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A linear theory, based on wide-spacing and high-frequency approximations, is developed
to describe resonant behaviour in two-dimensional water-wave problems involving a
freely-floating half-immersed cylinder in the presence of a vertical rigid wall. The theory
is not able to describe the lowest-frequency resonance, but otherwise yields explicit
approximations for the locations of resonances in the complex plane and for their
corresponding residues. Two problems are investigated in detail: the time-domain motion
following a vertical displacement of the cylinder from equilibrium, and the time-harmonic
motion of the cylinder that is excited by an incident plane wave.

1. Introduction

This paper is concerned with the small motions of a floating rigid structure and
their description by the linearised theory of irrotational water waves in an inviscid
and incompressible fluid. In time-harmonic problems there may be localised peaks in
the hydrodynamic forces on, or the displacements of, the structure when they are
regarded as functions of frequency. Such peaks are related to the complex resonances
for the problem, which are isolated singularities in the frequency domain when the
problem is analytically extended to complex frequencies. In the context of the water-
wave problem, the theoretical basis for this is described in detail by Hazard & Lenoir
(1993). (In that paper, the terminology ‘scattering frequency’ is used, but the widely-used
alternative ‘complex resonance’ is adopted here to emphasise that the concept applies
more widely than just to scattering problems.) In the present work explicit expressions for
displacements are obtained, and then the complex resonances are located by identifying
the complex frequencies at which the displacement has isolated singularities. When a
complex resonance has a small imaginary part, so that it lies close to the real frequency
axis, a prominent peak of the response curve is observed as the frequency varies through
real values close to the complex resonance (an illustrative sketch of this behaviour is
given by Lenoir et al. (1992, figure 1)). Thus, complex resonances are directly related to
the usual idea of resonances in a physical system. This relationship has been exploited in
many branches of engineering and physics; for example, see Takács & Roha’-Ilkiv (2012,
chapter 2) for a discussion of how the poles of a transfer function describe resonances in
simple mechanical systems.

Peaks in hydrodynamic forces as a result of resonance of the fluid motion have been
investigated using linear theory by a number of authors. For example, Yeung & Seah
(2007) studied the two-dimensional problem of the forced heave motion of a pair of
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surface-piercing rectangular cylinders and, for a given geometrical configuration, found
that the added-mass coefficient typically changed sign at particular frequencies. Around
the lowest of these frequencies the fluid motion between the cylinders is essentially vertical
with an almost-flat free surface and they call this the ‘Helmholtz mode’ in Yeung &
Seah (2007) (it is also referred to as the ‘piston mode’ and the ‘pumping mode’ in
the literature). Near the remaining resonant frequencies the fluid motion between the
cylinders is close to a standing wave, with the number of nodes increasing as the frequency
increases, and Yeung & Seah (2007) computed free-surface profiles to illustrate this.
Newman (1977) investigated the forces on a floating slender torus and connected peaks
in the hydrodynamic forces to near standing waves within the toroidal ring; in addition
he calculated the responses of the torus due to incident waves. In both Fredriksen et al.
(2015) and Newman (1977) it is reported that peaks in the displacements of a freely-
floating structure are shifted relative to those in the standard hydrodynamic coefficients,
a phenomenon studied in detail by McIver (2005).

Comparison of the linear inviscid theory with experiments and numerical calculations
that incorporate nonlinear and/or viscous effects have concentrated on the lowest res-
onance and often with the geometry of two-surface-piercing rectangles. Faltinsen et al.
(2007) studied the forced heave motion of such structures and found reasonable agreement
between linear theory and experiments. An assessment of vortex shedding suggested
that, at least for the forcing amplitudes investigated, it had little influence on the
hydrodynamic coefficients and any discrepancies were related principally to nonlinear
effects. Similar comparisons were made by Fredriksen et al. (2015) for free motion in
waves using, in particular, hybrid numerical methods that accounted for viscosity only
in the vicinity of the structures. They found that around resonance some motions are
over predicted by the linear inviscid theory by a factor of four or more, when compared
with experiments, depending on the incident wave amplitude. For the forcing problem in
the time domain, Ananthakrishnan (2015) made nonlinear numerical calculations that
incorporated viscosity throughout the fluid domain and made comparisons with the linear
inviscid theory. It was found that, for large oscillation amplitudes, both nonlinearity and
viscosity are important near resonance.

For a given initial-value problem, inverse Fourier transformation to the time domain
shows that, in general, complex resonances describe transient oscillations that decay with
time. The real part of the location of the resonance gives the oscillation frequency for
the transient, while the imaginary part of the location gives the decay rate. Complex
resonances, and the transients derived from them, are the basis of the singularity
expansion method for the approximate solution of certain time-domain problems; for
example, a formulation applicable to both rigid and elastic floating structures is given
by Meylan (2014). The singularity expansion method yields, in principle, an infinite
summation over all resonances that must be truncated for computations. One of the main
motivations for the present work was to further the understanding of the contribution to
such a summation of the higher resonances, and hence the main focus here is on those
resonances rather than the fundamental mode.

Resonances are not restricted to strong excitations of the fluid beneath a portion
of the free surface that is enclosed by elements of a fixed structure. For example, the
displacement of a simple floating structure able to move vertically is strongly influenced
by a resonance as a result of the presence of a hydrostatic force. The motion of a half-
immersed cylinder is studied in Ursell (1964) and Maskell & Ursell (1970), and the
transient arising from the sole resonance is shown to accurately describe the motion over
an extended period of time. Resonant motions are also exhibited by submerged structures.
A moored submerged circular cylinder can support trapped modes corresponding to a
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resonance on the real frequency axis (Evans & Porter 2007) and, more generally, the
motion of submerged structures can exhibit the effects of complex resonances, particularly
when the top of the structure is close to the free surface. This includes standing-wave
resonances although, in general, these will be weaker than those for surface-piercing
structures (Meylan & Fitzgerald 2014). The common feature of the physical resonances
for a moving structure, and those mentioned above for fluid in the presence of a fixed
structure, is that they correspond to the excitation of lightly-damped modes of oscillation.
In the first case, the modes are coupled motions of the fluid and structure, and in
the second case they are of the fluid alone. In both cases forcing of the system at an
appropriate frequency will lead to motions of large amplitude.

In the present work, asymptotic results are used to assess the importance of, principally,
the high-frequency resonances within calculations of the displacement of a freely-floating
structure. Two problems are considered that demonstrate the possible extremes of
resonant response. Both problems are two-dimensional and involve the motion of a freely-
floating, half-immersed, circular cylinder in the presence of a rigid vertical wall and with
its generators parallel to the wall. The locations of the resonances are determined by
the geometry, and hence are the same in the two problems. However, the residues at
the resonance poles are different and it is these that determine the particular scales of
the responses. The first problem studied is the time-dependent motion that results when
the cylinder is displaced vertically a prescribed amount and released from rest, while the
second problem is the time-harmonic motion of the cylinder resulting from an incident
plane, monochromatic wave. In the initial-value problem the high-frequency resonances
are weakly excited and have little effect on the motion of the cylinder. However, in the
time-harmonic problem it is shown that, as is to be expected, any resonance is relatively
significant when the prescribed incident-wave frequency is close to the corresponding
resonant frequency. In addition, it is shown that for high frequencies the sway response
near resonance is larger than the heave response.

The asymptotic results are obtained within the context of a wide-spacing approxima-
tion that is applied in the frequency domain, and in which it is assumed that the distance
of the cylinder from the wall is large compared to both the cylinder radius and the
wavelength. Porter & Evans (2011) give extensive results for the present geometry using
a wide-spacing approximation based on the neglect of all evanescent-mode interactions
between the cylinder and the wall. Here, the extended approximation of McIver (2014)
is used to identify the most significant effects of the evanescent modes. The wide-
spacing results are then used to obtain approximations to the resonances, and hence
the transients in the initial-value problem, by using known high-frequency asymptotic
results for the half-immersed circular cylinder. This geometry is used as it is the only
one for which sufficiently detailed asymptotic results are known and, from the point
of view of simplicity, it also has the advantage that only sway and heave motions are
excited in the problems studied. Despite the assumptions made, numerical comparisons
show that the results given here are quite accurate, even for modest values of the wave
frequency that correspond to low mode numbers. This is not surprising as the wide-
spacing approximation has been observed to be accurate even when the assumptions
made in its derivation are apparently violated (Martin 1985; Porter & Evans 2011; McIver
2014).

