
 Hinze, R., & Wu, N. (2016). Unifying Structured Recursion Schemes.
Journal of Functional Programming, 26, [e1]. DOI:
10.1017/S0956796815000258

Peer reviewed version

Link to published version (if available):
10.1017/S0956796815000258

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1017/S0956796815000258
http://research-information.bristol.ac.uk/en/publications/unifying-structured-recursion-schemes(3076ca49-278b-496a-ba92-5ca10e533b62).html
http://research-information.bristol.ac.uk/en/publications/unifying-structured-recursion-schemes(3076ca49-278b-496a-ba92-5ca10e533b62).html

ZU064-05-FPR URS 15 September 2015 9:20

Under consideration for publication in J. Functional Programming 1

Unifying Structured Recursion Schemes
An Extended Study

RALF HINZE
Department of Computer Science, University of Oxford

NICOLAS WU
Department of Computer Science, University of Bristol

(e-mail: ralf.hinze@cs.ox.ac.uk, nicolas.wu@bristol.ac.uk)

Abstract

Folds and unfolds have been understood as fundamental building blocks for total programming, and
have been extended to form an entire zoo of specialised structured recursion schemes. A great number
of these schemes were unified by the introduction of adjoint folds, but more exotic beasts such as
recursion schemes from comonads proved to be elusive. In this paper, we show how the two canonical
derivations of adjunctions from (co)monads yield recursion schemes of significant computational
importance: monadic catamorphisms come from the Kleisli construction, and more astonishingly, the
elusive recursion schemes from comonads come from the Eilenberg-Moore construction. Thus we
demonstrate that adjoint folds are more unifying than previously believed.

1 Introduction

Functional programmers have long realised that the full expressive power of recursion is
untamable, and so intensive research has been carried out into the identification of an entire
zoo of structured recursion schemes that are well-behaved and more amenable to program
comprehension and analysis (Meijer et al., 1991).

The foundational structured recursion operators are catamorphisms or folds and anamor-
phisms or unfolds (Hagino, 1987; Malcolm, 1990b): they make termination or progress
manifest, and enjoy many useful calculational properties which would otherwise have to be
established afresh for each new application.

However, catamorphisms and anamorphisms are relatively restricted. There are many
other structured patterns of recursion, equally well behaved and worth capturing, that do
not quite fit the scheme. Variations on catamorphisms that have been proposed in the past
include folds with parameters and accumulating folds (Pardo, 2002), which may depend
on constant or varying additional arguments; mutumorphisms (Fokkinga, 1990), which are
pairs of mutually recursive functions; zygomorphisms (Malcolm, 1990a), which consist of a
main recursive function and an auxiliary one on which it depends; paramorphisms (Meertens,
1992), in which the body of structural recursion has access to immediate subterms as well
as to their images under the recursion; histomorphisms (Uustalu & Vene, 1999b), in which
the body has access to the recursive images of all subterms, not just the immediate ones;

ZU064-05-FPR URS 15 September 2015 9:20

2 R. Hinze and N. Wu

and so-called generalised folds (Bird & Paterson, 1999), which use polymorphic recursion
to handle nested datatypes.

As variations on anamorphisms, there are apomorphisms (Vene & Uustalu, 1998), which
may generate subterms monolithically rather than step by step; futumorphisms (Uustalu &
Vene, 1999b), which may generate multiple levels of a subterm in a single step, rather than
just one; and many other anonymous schemes that dualize better known inductive patterns
of recursion.

The many divergent generalisations of catamorphisms can be bewildering to the unini-
tiated, and there have been attempts to unify them. One approach is the identification of
recursion schemes from comonads (Uustalu et al., 2001) which we call ‘rsfcs’ for short.
Comonads capture the general idea of ‘evaluation in context’ (Uustalu & Vene, 2008),
and rsfcs make contextual information available to the body of the recursion. This pattern
subsumes zygomorphisms and histomorphisms.

A more recent attempt (Hinze, 2013) uses adjunctions as the common thread. Adjoint
folds arise by inserting a left adjoint functor into the recursive characterisation, thereby
adapting the form of the recursion; they subsume accumulating folds, mutumorphisms
(and hence zygomorphisms), and generalised folds. Dually, adjoint unfolds involve a right
adjoint, and capture the production of a data structure in context; they subsume all the above
variations on anamorphisms.

