datasets), 
for which the excess free energy is non-analytic in zero. This has the consequence that 
the variance of H grows logarithmically with n, with a subleading constant term that 
we could precisely characterize, and (ii) atypically small log-determinants, for which 
the corresponding rate function in Laplace space is non-steep. This implies an abrupt 
change of speed in the corresponding large deviation principle, which can be ascribed 
to the split-o of the smallest eigenvalue from the ‘unperturbed’ Marčenko–Pastur 
distribution. This picture is supported by numerical simulations and a saddle-point 
argument based on a finite n, m formula (see section 4.2).

It would be interesting to investigate whether our results could be extended to non-
Gaussian and possibly correlated data matrices. Our derivation strongly relied on the 
data being normally distributed and a dierent approach seems to be needed for more 
general covariance matrices.
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