The plan of the paper is as follows. After the geometry and coordinate system are
introduced at the beginning of section 2, required information about the time-harmonic
motion of an isolated cylinder is described in section 2.1, and then the extended wide-
spacing approximation is outlined in section 2.2. The initial-value problem is studied in
section 3 through Fourier transformation to the frequency domain. In section 3.1, the
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Figure 1. Sketch of the geometry and coordinate system.

frequency-domain equations for the horizontal and vertical displacements are given, and
various deductions about the time-domain motion are made from them, before being
rewritten using the extended wide-spacing approximation. Approximations to both the
locations of (section 3.2) and residues at (section 3.3) the standing-wave resonances are
obtained using known high-frequency asymptotics for the half-immersed cylinder. These
results are complemented by examination of high-frequency asymptotics of the frequency-
domain displacements away from resonance (section 3.4) and numerical calculations
(section 3.5). Porter & Evans (2009) show numerically that it is possible for a floating
cylinder in the presence of a wall to support coupled free oscillations of the cylinder and
fluid with finite energy, and some implications of the existence of such a trapped mode
for the validity of the linearised theory are discussed in section 4. The time-harmonic
motion of the cylinder when excited by an incident wave is examined in section 5, and
the paper concludes in section 6 with a discussion that includes some suggestions for
further work.

2. Formulation

A half-immersed circular cylinder of uniform density, radius a and mass M = 1
2ρπa

2

floats in water of density ρ and with infinite depth; the cylinder is free to move in the plane
perpendicular to its axis. Cartesian coordinates (x, y, z) are chosen with origin on the
axis of the cylinder, y directed parallel to the axis, and z directed vertically downwards.
A rigid vertical wall is positioned at x = −b and the resulting geometry is sketched in
figure 1. The cylinder is assumed to be infinitely long and all motions, including those
of the water, are assumed to be independent of y. The index 1 is used to denote sway
motion of the cylinder parallel to the x axis, and the index 3 to denote heave motion
parallel to the z axis. One consequence of the circular geometry is that these are the only
modes of motion that can be excited by an incident wave, or by an initial displacement of
the structure. The corresponding displacements of the cylinder in the frequency domain
are denoted by xj(ω) and in the time domain by Xj(t), j ∈ {1, 3}, where ω is the radian
frequency and t is time.

2.1. Time-harmonic motion of an isolated cylinder

In this section, required information about the radiation and scattering properties
of a cylinder in open water is described. All of the motions discussed in this section
are time harmonic with radian frequency ω and are described by a potential of the form
Re{φ(x)e−iωt}, where φ is harmonic within the fluid and satisfies the linearised condition

Kφ+
∂φ

∂z
= 0 on SF, (2.1)
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where SF is the undisturbed free surface, K = ω2/g and g is the acceleration due to
gravity.

Radiation potentials φj , j ∈ {1, 3}, that describe the forced oscillations of the cylinder
with unit velocity ampitude additionally satisfy the boundary conditions

∂φj
∂n

= nj , j = 1, 3, on SB, (2.2)

where SB is the wetted surface of the cylinder cross section, n is an inward normal
coordinate to SB, and nj is the component of the inward unit normal to SB measured
parallel to the direction of mode j. The sway and heave velocity potentials behave
respectively as

φ1 ∼ A1 eiK|x|−Kz sgnx as |x| → ∞ (2.3)

and

φ3 ∼ A3 eiK|x|−Kz as |x| → ∞, (2.4)

for some complex constants A1 and A3. Complex force coefficients for the radiation
problems are defined by

qjk = ρ

∫
SB

φjnk dS, j, k ∈ {1, 3}, (2.5)

and each such coefficient may be separated into real and imaginary parts by writing
qjk = µjk + iνjk, where µjk is an added mass coefficient and ωνjk is a radiation damping
coefficient. As SB is symmetric about a vertical line by assumption, qjk = 0 for j 6= k.

The scattering potential φS describes the fluid motion arising when a plane wave of
amplitude A is incident from large positive x on the fixed cylinder, and is chosen to have
the behaviour

φS ∼
−igA
ω

[
e−iKx−Kz +R eiKx−Kz

]
as x→∞ (2.6)

and

φS ∼
−igA
ω

[
T e−iKx−Kz

]
as x→ −∞, (2.7)

where R and T denote respectively the reflection and transmission coefficients. Because
of the geometrical symmetry, the reflection and transmission coefficients take the same
values for a wave incident from the left. For the wave incident from the right, the exciting
force in the direction of mode j is defined as

fj = iωρ

∫
SB

φSnj dS, (2.8)

and by the identity

fj = −iρgAAj ; (2.9)

for further information about this last result see the texts by Linton & McIver (2001,
section 1.4) and Mei et al. (2005, section 8.6.3).

2.2. The extended wide-spacing approximation

Wide-spacing approximations to the time-harmonic radiation problems for a cylinder
in the presence of a wall are given by Porter & Evans (2011). In these approximations
only plane waves are used to determine the interactions between the cylinder and
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the wall, while the evanescent modes are neglected. Here, the extended wide-spacing
approximation developed by McIver (2014) is used to account for the leading-order
effects of the evanescent modes in both the radiation and scattering problems. In these
approximations it is assumed that both ε = 1/(2Kb) � 1 and a/b � 1, so that the
distance from the wall is large compared to both the wavelength and the cylinder radius.
In the case that the wall is present, the complex force coefficients and the exciting
forces are notated by adding a superscript ‘w’ to the notation introduced for the isolated
cylinder in section 2.1.

The required hydrodynamic quantities from the extended approximation can be con-
veniently expressed in the same form as the standard wide-spacing approximation that
neglects evanescent modes by introducing the notation:

R̂ = R+ ε2p3, T̂ = T + ε2p3, Â3 = A3

(
1 + ε2κσ

)
, (2.10)

q̂33 ≡ µ̂33 + iν̂33 = q33 + 2Mε2σ2, f̂3 = f3
(
1 + ε2κσ

)
. (2.11)

Here κ = Ka and, from McIver (2014), p3 = −iκ2A2
3/πa

2 and σ = γ13/π+ 1
2κq33/M (γ13

depends on the geometry of the structure (McIver 2014, equation (4.28)), but for the
half-immersed circular cylinder γ13 = 1

2πκ − 2). Note that the results in McIver (2014)
are given in terms of complex force coefficients that are scaled by ρa2, and exciting
forces that are scaled by ρgaA. However, in the present work, dimensional coefficients
are retained in order to make a direct connection with the results in Porter & Evans
(2011).

The problem of the synchronised heaving of two identical cylinders is treated in McIver
(2014) and, by symmetry, half of the heave coefficient calculated there provides the heave
force coefficient needed here for a cylinder in the presence of a wall so that

qw33 = q̂33 −
iρÂ2

3

e−2iκb/a − R̂
(2.12)

(note that a factor of two is missing from the last term in equation (6.18) of McIver
(2014)). Other required results are obtained here in appendix A. The remaining complex
force coefficients are

qw11 = q11 −
iρA2

1

e−2iκb/a − R̂
(2.13)

and

qw13 =
iρA1Â3

e−2iκb/a − R̂
, (2.14)

while the exciting forces are

fw1 = f1

[
1− T̂

e−2iκb/a − R̂

]
(2.15)

and

fw3 = f̂3

[
1 +

T̂

e−2iκb/a − R̂

]
. (2.16)

Results given for the standard wide-spacing approximation are recovered by setting ε
to zero in equations (2.10)–(2.11), which is equivalent to dropping the hats in equations
(2.12)–(2.16). When this is done equations (2.12)–(2.14) become identical to results given
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for added mass and damping coefficients in Porter & Evans (2011) while, with the aid of
(2.9), equations (2.15)–(2.16) become identical to their equation (3.8).

3. Release from rest of a cylinder in the presence of a wall

3.1. General observations

The first specific problem to be considered is the time-dependent motion that results
when the cylinder is displaced vertically a distance z = X3(0) and released from rest in
calm water. The subsequent time-domain displacements are given by the inverse Fourier
transforms

Xj(t) =
1

2π

∫ ∞+iv

−∞+iv

xj(ω) e−iωt dω, j ∈ {1, 3}, (3.1)

where v ∈ R is, in general, positive to allow for the possibility that a frequency-domain
displacement xj(ω) may have singularities on the real axis (the absence of motion for
t < 0 implies that each xj(ω) is analytic in Imω > 0); see Stakgold (2000, section 5.6). In
practice the limit ν → 0 is taken on the right-hand side of (3.1). From McIver & McIver
(2011, equation (40))

x1(ω) =
2iρgaω−1qw13(ω)X3(0)

2ρga[M + qw11(ω)] + ω2 {[qw13(ω)]2 − [M + qw11(ω)][M + qw33(ω)]}
(3.2)

and

x3(ω) =
iω
{

[qw13(ω)]2 − [M + qw11(ω)][M + qw33(ω)]
}
X3(0)

2ρga[M + qw11(ω)] + ω2 {[qw13(ω)]2 − [M + qw11(ω)][M + qw33(ω)]}
. (3.3)

A matrix formulation of the initial-value problem for floating elastic or rigid structures in
two dimensions is given by Meylan (2014) and the last two results may also be obtained
from this. Note that, because of the definition of the Fourier transform, each xj(ω) has
dimensions of length×time.