Given that adjoint folds and rsfcs cover some of the same examples, it seems reasonable
to suspect a deeper relationship between them. That suspicion is strengthened by the
observation that every adjunction induces a comonad, and every comonad can be factored
into adjoint functors. And indeed, the suspicion turns out to be well founded. In this paper,
we show that rsfcs are subsumed by adjoint folds. Moreover, although the converse does not
hold, we identify those adjoint folds that correspond to rsfcs.

This article is an extended and revised version of (Hinze et al., 2013), which in turn draws
on material from (Hinze, 2013), although the technical presentation is quite different, making
essential use of liftings, distributive laws, and conjugates. Our technical contributions are as
follows, where the new material in this extended study is indicated by an open bullet point:

• We provide a fresh account of adjoint folds, making essential use of liftings and
conjugates. Very briefly, adjoint folds are parametrised by an adjunction L a R and a
distributive law σ : L◦D→̇C◦L that connects a data structure to a control structure.
◦ We show that monadic catamorphisms (Fokkinga, 1994) are an instance of adjoint

folds using the Kleisli adjunction.
• We show that rsfcs (Uustalu et al., 2001) are an instance of adjoint folds using the

(co)Eilenberg-Moore adjunction.
• We state precisely the relationship to the (type) fusion rule of categorical fixed-

point calculus (Backhouse et al., 1995). In essence, type fusion allows us to fuse an
application of a left adjoint with an initial algebra to form another initial algebra,
L (µC)∼= µD, under the stronger assumption that σ is an isomorphism.

• We prove that adjoint folds can be framed as rsfcs, if σ is a distributive isomorphism.
◦ We explore the calculational properties of adjoint folds, and show how the well-

established properties of other structured recursion schemes are instances of this more
general theory.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 3

◦ We demonstrate the dual notion of adjoint unfolds, where a distributive law τ : D◦R→̇R◦C
connects a decision structure to a codata structure.

We give three different definitions of adjoint folds: one in terms of Mendler-style folds,
and one in terms of conjugates which leads to a canonical definition. The conjugate-
based definition makes the proofs of uniqueness of schemes easier, where we dissect most
of the proofs into two parts: first, we establish a bijection between certain arrows and
homomorphisms; second, we instantiate the bijections to initial or free algebras.

The unified approach to recursion schemes is based on adjoint folds, folds and unfolds, so
no new theory is needed. The message of this paper is that the existing theory is more general
than we anticipated. The unification is more than merely an intellectual curiosity: it promises
concrete returns, too—for example, through general techniques for combining different
recursion schemes (most functions actually use a combination of recursion schemes).
In addition, the unification also brings together the different calculational properties of
recursion schemes under one umbrella, thus vastly reducing the number of laws required
for calculation.

The paper is organised as follows: Section 2 presents a smörgåsbord of Haskell examples,
which are picked up later; Section 3 summarises some of the theoretical background;
Section 4 discusses mutumorphisms as a basic example of our unifying theory of adjoint
folds, which is set out in Section 5; Section 6 relates the discussion to zygomorphisms.
Section 7 shows that all rsfcs are adjoint folds, and Section 8 identifies those adjoint
folds that are rsfcs; we explore the Kleisli adjunction and its relationship to monadic
catamorphisms in Section 9; Section 10 discusses the calculational properties of adjoint
folds; Section 11 shows the construction of adjoint unfolds; and finally, Section 12 discusses
related work, and Section 13 concludes and points out directions for future work.

2 A Zoo of Morphisms

In this section we exhibit a number of specimens from the zoo of morphisms, which will
serve to illustrate the theory that follows. We use Haskell as a widely appreciated lingua
franca for codifying our categorical constructions as programs. Although Haskell conflates
inductive and coinductive types, our categorical development will be careful to distinguish
between the two.