In the absence of the trapped modes discovered for this geometry by Porter & Evans
(2009) (and discussed here in section 4), the leading contributions to the large-time
asymptotics of the displacements are governed by the behaviour of each xj(ω) as ω → 0.
In this limit, qw11(ω) and qw13(ω) have finite non-zero limits while

qw33(ω) ∼ −32M

π2
logω as ω → 0 (3.4)

(Porter & Evans 2011, table 1). It follows that

x1(ω) ∼ iµw13(0)X3(0)

ω[M + µw11(0)]
as ω → 0 (3.5)

and

x3(ω) ∼ 8iaX3(0)

πg
ω logω as ω → 0, (3.6)

and hence (McIver & McIver 2011, section 5) that

X1(t)→ µw13(0)X3(0)

M + µw11(0)
≡ X∞1 as t→∞ (3.7)
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and

X3(t) ∼ −8aX3(0)

πgt2
as t→∞ (3.8)

From equation (3.7), the release of the cylinder from rest results ultimately in a net
horizontal translation in a direction that depends upon the sign of the initial vertical
displacement (see McIver (2012) for a discussion of circumstances under which a net
horizontal translation might occur). From the numerical results in Porter & Evans (2011),
µw13(0) < 0 for a half-immersed cylinder (in fact, a separate numerical solution of the
zero-frequency problem gives µw13(0)/M = −0.327) so that the net translation is towards
the wall when X3(0) > 0. Equation (3.8) shows that the vertical motion tends to zero
algebraically, as found by Ursell (1964) for the purely vertical motion of a cylinder in
open water (Ursell’s result differs from (3.8) by a factor of two due to the presence of the
wall in the current work). In fact, (3.8) holds for any two-dimensional structure with a
free-surface intersection that is a line of length 2a.

In addition to the singularities at the origin indicated in equations (3.5) and (3.6),
each xj(ω) has poles in the lower half of the complex ω plane that arise from the zeros
of the identical factors in the denominators in (3.2) and (3.3), and hence the poles have
identical positions for the horizontal and vertical displacements. Suppose that these poles
are at ω = ωn − iδn, with n ∈ N ∪ {0} and ωn, δn ∈ R+, so that

xj(ω) ∼ xjn
ω − (ωn − iδn)

as ω → ωn − iδn, (3.9)

where xjn is the residue at the nth pole of xj , and {ω0, ω1, . . . , ωn, . . .} is a monotonically
increasing sequence. It follows from a property of the Fourier transform (namely, f(−ω) =
f(ω) for a transform f(ω) with ω ∈ C) that the frequency-domain displacements also
have a pole at ω = −ωn − iδn for each n, so that

xj(ω) ∼ −xjn
ω + (ωn + iδn)

as ω → −ωn − iδn. (3.10)

The contribution of each pair of poles to the behaviour of Xj(t) is

2 Im
{
xjne−iωnte−δnt

}
= 2|xjn| sin(ωnt− arg xjn − π)e−δnt (3.11)

(see McIver & McIver (2011, section 5)) and, herein, such a motion will be termed a
transient. Each transient is a decaying oscillation with an amplitude of twice the modulus
of the residue at the relevant pole. In the following, asymptotic methods valid for large
n are used to approximate each ωn, δn and xjn using known high-frequency results for
a half-immersed circular cylinder. In fact, later results are given mostly in terms of the
complex wave number κ = κn + iτn ≡ (ωn − iδn)2a/g so that κn = (ω2

n − δ2n)a/g and
τn = −2ωnδna/g.

Numerical results for the magnitudes of the frequency-domain displacements, |x1|
and |x3|, as functions of κ ∈ R+ are shown in figure 2 (the required hydrodynamic
coefficients were computed using the multipole method described in Porter (2008)). Both
displacements show a prominent resonance just below κ = 1 (indexed in this paper by
n = 0) that is a perturbation of that found near κ = 0.8 for the cylinder when in open
water (Maskell & Ursell 1970). There are also resonances at higher frequencies that are
associated with near standing waves between the cylinder and the wall. For the particular
geometry corresponding to figure 2, these resonances occur near κ = nπ, n ∈ N, and are
much less prominent than the n = 0 resonance. More detail of the first standing-wave
resonance, just above κ = π, is shown in the inset to figure 2. One feature of the inset
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Figure 2. The modulus of the scaled frequency-domain displacements |xj |/(X3(0)
√
a/g) vs. κ

for a half-immersed cylinder of radius a at a distance 2a from a rigid vertical wall. The solid
and dashed lines show respectively the sway (j = 1) and heave (j = 3) displacements, and the
inset shows the resonance near κ = 3.3 in more detail.
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Figure 3. The non-dimensional added masses µw
jj/M vs. κ, with j ∈ {1, 3}, for a half-immersed

cylinder of radius a at a distance 2a from a rigid vertical wall. The solid and dashed lines show
respectively the sway (j = 1) and heave (j = 3) values.

is that, in the case of heave, the perturbation to the curve caused by the resonance is
smaller in magnitude than nearby values of the heave displacement itself, which is in
agreement with the asymptotic results obtained later in this paper.

There are also resonances in the complex-force coefficients, and it is of particular
note that the standing-wave resonances are much more prominent than those in the
displacement; one such resonance is shown in figure 3 for the sway and heave added-
mass coefficients µw11 and µw33 which may be compared with the corresponding features in
figure 2. The literature contains many reported calculations of standing-wave resonances
in hydrodynamic coefficients for surface-piercing structures (e.g. Newman (1977); Linton
& Evans (1992); Yeung & Seah (2007)) and it has been found that, as frequency increases,
the resonance peaks in the added mass and damping coefficients become higher and
narrower. It should be noted that, in general, the locations of the resonances of complex-
force coefficients qwjk(ω) do not coincide with those of the displacements (McIver 2005),
and a consequence of this is that highly detailed computation of the hydrodynamic
coefficients around a resonance may be unnecessary when performing computations of the
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motion of a freely-floating structure. Rather, attention should be paid to the resonances in
the displacement which occur at nearby, but distinct, complex frequencies (Lewandowski
2008), although it should be noted that the differences in the locations can be quite small.

The main aim now is to use the extended wide-spacing approximations given in
section 2.2 to determine approximations to the resonances. Substitution of the approxi-
mations (2.12)–(2.14) into (3.2) yields

x1(ω) =
−2A1Â3X3(0)

πa2ω
[
(e−2iκb/a − R̂)G1 −G2

] , (3.12)

where

G1 = (1 + q11/M)
(
1− 1

4πκ(1 + q̂33/M)
)

(3.13)

and

G2 =
2i

π

{
A2

1

a2
− 1

4πκ

[(
1 +

q11
M

) Â2
3

a2
+

(
1 +

q̂33
M

)
A2

1

a2

]}
, (3.14)

while substitution of (2.12)–(2.14) into (3.3) gives

x3(ω) =
iX3(0)

[
(e−2iκb/a − R̂)(G1 − (1 + q11/M))− (G2 − 2iA2

1/πa
2)
]

ω
[
(e−2iκb/a − R̂)G1 −G2

] ,

=
iX3(0)

ω

 iκ(1 + q11/M)2Â2
3

2a2G1

[
(e−2iκb/a − R̂)G1 −G2

] − 1
4πκ(1 + q̂33/M)

1− 1
4πκ(1 + q̂33/M)

 ; (3.15)

the second form for x3 will be useful later.

3.2. Location of the resonances

The results of the extended wide-spacing approximation are truncated expansions in
powers of the small parameter ε = 1/(2Kb) (McIver 2014), and each expansion coefficient
depends upon the non-dimensional wavenumber κ = Ka. In the following, each coefficient
in the wide-spacing expansion is approximated using asymptotic results for the isolated
cylinder valid as κ → ∞. For the leading term in the wide-spacing approximation a
number of terms in the high-frequency expansions will be used in the development of
approximations to the resonances. In addition, to give an indication of the significance of
evanescent modes, the leading-order effect as κ→∞ on the resonances will be retained for
those terms identified in (2.10) and (2.11) by the explicit appearance of ε. The retention
of terms in the high-frequency expansions at the expense of terms in the wide-spacing
expansion implicitly assumes that ε � κ−1, that is b � a, which is consistent with one
of the wide-spacing assumptions. This section begins by reviewing the required high-
frequency results for the half-immersed circular cylinder when in isolation.

The reflection coefficient

R ∼ e−2iκ
[
1− i

2κ
+

1

κ2

(
−1

8
+

2i

3π

)
+

1

κ3

(
1

3π
+ iR32

)]
as κ→∞, (3.16)

where R32 is a real number whose value is unknown. This expression up to the term in
1/κ was obtained by Leppington (1973), while the term in 1/κ2 is given by Robertson
(1986, table 1). Given the expansion up to 1/κ2, the real part of the term in 1/κ3 is
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obtained by ensuring that the energy-flux identity

|R|2 + |T |2 = 1 (3.17)

is consistent with the result

T =
2ie−2iκ

πκ4

[
1 +

4

πκ

(
γ + log 2κ− 2− iπ

8

)
+

8 log κ

π2κ2

(
2γ + log 4κ− 5− iπ

4

)
+O

(
1

κ2

)]
as κ→∞ (3.18)

also given by Robertson (1986), although the leading term was first obtained by Ursell
(1961). (It is not done in Robertson (1986), and hence not in equation (3.18) either, but
generally in this paper the order notation O (1/κn) will be used here to include possible
terms of the form (log κ)m/κn for integers m > 0.) For the radiation problems, as κ→∞

A1 ∼ −
2ia e−iκ

κ

[
1 +

2

πκ

(
γ + log 2κ− 2− iπ

8

)]
, (3.19)

A3 ∼ −
4ia e−iκ

κ2

[
1 +

2

πκ

(
γ + log 2κ− 3− iπ

8

)]
, (3.20)

µ11

M
∼ 4

π2
− 0.73789

κ
,

ν11
M
∼ 8

πκ2

[
1 +

4

πκ
(γ + log 2κ− 2)

]
, (3.21)

µ33

M
∼ 1− 4

3πκ
− 2

κ2

(
1− 8

π2

)
,

ν33
M
∼ 32

πκ4

[
1 +

4

πκ
(γ + log 2κ− 3)

]
. (3.22)

The expressions for A1, A3, µ33 and the leading-order term for µ11 are given by Simon
(1985). The numerical coefficient in the expansion of µ11 was calculated by Greenhow
(1986, equation (27)), while the expressions for the damping coefficients ν11 and ν33
are obtained from Simon’s results with the help of a known relation between damping
coefficients and radiated wave amplitudes (Linton & McIver 2001, equation (1.52)).

The resonances of the displacements given in (3.12) and (3.15) occur at the solutions
for κ of

e−2iκb/a+2nπi = R̂+
G2

G1
≡ R̂(1 + S) (3.23)

where n ∈ N is chosen, S = G2/G1R̂ and

G2

G1
=

2i

πa2

[
A2

1

1 + q11/M
−

1
4πκÂ

2
3

1− 1
4πκ(1 + q̂33/M)

]
. (3.24)

From this form and the asymptotics in (3.19)–(3.22), it may be seen that at high
frequencies the sway characteristics of the cylinder have a stronger influence on the
locations of the resonances than the heave characteristics. This is physically reasonable
because, as a result of the vertical free-surface intersections, a surging cylinder generates
larger waves at high frequencies than a cylinder heaving with the same amplitude, and
hence the surging cylinder interacts more strongly with the wall.

Suppose that a resonance, indexed by the integer n, occurs at κ = κn + iτn where
κn, τn ∈ R and |τn| � |κn|. The modified reflection coefficient R̂ may be extended into
the complex κ plane within a neighbourhood of κn (McIver 2005), and then by Taylor
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series expansion

R̂(κ) = R̂(κn) + iτnR̂
′(κn) +O(τ2n) as τn → 0 (3.25)

where, by a property of functions of a complex variable, the derivative R̂′ may be
taken along the real axis (this idea is also used in Meylan & Tomic (2012, section 3)
for the calculation of resonances). A similar expression holds for S and hence, from
equation (3.23),

−2ib

a
(κn + iτn) + 2nπi = log[R̂(1 + S)] +

iτnR̂
′

R̂
+

iτnS
′

1 + S
+O(τ2n) (3.26)

where R̂, S and their derivatives are now evaluated at κ = κn.
The real part of (3.26) yields

2bτn
a

= log |R|+ ε2 Re
p3
R

+ log |1 + S| − τn Im

{
R̂′

R̂
+

S′

1 + S

}
+O(τ2n, ε

4). (3.27)

From equations (3.17) and (3.18), as κ→∞

log |R| = 1
2 log(1− |T |2) ∼ − 2

π2κ8
, (3.28)

and from results in appendix B

ε2 Re
p3
R
∼ − 8a2

π2b2κ8
, log |1 + S| ∼ − 32π2

(4 + π2)
2
κ4
, (3.29)

Im

{
R̂′

R̂

}
∼ −2 and Im

{
S′

1 + S

}
∼ 16π

(4 + π2)κ3
, (3.30)

so that

τn ∼ −
16π2

(b/a− 1) (4 + π2)
2
κ4n

as κn →∞. (3.31)

The imaginary part of (3.26) yields

−2bκn
a

+ 2nπ = argR+ ε2 Im
p3
R

+ arg(1 + S) + τn Re

{
R̂′

R̂
+

S′

1 + S

}
+O(τ2n, ε

4).

(3.32)

From equation (3.16), as κ→∞

argR ∼ −2κ− 1

2κ
+

2

3πκ2
(3.33)

and from results in appendix B

ε2 Im
p3
R
∼ 4a2

πb2κ4
, arg(1 + S) ∼ − 8π

(4 + π2)κ2
, (3.34)

Re

{
R̂′

R̂

}
= o

(
1

κ3

)
and Re

{
S′

1 + S

}
= o

(
1

κ3

)
. (3.35)
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Hence

κn(b/a− 1) ∼ nπ +
1

4κn
− 1

3πκ2n

(
1− 12π2

4 + π2

)
as κn →∞ (3.36)

and reversion gives

κn ∼
nπ

b/a− 1
+

1

4nπ
− b/a− 1

3n2π3

(
1− 12π2

4 + π2

)
as n→∞. (3.37)

The first approximation from (3.37) in (3.31) yields

τn ∼ −
16(b/a− 1)3

(4 + π2)
2
π2n4

as n→∞. (3.38)

To the order given above, the above approximations to κn and τn contain no contributions
from the evanescent modes that are included in the extended wide-spacing approxima-
tion, so that to the order given such modes have no influence on the locations of the
displacement resonances.

The resonances of the hydrodynamic coefficients in equations (2.12)–(2.14) occur at
the solutions for κ of

e−2iκb/a+2nπi = R̂ (3.39)

and hence may be recovered by setting S = 0 in the above calculations. In a similar
fashion to the above suppose that a resonance, indexed by the integer n, occurs at
κ = κq,n + iτq,n where κq,n, τq,n ∈ R and |τq,n| � |κq,n|. Equation (3.27) with S = 0
yields

τq,n ∼ −
1 + 4a2/b2

(b/a− 1)π2κ8q,n
as κq,n →∞ (3.40)

so that for each high-frequency resonance |τq,n| � |τn|. The term in a2/b2 in the expres-
sion for τq,n arises from evanescent terms in the extended wide-spacing approximation.
Equation (3.32) with S = 0 gives

κq,n ∼
nπ

b/a− 1
+

1

4nπ
− b/a− 1

3n2π3
as n→∞. (3.41)

and then the first approximation from (3.41) in (3.40) yields

τq,n ∼ −
(1 + 4a2/b2)(b/a− 1)7

π10n8
as n→∞. (3.42)

The results in equations (3.37) and (3.41) reveal a positive shift in the real part of a dis-
placement resonance frequency relative to the corresponding value for the hydrodynamic
coefficients (such shifts in a resonance are discussed in McIver (2005)).

From the leading-order approximations κn ≈ κq,n ≈ nπ/(b/a − 1) it is apparent that
the validity of this procedure depends upon the spacing b/a as well as the mode number n.
As b/a increases the real parts of the resonance locations decrease, and hence these high-
frequency approximations cannot be expected to work well for small n when b/a is large.
On the other hand, when b/a takes a modest value, less than about two say, all standing-
wave resonances can be thought of as lying in the high-frequency regime. Although the
validity of the wide-spacing approximation might then be questioned, there is much
published work to suggest that it performs well even when the basic assumptions are
violated. This view is supported by the results in table 1 which, for b/a = 2, compare the
asymptotic approximations to the displacement resonances given in (3.37) and (3.38), and
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κn + iτn κq,n

n numerical asymptotic numerical asymptotic

0 0.965 − 0.01i – 0.47 –
1 3.305 − 0.005i 3.3022− 0.0084i 3.212 3.2104
2 6.3484− 0.0006i 6.3432− 0.0005i 6.3204 6.3203
3 9.4627− 0.0001i 9.4603− 0.0001i 9.4502 9.4501

Table 1. Resonances: comparison of the asymptotic formulae (3.37) and (3.41) with numerical
calculations for b/a = 2.

the real parts of the resonances in the hydrodynamic coefficients (3.41) (the imaginary
parts are very small), with numerical estimates obtained using the method described
in Fitzgerald & McIver (2009). The lowest resonances (n = 0) are not revealed by the
asymptotic method as the above procedure relies on the poles being both close to the real
frequency axis and within the high-frequency regime. The distance from the real axis also
makes an n = 0 resonance more difficult to locate accurately from the numerical results.
However, for the geometry chosen here, for n > 1 the accuracy of the approximations is
good even for small n.