Catamorphism The most basic recursion scheme is the catamorphism, known more
colloquially as the fold of a data structure. A catamorphism decomposes an inductively
defined structure, replacing each of the constructors with a provided function. An example
of this pattern is to compute the depth of a binary tree.

data Tree = Empty | Node Tree N Tree

depth :: Tree→ N
depth (Empty) = 0
depth (Node l a r) = 1+(depth l ‘max‘ depth r)

ZU064-05-FPR URS 15 September 2015 9:20

4 R. Hinze and N. Wu

Folds with parameters Folds with constant parameters take an additional argument, on
which results may depend. List concatenation is a canonical example:

cat :: ([a], [a])→ [a]
cat ([], ys) = ys
cat (x : xs,ys) = x : cat (xs,ys) .

Here, the second component of the input pair is the parameter; cat is not a fold because the
pair argument is not of an inductive type.

In folds with accumulating parameters, the additional argument may vary in recursive
calls. Haskell’s foldl is an example. More interesting examples are provided by downwards
accumulations on trees (Gibbons, 2000); for example, replacing every element with a label
of its depth (if the accumulator is initialised to 0):

depths :: (Tree,N)→ Tree
depths (Empty, n) = Empty
depths (Node l a r,n) = Node (depths (l,n+1)) n (depths (r,n+1)) .

This is a rather simple example; in general, the accumulating parameter will vary in different
ways in different branches.

Paramorphism The paramorphism models primitive recursion: the body has access not
only to the results of recursive calls, but also to the substructures on which these calls are
made. An example of a paramorphism is counting the words in a string:

wc :: [Char]→ Int
wc [] = 0
wc (c : cs)
| ¬ (isSpace c) ∧ (null cs ∨ isSpace (head cs)) = wc cs+1
| otherwise = wc cs .

Note that in the clause for non-empty lists, the result depends not only on a recursive call
wc cs on the substructure, but also on the substructure cs itself.

Zygomorphism A variation is the zygomorphism, where the recursion is aided by an
auxiliary function that is defined independently.

perfect :: Tree→ B
perfect Empty = True
perfect (Node l a r) = perfect l ∧ perfect r ∧ (depth l depth r) .

The function perfect is not a simple fold, since it relies on an auxiliary traversal of the tree
structure using depth.

Mutumorphism A mutumorphism generalises the idea of a zygomorphism, allowing the
recursive functions to rely mutually on one another. For example, consider the odd and even
functions:

odd :: N→ B even :: N→ B
odd 0 = False even 0 = True
odd (n+1) = even n even (n+1) = odd n .

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 5

Here, the functions work as a pair in tandem as they recurse through the structure of natural
numbers.

Nested datatypes Functions over nested datatypes such as perfect trees or random-access
lists involve polymorphic recursion. For example, consider summing a perfect tree of
numbers:

data Perfect a = Zero a | Succ (Perfect (a,a))

instance Functor Perfect where
fmap f (Zero a) = Zero (f a)
fmap f (Succ p) = Succ (fmap (λ (x,y)→ (f x, f y)) p)

total :: Perfect N→ N
total (Zero n) = n
total (Succ p) = total (fmap (λ (a,b)→ a+b) p) .

This is not a straightforward fold, because the recursive call of total is not applied directly
to a subterm—indeed, it cannot be so applied, because the subterm p of Succ p has type
Perfect (N,N) rather than Perfect N.

Anamorphism The dual of a catamorphism is an anamorphism, or unfold. This corecursion
scheme builds a structure from a single seed, one level at a time.

from :: Int→ [Int]
from x = x : from (x+1)

This example builds an infinite stream of increasing integers starting from a given number.

Apomorphism An apomorphism can immediately return a subterm in its result, rather than
having to generate each part of the output structure through corecursion. An example is an
insertion into a sorted tree structure, where elements in left branches are less than or equal
to the value in a node, and values in right branches are greater.

insert :: N→ Tree→ Tree
insert a Empty = Node Empty a Empty
insert a (Node l b r) | a 6 b = Node (insert a l) b r

| otherwise = Node l b (insert a r)

This behaves like the unfolding of a tree in one branch, growing a new tree from the element
to be inserted and an existing tree, but in the other branch it immediately grafts a result.