3.3. Residues

The residues at simple poles of xj in the complex plane are estimated as follows.
Suppose that

xj(ω) =
fj(κ(ω))

h(κ(ω))
(3.43)

where κ(ω) = ω2a/g, and h(κ) has a simple zero at κ = κ̃ ≡ ω̃2a/g so that h(κ̃) = 0,
h′(κ̃) 6= 0 and fj(κ̃) 6= 0 (here ω̃ is complex and has positive real part – see section 3.1).
When xj is regarded as a function of κ so that

xj ∼
x
(κ)
jn

κ− κ̃
as κ→ κ̃ ≡ κn + iτn (3.44)

then the residue

x
(κ)
jn = lim

κ→κ̃

(κ− κ̃)fj(κ)

h(κ)
=
fj(κ̃)

h′(κ̃)
∼ fj(κn)

h′(κn)
as τn → 0. (3.45)

When xj is regarded as a function of ω, so that (3.9) holds, then the residue

xjn = lim
ω→ω̃

(ω − ω̃)fj(κ(ω))

h(κ(ω))
= lim
κ→κ̃

(κ− κ̃)

2ω̃a/g

fj(κ)

h(κ)
=

x
(κ)
jn

(2ω̃a/g)
∼

x
(κ)
jn

(2ωna/g)
as τn → 0,

(3.46)

where the positive real number ωn =
√
gκn/a.

With

h(κ) = e−2iκb/a − R̂−G2/G1 (3.47)
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then, as κ→∞,

h′(κ) = −2ib

a
e−2iκb/a + 2ie−2iκ

[
1 +O

(
κ−1

)]
= −2ie−2iκ

[
b

a
e−2iκ(b/a−1) − 1 +O

(
κ−1

)]
(3.48)

so that

h′(κn) = −2ie−2iκn [b/a− 1 +O (1/n)] as n→∞. (3.49)

As κ→∞
Â3

aG1
=

(A3/a)(1 + ε2κσ)

(1 + q11/M)(1− 1
4πκ(1 + q33/M + 2ε2σ2))

∼ (A3/a)(1 + a2/4b2)

− 1
4πκ(1 + q11/M)(1 + q33/M + a2/2b2)

∼ 8πie−iκ

(4 + π2)κ3
(3.50)

so that, to leading order in κ, the contributions from the evanescent terms (identified by
a2/b2) to Â3 and G1 cancel. From equation (3.12), for the horizontal displacement

f1(κ) =
−2A1Â3X3(0)

πa2ωG1
∼ −32e−2iκX3(0)

ω(4 + π2)κ4
as κ→∞ (3.51)

so that from (3.45) and (3.46) the residue

x1n ∼
−8iX3(0)

(b/a− 1)(4 + π2)κ5n
∼ −8i(b/a− 1)4X3(0)

(4 + π2)π5n5
as n→∞. (3.52)

From the second form for the vertical displacement in equation (3.15), the term that is
singular at resonance gives

f3(κ) = −κX3(0)

2ω

[(
1 +

q11
M

) Â3

aG1

]2
∼ 32e−2iκX3(0)

ωπ2κ5
as κ→∞ (3.53)

and hence the residue

x3n ∼
8iX3(0)

(b/a− 1)π2κ6n
∼ 8i(b/a− 1)5X3(0)

π8n6
as n→∞ (3.54)

so that the amplitude of a vertical transient is asymptotically an order of magnitude
smaller than the corresponding horizontal transient, although both decay very rapidly
with increasing n.

For real κ near a resonance at κn + iτn, the magnitude of the contribution to xj ,

when regarded as a function of κ, from that resonance is |x(κ)jn |/
√

(κ− κn)2 + τ2n. This
is greatest at κ = κn and as n→∞ the maximum value is

|x(κ)jn |
|τn|

∼ 2ωna

g

|xjn|
|τn|

∼


|X3(0)|

√
a

g

(4 + π2)

π2κ
1/2
n

, j = 1;

|X3(0)|
√
a

g

(4 + π2)2

π4κ
3/2
n

, j = 3,

(3.55)

with κn ∼ nπ/(b/a − 1). The powers of κn in these expressions indicate that the
contribution to the displacement from a particular resonance is smaller for heave, which
confirms the behaviour seen in the numerical results given in the inset to figure 2.
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3.4. High-frequency asymptotics away from resonance

Away from the resonances, so that e−2iκb/a −R = ord (1) as κ→∞ through suitable
values (ord (1) denotes ‘strictly order one’ (Hinch 1991, page 6)), the leading-order
approximation to the denominator in (3.12) arises from the term in G1 to give

x1(ω) ∼ 16X3(0)

ω(4 + π2)κ4
[1− i cotκ(b/a− 1)] as ω →∞ (3.56)

so that to leading order, and unlike the imaginary part, Rex1(ω) decays monotonically
with increasing frequency. Similarly, from (3.15)

x3(ω) +
iX3(0)

ω
·

1
4πκ(1 + q̂33/M)

1− 1
4πκ(1 + q̂33/M)

∼ −16X3(0)

ωπ2κ5
[1− i cotκ(b/a− 1)] as ω →∞ (3.57)

(the asymptotics of q̂33 are not known in sufficient detail to allow the imaginary part of
the second term on the left-hand side to be expanded to the same order as the term on the
right – more information about the real part is given below). These results confirm one of
the features shown in figure 2, namely that the general trend with increasing frequency
is for the sway displacement to decrease more rapidly than the heave displacement. As

cotκ(b/a− 1) ∼ 1

(b/a− 1)(κ− κ̂)
as κ→ κ̂ ≡ nπ

b/a− 1
(3.58)

the residues in equations (3.52) and (3.54) are recovered once account has been taken
of (3.46). The above expressions confirm that the imaginary parts of the frequency-
domain displacements are most strongly influenced by the resonances.

The imaginary part of the vertical displacement decays particularly slowly with in-
creasing frequency as

x3(ω) ∼ iX3(0)

ω
as ω →∞ (3.59)

(by a result on Fourier transforms (Bleistein & Handelsman 1986, page 80), equa-
tion (3.59) is effectively a restatement of the initial condition onX3(t)). Further expansion
in (3.57) yields

Rex3(ω) ∼ 16X3(0)

ωπ2κ5

[
2(1 + a2/2b2)

(1 + a2/4b2)2
− 1

]
as ω →∞ (3.60)

which decays with increasing frequency much more quickly than Imx3(ω). While (3.59)
holds for a cylinder in open water, the limit b/a → ∞ in (3.60) does not recover the
open-water result for the real part as interactions with the wall through propagating
waves are present for any b/a > 1; in fact, for open water

Rex3(ω) ∼ 32X3(0)

ωπ2κ5
as ω →∞. (3.61)

3.5. Computation of the displacements

The time-domain displacements Xj(t) are recovered from the frequency-domain dis-
placements xj(ω) through the inverse Fourier transform (3.1). In section 3.1 it is noted
that x1(ω) has a simple pole at the origin leading to a non-zero large-time displacement
X∞1 given by (3.7). It is also possible that for the chosen value of a/b there may be
simple poles at ω = ω0 with ω0 ∈ R+ corresponding to the existence of a trapped mode
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(equations (3.9) and (3.10) with n = 0 and δ0 = 0 give the asymptotic behaviours at
such poles); the existence of trapped modes for a/b = 0.22504, 0.60333 is established
numerically in Porter & Evans (2009). Frequency-domain quantities with these poles
extracted are

yj(ω) = xj(ω)−
iX∞j
ω
− xj0
ω − ω0

+
xj0

ω + ω0
, j ∈ {1, 3}, (3.62)

where, to unify the notation, X∞3 = 0. As each yj(ω) is now free of singularities in
Imω > 0, it follows from equation (3.1) that

Xj(t) =
1

2π

∫ ∞
−∞

yj(ω)e−iωt dω +X∞j + 2 Im{xj0e−iω0t}, t > 0, (3.63)

where the integration is now taken along the real ω axis and the pole contributions are
obtained by closing the contour in the lower half plane. Further, as noted by Meylan
(2014, section 3) (see also McIver 2012, appendix A), by virtue of the analytic properties
of yj(ω) in the upper half plane the inverse Fourier transform of yj(ω) may be rewritten
either in terms of the cosine transform of the real part of yj(ω) or the sine transform of
the imaginary part of yj(ω). From the high-frequency results in (3.56) and (3.59)–(3.60),
it is apparent that the real parts of the frequency-domain displacements are better suited
to computations, and hence it is appropriate to use

Xj(t) =
2

π

∫ ∞
0

Re{yj(ω)} cosωtdω +X∞j + 2 Im{xj0e−iω0t}, t > 0. (3.64)

For xj0 6= 0 the initial conditions determine each xj0. As both Re{yj(ω)} and ωRe{yj(ω)}
are absolutely integrable over (0,∞) the limit t→ 0 may be taken under the integral sign
in both the integral term in Xj(t) and its first derivative with respect to t. The velocity

conditions Ẋ1(0) = Ẋ3(0) = 0 yield that the real part of each xj0 is zero so that, in fact,
Re{yj(ω)} = Re{xj(ω)}. The conditions on the initial displacements then give

Im{xj0} =
1

2

[
Xj(0)− 2

π

∫ ∞
0

Re{xj(ω)} dω −X∞j
]
, (3.65)

which determines the amplitude of the trapped mode, and hence

Xj(t) =
2

π

∫ ∞
0

Re{xj(ω)} cosωtdω +X∞j + 2 Im{xj0} cosω0t, t > 0. (3.66)

In the absence of a trapped mode no special treatment of the initial condition is needed.

Numerical results for b/a = 2 are shown in figure 4 (there is no trapped mode for this
geometry and hence xj0 = 0 in (3.66)). After a time equivalent to about two periods of
the n = 0 transient the vertical motion settles to a slowly-decaying oscillation about the
mean water level, and the horizontal motion to a slowly-decaying oscillation about the
asymptotic value X1 = X∞1 ≈ −0.153X3(0). For the computations shown in figure 4,
the Fourier integral was written in terms of the non-dimensional frequency

√
κ and the

range split at
√
κ = 2. Numerical integration was used for

√
κ ∈ (0, 2), corresponding

to the range of κ displayed in figure 2, and explicit integration of the asymptotic forms
given in section 3.4 was used for

√
κ > 2. A consequence of this is that only the first

two resonances are accounted for in the calculations. However, on the scales used for the
figure, only the slowly decaying oscillation arising from the lowest resonance (n = 0) is
apparent; the higher-frequency oscillation due to the n = 1 resonance is not discernible.
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Figure 4. The scaled displacements Xj/X3(0) vs. scaled time t/
√
a/g, with j ∈ {1, 3}, for

a half-immersed cylinder of radius a at a distance 2a from a rigid vertical wall. The solid and
dashed lines show respectively the horizontal (j = 1) and vertical (j = 3) displacements, and the
straight lines indicate the corresponding large-time asymptotic values of these displacements.
The dash-dot line is the vertical displacement for a cylinder in open water.

From (3.11) and (3.52), the amplitude of the n = 1 transient

2|x11|
X3(0)

≈ 16(b/a− 1)4

(4 + π2)π5
= 0.004 (3.67)

for b/a = 2, which confirms the numerical observation that it does not contribute
significantly to the motion (the amplitudes of other transients are even smaller). An
indication of the accuracy of the results is obtained from the observation that the absolute
errors in the initial displacements are less than 5 × 10−4. For comparison, the motion
of a cylinder in open water when displaced vertically a distance X3(0) and released
from rest is also shown in figure 4. In this case, the sole transient is given in Maskell
& Ursell (1970, equation (5.2)) and is due to resonances at κ ≈ ±0.8141 − 0.2387i (the
approximate method in Fitzgerald & McIver (2009) yields κ ≈ ±0.82 − 0.29i). For the
cylinder in the presence of a wall, the method of Fitzgerald & McIver (2009) gives that
the lowest-frequency resonances are at κ ≈ ±0.96−0.01i, which confirms the much slower
rate of decay seen in figure 4. Computation of a trapped-mode case is discussed in the
following section.

4. Choice of reference point

The theory described in section 3 suggests that, for a non-zero initial vertical displace-
ment of the cylinder, the solution to the nonlinear problem would involve a non-zero
horizontal translation, and this raises questions about how to choose an appropriate
linearisation of the governing equations. In the linearisation of the problem it is natural
to expand all quantities about an equilibrium state in terms of a positive parameter α� 1
that measures the disturbance from that state (John 1949). This applies in particular to
the position X(t) of the structure so that for t > 0

X(t) = X(0) + αX(1)(t) +O(α2) as α→ 0, (4.1)

where X(0) is independent of time and each X(m) is bounded. (In general, X(t) is a
6-vector that locates, for example, the centre of mass of the structure and includes
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angles that describe its orientation.) For some components of X(0) there is a unique
equilibrium value and, for example, the vertical coordinate of the equilibrium position
for a surface-piercing structure is determined by Archimedes principle and, furthermore,
that equilibrium is stable. For other components, such as the horizontal coordinates, there
may be no such natural choice as a horizontal translation does not affect the presence or
stability of the equilibrium for a freely-floating structure. When using the linear theory
to obtain an approximation for a given non-infinitesimal initial displacement (as might
be required for comparison with experiment data, for example), it is perhaps natural to
use the initial condition as the determining factor in the choice of the horizontal reference
position, but this is not the only possible choice. The significance of the reference position
X(0) for the linear problem is that it determines the position of the structure’s surface that
is used in calculations of the hydrodynamic coefficients, and different reference positions
may yield different values (this is the case for the problems discussed in this paper as the
hydrodynamic coefficients for the cylinder depend upon the distance from the wall). As
the hydrodynamic coefficients determine the resonances, a change in reference position
may also change the resonant behaviour exhibited by the solution to the linearised
problem.

Let X(0)+αX(01) be another choice of reference position so that for t > 0 the structure
is at

X̃(t) = X(0) + αX(01) + αX̃(1)(t) +O(α2) as α→ 0. (4.2)

For a given α > 0, the alternative linear descriptions give the same initial position of the
structure provided

X(1)(0) = X(01) + X̃(1)(0). (4.3)

However, in general, the different reference positions mean that for t > 0

X(1)(t) 6= X(01) + X̃(1)(t) (4.4)

because there will be differences in the calculated hydrodynamic coefficients. The choice
of reference position plays no significant role in practical applications of the linearised
theory provided

X(1)(t)−
[
X(01) + X̃(1)(t)

]
= O(α) as α→ 0 (4.5)

uniformly in time. Thus, for small α > 0, the solutions obtained using different reference
positions will differ by a small amount, regardless of the time of measurement. This is
illustrated here using computations of the horizontal motion of a vertical cylinder of
radius a in water of depth d due to the motion of a vertical wave maker (this particular
example is used to illustrate the point because a rapidly-decaying transient is readily
obtained); see McIver (2012) for details of the method. Here the radius of the cylinder
is chosen to be a = 0.1d and the cylinder is initially at rest at a distance d from the
wall. Calculations of the horizontal displacement X1(t) are shown in figure 5 when the
motions of the cylinder and fluid are initiated by the wave-maker velocity

VW(t) = V0 cos ω̂t e−βt (4.6)

with ω̂ = 2
√
g/d and β = 1

2

√
g/d. The impulse arising from the start up of the wave

maker gives an instantaneous jump in the velocity of the cylinder and it is shown in
McIver (2012) that there is an asymptotic displacement X∞1 of the cylinder as t → ∞;
here V0 is chosen to give X∞1 = 0.5a = 0.05d (and hence V0 ≈ 0.75a

√
g/d). The solution

for the motion of the cylinder requires hydrodynamic coefficients whose values depend
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Figure 5. The scaled horizontal displacement X1/a vs. scaled time t/
√
d/g of a cylinder of

radius a = 0.1d that is initially a distance d from a wave maker which has velocity given by
equation (4.6). The solid and dashed lines show the solutions when the reference distances of
the cylinder from the wall are d and 1.05d, respectively

upon the distance from the wavemaker of the reference position chosen for the cylinder.
The results in figure 5 show calculations for two different choices of reference distance from
the wall, but with the initial positions matched. In one calculation the hydrodynamic
coefficients are based on the initial distance d, but in the second calculation they are
based on the final distance d+X∞1 = 1.05d. It can be seen that, in this case, a moderate
change of reference position gives differences in the solution that are consistent with that
change and that are much smaller than the initial disturbance.

The existence of a trapped mode provides a situation in which equation (4.5) may not
hold for all time. Porter & Evans (2009) give strong numerical evidence that a freely-
floating half-immersed cylinder in the presence of a vertical rigid wall can support trapped
modes that are free oscillations of the cylinder in a combination of sway and heave. The
principal characteristics of these modes are that there is no wave radiation to infinity and,
in the absence of friction, they persist for all time. Such trapped modes exist for particular
values of a/b and one such mode occurs for a/b = (a/b)0 ≈ 0.60333 and has a frequency
that follows from κ = κ0 ≈ 1.12170 (Porter & Evans 2009, table 1). Such a trapped mode
is associated with a displacement resonance that lies on the real frequency axis so that
the decay rate δ0 = 0. If, in the initial-value problem of section 3, the hydrodynamic
coefficients are based on a reference position equivalent to a/b = (a/b)0 then a resonance
occurs on the real axis at κ = κ0, and the linear theory predicts that the trapped mode
is excited so that the motion of the cylinder settles to an oscillation that persists for all
time. In a computation made by the method of section 3.5, the horizontal component of
the motion settles to an oscillation centred on X∞1 ≈ −0.182X3(0), and the ratio of the
horizontal to vertical amplitudes of the cylinder motion is 0.575 (compared with 0.572
given in Porter & Evans (2009, table 1)). However, if in the same initial-value problem, a
different but nearby reference position is chosen, all resonances will be in the lower half
of the complex plane and the motion decays as t → ∞. For example, calculations for
a/b = 0.59333 give a resonance at κ ≈ 1.1046− 0.0001i and for any initial displacement
the motion decays to zero as t→∞. Thus, for sufficiently large times, there is an order
one change in the linear solution X(1)(t) and hence, for suitable times, an order one
difference from the trapped-mode case with a/b = (a/b)0 as the reference position, so
that (4.5) is violated.