Histomorphism Histomorphisms capture tabulation, as used in dynamic programming.
For example, consider the unbounded knapsack problem: a knapsack of some fixed capacity
is to be filled with items of varying weight and value. The goal is to maximise the total value
of the items contained in the knapsack. Suppose there is an infinite supply of items whose
weight and value can be drawn from the following list: [(12,4),(1,2),(2,2),(1,1),(4,10)].
A knapsack with a capacity of 15 can be filled to a maximum value of 36 using three copies
each of the second and fifth items.

ZU064-05-FPR URS 15 September 2015 9:20

6 R. Hinze and N. Wu

The naive recursive solution takes exponential time (we suppose here that the maximum
value of the empty list of candidate solutions is zero):

knapsack :: [(N,R)]→ N→ R
knapsack wvs c

= maximum0 [v+ knapsack wvs (c−w) | (w,v)← wvs,w 6 c] .

However, by tabulating the results for each capacity in 0 . .c, one can compute the answer in
pseudo-polynomial time:

knapsack wvs c = table !! c where
table = [ks i | i← [0 . .c]]
ks i = maximum0 [v+ table !! (i−w) | (w,v)← wvs,w 6 i] .

Lazy evaluation works out the data dependencies automatically. However, each element of
the table depends only on elements with lower indices, so even without lazy evaluation it
suffices to fill the table in index order.

Monadic catamorphism Monadic catamorphisms allow a monadic computation to be
threaded through the catamorphic traversal of a recursive structure. For example, the
function accumulate takes a list of monadic actions and executes them each in turn, and
returns a list of their results in the monadic context.

accumulate :: Monad m⇒ [m a]→ m [a]
accumulate [] = return []

accumulate (mx : mxs) = mx>>=λx→ accumulate mxs>>=λxs→ return (x : xs)

When the input list is empty, we simply return the empty list in a monadic context. Otherwise,
we run the monadic computation at the head of the list, and return the result of appending it
to the accumulation of executed values in the tail.

Now, the general question is whether the recursion equations above have unique solutions?
The answer is yes for all of them. However, up to now the proofs in the literature have
involved two seemingly incompatible techniques: most of the examples can be identified as
adjoint folds; some of them (in particular knapsack) are subsumed by recursion schemes
from comonads. Before we show how to unify the two approaches, we first need to introduce
a bit of theory.

3 Background

This paper assumes at least a basic knowledge of category theory, in that the reader should
be familiar with the notions of functors, natural transformations, as well as product and
functor categories. In this section we fix the notation and establish categorical concepts that
will be used in the remainder of the paper. For the most part this material is standard and
can safely be glossed over on an initial reading. An exception is perhaps the material on
functor squares and conjugates, which will need particular attention.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 7

3.1 Functor Squares and Distributive Laws

A functor square consists of four functors and a natural transformation between them (to
read off the type of λ , it might help to tilt your head 45◦ to the left when looking at this
diagram):

C C ′

D D ′

λF

H

F′

K

λ : F◦H→̇K◦F′ .

For brevity, we call λ a distributive law, even though the name is traditionally used for the
special case in which opposite functors are monads (Beck, 1969) or also comonads (Turi &
Plotkin, 1997), and which are subject to additional coherence conditions. Functor squares
can be horizontally (and also vertically, not shown below) composed:

C C ′ C ′′

D D ′ D ′′

λF λ ′

H

F′

H′

F′′

K K′

=

C C ′′

D D ′′

λ−λ ′F

H◦H′

F′′

K◦K′

,

where the horizontal composition λ −λ ′ of the distributive laws λ and λ ′ is given by a
combination of horizontal (◦) and vertical (·) composition of natural transformations (we
agree that ◦ binds tighter than ·):

λ −λ
′ = K◦λ

′ · λ ◦H′ .

This composition is associative, with idF : F◦ Id→̇ Id◦F as its neutral element.

3.2 Algebras and Coalgebras

Algebras and coalgebras form the basis for the categorical description of structured recursion
schemes.