The above comments suggest that, even with the assumption of an invisicid fluid, there
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may be little value in the study of the excitation of a trapped mode whose existence is
sensitive to small perturbations of the geometry. Within the context of linear theory it
is perhaps meaningless to attempt to distinguish between trapped modes that persist for
all time, and near-trapped modes that decay with time. What happens in the nonlinear
inviscid problem is an open question.

5. Time-harmonic motion excited by an incident wave

In the second main problem to be investigated the geometry is the same as for the
initial-value problem studied in section 3, but the motion of the cylinder is time-harmonic
motion and is excited by an incident wave from the right with potential Re{φI(x)e−iωt}
where

φI =
−igA
ω

e−iKx−Kz (5.1)

and the positive real number A is the wave amplitude. From McIver & McIver (2011,
equation (40)) the resulting displacements are

x1(ω) = − 1

ω2

{ [
2ρga− ω2(M + qw33)

]
fw1 (ω) + ω2qw13(ω)fw3 (ω)

2ρga[M + qw11(ω)] + ω2 {[qw13(ω)]2 − [M + qw11(ω)][M + qw33(ω)]}

}
(5.2)

and

x3(ω) =
−qw13(ω)fw1 (ω) + [M + qw11(ω)]fw3 (ω)

2ρga[M + qw11(ω)] + ω2 {[qw13(ω)]2 − [M + qw11(ω)][M + qw33(ω)]}
. (5.3)

The singularity in x1 at ω = 0 is removable as fw1 (ω) ∼ Cω2 as ω → 0, where C is con-
stant (McIver 1994, section 5). As expected, the main denominators in equations (5.2)–
(5.3) are identical to those in (3.2)–(3.3), and hence the locations of the resonances are
the same as those already determined approximately in section 3.2. Substitution of the
extended wide-spacing approximations (2.12)–(2.16) into (5.2) yields

x1
A

=
2iA1

πaκ

{(
1− 1

4πκ(1 + q̂33/M)
)

(e−2iκb/a − R̂− T̂ ) + iκÂ2
3/a

2

(e−2iκb/a − R̂)G1 −G2

}
, (5.4)

while (5.3) gives

x3
A

=
−iÂ3

2a

{
(1 + q11/M) (e−2iκb/a − R̂+ T̂ )− 4iA2

1/πa
2

(e−2iκb/a − R̂)G1 −G2

}
; (5.5)

here G1 and G2 are as defined in equations (3.13)–(3.14), and (2.9) has been used to
write exciting forces in terms of radiated wave amplitudes.

It remains to use the wide-spacing approximations to determine approximations to the
residues corresponding to the resonances (as before, the n = 0 resonance is not accessible
by the method used here). In these time-harmonic calculations it is perhaps more natural
to determine the residues when the displacements are regarded as functions of κ, and this
is done here. First of all, for j ∈ {1, 3} write xj/A = fj(κ)/h(κ), where h is defined in
equation (3.47) so that, in particular, h(κ̃) = 0 for a resonance at κ = κ̃. It then follows
from equation (5.4) that, after drawing on the asymptotic results given in sections 3.2
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and 3.3 and in appendix B,

f1(κ̃) =
2iA1

πaκ̃G1

{(
1− 1

4πκ̃(1 + q̂33/M)
)

(G2/G1 − T̂ ) + iκ̃Â2
3/a

2
}

∼ − 32iπ2e−3iκ̃

(4 + π2)2κ̃4
as κ̃→∞. (5.6)

Similar arguments to those in section 3.3 then give the residue

x
(κ)
1n

A
∼ 16π2e−iκn

(4 + π2)2(b/a− 1)κ4n
∼ 16(b/a− 1)3 e−iκn

(4 + π2)2π2n4
as n→∞. (5.7)

Similarly

f3(κ̃) =
−iÂ3

2aG1

{
(1 + q11/M) (G2/G1 + T̂ )− 4iA2

1/πa
2
}
∼ 32i e−3iκ̃

(4 + π2)κ̃5
as κ̃→∞

(5.8)

and hence

x
(κ)
3n

A
∼ − 16 e−iκn

(4 + π2)(b/a− 1)κ5n
∼ −16(b/a− 1)4 e−iκn

(4 + π2)π5n5
as n→∞. (5.9)

As noted immediately before equation (3.55), as κ varies near a resonance the maximum

modulus of the contribution to the displacement from that resonance is |x(κ)jn |/|τn|. From
the above results and equation (3.38), as n→∞

|x(κ)jn |
|τn|

∼


A, j = 1;

(4 + π2)(b/a− 1)A
π3n

, j = 3.
(5.10)

As for the initial-value problem described in section 3, a given resonance is most promi-
nently displayed in the sway displacement but, in this case, there is no decay with
increasing n. Thus, an incident wave with κ ≈ κn will always excite a significant response
in sway, regardless of the value of n, but the heave response decays to zero as n→∞.

Away from resonance, (5.4) and (5.5) give respectively

x1
A
∼ 4π e−iκ

(4 + π2)κ2
and

x3
A
∼ 4 e−iκ

πκ3
as κ→∞. (5.11)

Unlike the initial-value problem of section 3, these ‘background’ decay rates are both
faster than those given in (5.10) for the resonances, and hence the resonances remain
relatively prominent as n increases.

Numerical results for the magnitudes of the displacements are shown in figure 6 (the
results were computed using an extension of the multipole method given in Porter (2008)).
The most prominent resonance is that just below κ = 1 which is a perturbation of that
found for the cylinder when in open water. The standing-wave resonances are much
less significant and the behaviours confirm those predicted by the asymptotic results in
equation (5.10) with, in particular, the peak sway displacements being close to the wave
amplitude. The accuracy of the approximations is confirmed for the resonance shown
in the inset to the figure with, in particular, the peak heave displacement being close
to the predicted value of approximately 0.2A. Like the initial-value problem discussed
in section 3, for this geometry the asymptotic theory, which is formally valid as the
resonance index n → ∞, predicts with good accuracy the behaviour at resonance for
small n.
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Figure 6. The modulus of the scaled displacements |xj |/A vs. κ for a half-immersed cylinder of
radius a at a distance 2a from a rigid vertical wall subject to a time-harmonic incident wave of
amplitude A. The solid and dashed lines show respectively the sway (j = 1) and heave (j = 3)
displacements, and the inset shows the resonance near κ = 6.35 in more detail.

6. Discussion

In this paper an approximate technique, based on high-frequency asymptotics, is used
to obtain information about the complex resonances associated with near standing waves
between a floating cylinder and a vertical wall. The technique is applied to the standard
hydrodynamic coefficients, and also to the displacements in two particular problems for a
freely-floating cylinder: the time-dependent motion that follows the release from rest of a
cylinder displaced vertically, and the time-harmonic motion that is forced by an incident
plane wave. In these two problems the resonances in the displacements are at the same
locations, but the residues at the resonance poles differ. Among the results obtained is
an approximation to the shift in frequency of the displacement resonance relative to that
of the hydrodynamic coefficients, and a demonstration that the displacement resonances
are further from the real frequency axis.

The method used here to describe complex resonances employs a wide-spacing ap-
proximation. The standard such approximation would use only plane-wave interactions
between the cylinder and the wall, but here an extended approximation that accounts
for the leading-order effects of the evanescent modes is employed. As far as the location
of complex resonances is concerned, and to the orders obtained in the high-frequency
asymptotics, it is found that only the imaginary parts of the resonances for the hydrody-
namic coefficients are affected by inclusion of evanescent effects, while the displacement
resonances are unaffected.

A number of results follow from the approximations to the residues. For example, in the
initial-value problem the amplitude of the vertical transient associated with a particular
resonance is smaller than that of the corresponding horizontal transient, while in the
time-harmonic problem the amplitudes of sway resonances do not decay with increasing
frequency. In addition, it is pointed out that different choices for the equilibrium state –
obtained, for example, by small horizontal translations – can lead to solutions that differ
sufficiently for the assumptions of the linearised theory to be violated at large times.