Given an endofunctor F : C → C , an F-algebra is a pair (a,A), where a : F A→ A is an
arrow and A : C is an object, which are known as the action and carrier of the algebra. (We
deviate a little from the standard notation (A,a), in order to have a syntax that distinguishes
algebras from coalgebras.) Since the action determines its carrier, it is often used by itself to
refer to the F-algebra. An F-homomorphism between algebras (a,A) and (b,B) is an arrow
h : A→ B : C such that h · a = b · F h. Note, we sometimes annotate the category the arrows
belong to by adding the category to the end of the signature.

F A F B

A B

a

F h

b

h

Clearly, F-homomorphisms compose and have an identity, so it follows that F-algebras
and F-homomorphisms form a category, which we call F-Alg(C). The initial object of this
category, if it exists, is given by (in,µF) and called the initial F-algebra. Initiality implies

ZU064-05-FPR URS 15 September 2015 9:20

8 R. Hinze and N. Wu

that to each F-algebra, (a,A), there exists a unique F-homomorphism, a : (in,µF)→ (a,A),
called a fold. The algebra in is, in fact, an isomorphism, so µF is a fixed-point of F (the least
fixed-point), a fact known as Lambek’s lemma.

Example 3.1
The semantics of the inductive datatype Tree is given by the initial algebra µTree, where
the so-called base functor

data Tree tree = Empty | Node tree N tree

abstracts away from the recursive occurrences of Tree. The Haskell rendering of the
isomorphism in, the action of the initial algebra,

in ::Tree Tree→ Tree
in (Empty) = Empty
in (Node l a r) = Node l a r

amounts to a simple renaming of constructors.

Dually, given an endofunctor G : C → C , a G-coalgebra is a pair (C,c), where C : C is
the carrier and c : C→ G C is the action of the coalgebra. A G-homomorphism between
coalgebras (C,c) and (D,d) is an arrow h : C→ D : C that satisfies G h · c = d · h. Just as
before, a category G-Coalg(C) can be formed from G-coalgebras and G-homomorphisms.
The final object of this category, if it exists, is given by (νG,out) and called the final G-
coalgebra. The unique morphism to each other G-algebra (C,c), called an unfold, is written
c : (C,c)→ (νG,out).

The category F-Alg(C) has more structure than C . The forgetful or underlying functor
UF : F-Alg(C)→ C forgets about the additional structure: UF (a,A) = A and UF h = h. An
analogous functor can be defined for coalgebras: UG : G-Coalg(C)→ C .

Liftings and coliftings A functor H : F-Alg(C)→ G-Alg(D) is called a lifting of the
functor H : C →D iff H◦UF = UG ◦H. Given a distributive law λ : H◦F←̇G◦H, we can
define a lifting as follows:

Hλ (a,A) = (H a · λ A,H A) , (3.1a)

Hλ h = H h . (3.1b)

For liftings, the action on the carrier and on homomorphisms is fixed; the action on the
algebra is determined by the distributive law. Liftings of the identity functor, that is, H= Id

and λ = α : F ←̇G, are often written as α-Alg(C) : F-Alg(C)→ G-Alg(C). Liftings
compose in an attractive way: Hλ ◦H′λ ′ = (H◦H′)λ−λ ′ .

Since we use the action of an algebra to refer to the algebra itself, we often abbreviate
H a · λ A by Hλ a.

Dually, H : F-Coalg(C)→ G-Coalg(D) is a colifting of H : C →D iff UG ◦H= H◦UF.
Given λ : H◦F→̇G◦H we can define a colifting as follows:

Hλ (C,c) = (H C,λ C · H c) , (3.2a)

Hλ h = H h . (3.2b)

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 9

3.3 Adjunctions

Adjunctions were introduced by Kan (1958) and are so pervasive in the study of category
theory that Mac Lane (1998, p.vii) noted “Adjoint functors arise everywhere.” Our work
supports this view: adjunctions provide a unified framework for program transformation.

Given categories C ,D , we say that functors L : C ← D and R : C → D form an
adjunction, written L a R : C ⇀ D or

C D⊥
R

L

,

iff there is a bijection between the sets of arrows

b−c : C (L A,B)∼= D(A,R B) : d−e ,

that is natural both in A and B. We say that L is a left adjoint for R, and R a right adjoint
for L; the isomorphism b−c is called the left adjunct, and its inverse d−e the right adjunct.
The arrows bfc and dge are also called the transposes of f and g.