The motion of a cylinder placed in open water displays a single resonance due to
the hydrostatic spring. Hence, for the problems discussed in detail here, it is natural to
consider what happens to each standing-wave resonance as the non-dimensional distance
b/a of the cylinder from the wall increases. It should be noted that the standing wave
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resonances exist for any finite b/a, and that a plane propagating wave generated at the
cylinder does not decay as it travels between the cylinder and wall. For a fixed index n,
equations (3.37) and (3.38) show that an increase in b/a moves the resonance to a lower
frequency and rapidly away from the real axis. A move to lower frequencies within the
high-frequency regime means that, in the frequency domain, cylinder motions generate
waves of larger amplitude so that interactions with the wall may be stronger. In the
initial-value problem, equations (3.52) and (3.54) reveal an increase in the amplitudes
of the transients with increasing b/a, although this is offset by the faster decay rate
due to the movement of the resonance away from the real axis. In the time-harmonic
problem, equation (5.10) shows that an increase in b/a has no leading-order effect on the
contribution of the resonance to sway displacement, while the magnitude of the heave
resonance increases. All of the explicit results obtained here are based on the assumption
that a resonance is close to the real axis so that a full analysis of the effect of increasing
the distance from the wall requires calculations for complex frequency such as used, for
example, in Meylan & Tomic (2012, section 3).

A related geometry, that could be studied by the methods described here, is that of two
identical half-immersed cylinders that are rigidly connected so that they move together.
If such a structure in open water is displaced vertically and released from rest there is no
horizontal motion, and hence the expressions for the frequency-domain displacements do
not contain any terms relating to sway. As a consequence the relations that determine the
locations of the resonances differ from those used in this paper, and hence the locations
themselves will differ from those found here.

Newman (1977) used strip theory to calculate the motions of a floating torus for which
the radius of the circular cross section is much less that the radius of the toroidal ring.
The procedure requires knowledge of the hydrodynamic properties of the cross-sectional
geometry which is just the two-dimensional half-immersed circle considered here. Thus,
the procedures used in the present work could be applied to a slender torus, with the
only significant change being a suitable adaptation of the wide-spacing approximation to
the toroidal geometry.

Appendix A. The extended wide-spacing approximation

Given below are outline derivations of the expressions given in section 2.2 and obtained
from the extended wide-spacing approximation McIver (2014).

In the radiation problems the heave force coefficient is obtained directly from McIver
(2014) so it is sufficient to consider the forced motion of the cylinder in sway. The
wall may be replaced by an image cylinder with axis at x = −2b that is moving in
antiphase with the original cylinder. To make direct comparison with the results in
McIver (2014) the image is identified as cylinder 1 and the original as cylinder 2, while
the intersections of these cylinders with the undisturbed free surface are denoted by A,
B, C and D in order of increasing x (McIver 2014, figure 1). In McIver (2014) IP and
JP are used to denote respectively the amplitudes of the waves propagating towards and
away from P ∈ {A,B,C,D}. The amplitudes JP are scaled by K and are determined
from applications of (McIver 2014, equation (6.11)) so that, in particular,

JB = −KA1 + JC e2iκb/aR+ JB e2iκb/aε2p3 (A 1)

(p3 is defined after equation (2.11) of this paper). On the right-hand side of (A 1) the first
term represents the wave radiated towards the right by cylinder 1 when in isolation, the
second term arises from the reflection of the wave propagating to the left from cylinder 2,
and the third term arises from the evanescent terms generated when the wave propagating
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to the right between the cylinders interacts with cylinder 1. From the symmetry of the
problem JB = JC and hence

JC =
−KA1 e−2iκb/a

e−2iκb/a − R̂
, (A 2)

where R̂ is defined in (2.10). From (McIver 2014, equations (2.11) and (6.14))

qw1p = q̂1p +
JC e2iκb/a

iωK

[
XB 2p + XC 2p

]
(A 3)

where each XP 2p is a force arising in a certain subsidiary scattering problem (McIver
2014, section 4). From McIver (2014, equations (4.24) and (4.25))

XB 21 = 0 and XC 21 = −ωρA1 = − iωf1
gA

(A 4)

so that

qw11 = q11 −
iρA2

1

e−2iκb/a − R̂
, (A 5)

while

XB 23 = ωρε2κσA3 =
iωε2κσf3
gA

and XC 23 = ωρA3 =
iωf3
gA

(A 6)

so that

qw13 =
iρA1Â3

e−2iκb/a − R̂
. (A 7)

In the scattering problem the wall boundary condition is enforced by taking plane
waves of equal amplitude to be incident from both left and right. Thus, in McIver (2014,
equations (5.1)), the incoming wave amplitudes are chosen as IA = IB = 1 and then the
amplitude JB = IC e−2iκb/a of the plane wave propagating away from B is

JB = T + IBR+ ICε
2p3 + ε2p3. (A 8)

On the right-hand side of (A 8) the first term arises from the transmission past cylinder
1 of the incident wave from the left, the second term arises from the reflection at cylinder
1 of the wave travelling towards B, the third term arises from the evanescent terms
generated when the wave propagating to the right interacts with cylinder 1, and the
fourth term arises from the evanescent terms generated when the incident wave from the
right interacts with cylinder 1. From the symmetry of the problem IB = IC and hence

IC =
T̂

e−2iκb/a − R̂
, (A 9)

where T̂ is defined in (2.10). From McIver (2014, equation (5.20))

fwp =
gA
iω

[
XA 2p + IC

(
XB 2p + XC 2p

)
+ XD 2p

]
(A 10)

and, in addition to the above values for XC 2p,

XA 21 = 0, XA 23 = XB 23, XD 21 = − XC 21, XD 23 = XC 23 (A 11)
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so that

fw1 = f1

[
1− T̂

e−2iκb/a − R̂

]
(A 12)

and

fw3 = f̂3

[
1 +

T̂

e−2iκb/a − R̂

]
. (A 13)

Appendix B. High-frequency expansions

Here the high-frequency expansion of ε2p3/R is developed, and further information is
obtained about the expansions of other quantities. First of all further terms are introduced
into the expansions of R and A3 so that as κ→∞

R ∼ e−2iκ
[
1− i

2κ
+

1

κ2

(
−1

8
+

2i

3π

)
+

1

κ3

(
1

3π
+ iR32

)
+

1

κ4
(R41 + iR42)

]
(B 1)

and

A3 ∼ −
4ia e−iκ

κ2

[
1 +

2

πκ

(
γ + log 2κ− 3− iπ

8

)
+

1

κ2
(A3,21 + iA3,22)

+
1

κ3
(A3,31 + iA3,32) +

1

κ4
(A3,41 + iA3,42)

]
(B 2)

where each Rmn and Al,mn is real and may contain terms in log κ and its non-negative
powers. Substitution of these, together with the expansion of T in (3.18), into the identity
R+ T = −A3/A3 (Linton & McIver 2001, equation (1.74)) and equating like terms in κ
yields, in particular,

A3,22 =
−3γ − 3 log 2κ+ 11

6π
, (B 3)

A3,32 =
−48π2A3,21 + 128γ + 128 log 2κ+ 96π2R32 − 3π2 − 384

192π2
, (B 4)

and

A3,42 =
32A3,21 − 3(8πA3,31 + γ − 32(γ − 3)R32 − 16πR42 − 37) + (96R32 − 3) log 2κ

96π
(B 5)

(these, and similar calculations, were carried out with the aid of a computer algebra
system). These results on the asymptotics of A3 are then sufficient to give

ε2p3
R

= − iA2
3

4πb2R
=
a2

b2

[
4i

πκ4
+

16i(γ + log 2κ− 3)

π2κ5

+
i
(
π2(32A3,21 + 1) + 128(γ − 3) log 2κ+ 64(γ − 3)2 + 64[log 2κ]2

)
4π3κ6

+
i(48A3,21(γ − 3) + (48A3,21 + 3) log 2κ+ 24πA3,31 + 3γ − 11)

3π2κ7

1

κ8

(
− 8

π2
+ ip3,82

)]
as κ→∞ (B 6)
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where p3,82 ∈ R and contains terms in log κ and [log κ]2. The significant features of this
expansion are that the first real term is in the coefficient of 1/κ8, and that it is known
explicitly.

With

A1 ∼ −
2ia e−iκ

κ

[
1 +

2

πκ

(
γ + log 2κ− 2− iπ

8

)
+

1

κ2
(A1,21 + iA1,22)

]
(B 7)

the identity R− T = −A1/A1 (Linton & McIver 2001, equation (1.74)) yields

A1,22 =
−3γ − 3 log 2κ+ 8

6π
(B 8)

and then

S =
G2

G1R̂
= − 8iπ

(4 + π2)κ2
+

8i
(
π3µ11,1 + 4

(
4 + π2

)
(2− γ − log 2κ)

)
(4 + π2)

2
κ3

+
1

κ4

(
− 64π2

(4 + π2)
2 + iS42

)
(B 9)

where µ11,1 = −0.73789 (see equation (3.21)) and S42 ∈ R contains terms in log κ
and [log κ]2 as well some unknown coefficients in the expansions of the hydrodynamic
coefficients. The leading-order effects of the evanescent terms (as a function of κ) also
contribute to S42.
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