That the adjuncts b−c and d−e are mutually inverse can be captured using an equivalence:

f = dge ⇐⇒ bfc= g , (3.3)

for all f : L A→ B : C and g : A→ R B : D . The naturality properties of the adjuncts can be
expressed as fusion laws.

R k · bfc · h = bk · f · L hc (3.4a)

k · dge · L h = dR k · g · he (3.4b)

These equations imply that the adjuncts are uniquely defined by their actions on the identity:
R k · bidc= bkc and dide · L h = dhe. An alternative definition of adjunctions is based on the
two natural transformations ε= dide and η= bidc, which are called the counit ε : L◦R→̇ Id

and the unit η : Id→̇R◦L of the adjunction. The units must satisfy the so-called triangle
identities:

(ε◦L) · (L◦η) = L , (3.5a)

(R◦ε) · (η◦R) = R . (3.5b)

The equivalence (3.3) can also be framed in terms of the units:

f = ε B · L g ⇐⇒ R f · η A = g . (3.6)

We explicitly instantiate a natural transformation to its component morphism by supplying
the relevant object as a parameter, rather than as a subscript. Hence, ε B is the component
of ε at the object B.

Adjunctions satisfy a wealth of properties. An important property is that adjoint functors
are uniquely defined up to isomorphism: if L1 a R1 and L2 a R2, then

L2 ∼= L1 ⇐⇒ R1 ∼= R2 . (3.7)

This equivalence can be used as a reasoning principle: often one isomorphism is trivial and
can be used to establish the other.

ZU064-05-FPR URS 15 September 2015 9:20

10 R. Hinze and N. Wu

Left adjoints preserve initial objects, and dually, right adjoints preserve final objects:

L 0∼= 0 , (3.8a)

R 1∼= 1 . (3.8b)

In general, left adjoints preserve colimits (LAPC) and right adjoints preserve limits (RAPL).

Example 3.2
Coproducts and products arise as left and right adjoints (+) a ∆ a (×) of the diagonal
functor ∆ : C → C ×C defined by ∆ A = (A,A) and ∆ f = (f, f).

C C ×C⊥
∆

(+)

C ×C C⊥
(×)

∆

The bijections express that pairs of arrows with the same source (respectively, target) are in
one-to-one correspondence with arrows to a product (respectively, from a coproduct). In the
case of products, the left adjunct b(f1, f2)c= f1 M f2 is known as the ‘split’ combinator and
the counit ε= (outl,outr) arises from the projections. The split combinator should not be
confused with diagonal functor, which is also denoted by a triangle.

Example 3.3
Perhaps the best-known example of an adjunction is currying: a function of two arguments
can be treated as a function of the first argument whose values are functions of the second.

C C⊥
(−)P

−×P

The right adjoint of pairing with P is the exponential from P.

Example 3.4
For a signature expressed as a functor F, the terms involving variables of type A constitute
the free F-algebra FreeF A on A. The functor FreeF : C → F-Alg(C) arises as the left adjoint
of the forgetful functor UF. Dually, the cofree G-coalgebra arises as the right adjoint of UG.

F-Alg(C) C⊥
UF

FreeF

C G-Coalg(C)⊥
CofreeG

UG

These adjunctions correspond to the following bijections:

F-Alg(C)(UF A,B)∼= C (A,FreeF B) , (3.9a)

C (CofreeG A,B)∼= G-Coalg(C)(A,UG B) . (3.9b)

The first bijection expresses that the compositional evaluation of a term is uniquely
determined by the action on variables. Initial algebras and final coalgebras arise as special
cases (LAPC and RAPL): (in,µF)∼= FreeF 0 (closed terms as open terms where the variables
are drawn from 0) and (νG,out)∼= CofreeG 1.

Adjunctions can be lifted to functor categories: L a R implies both L ◦− a R ◦− and
−◦R a−◦L. The latter adjunctions capture the following bijections between sets of natural

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 11

transformations:

C X (L◦F,G)∼= DX (F,R◦G) , (3.10a)

X C (F◦R,G)∼= X D(F,G◦L) . (3.10b)

Conjugates Next we introduce a concept that will be at the heart of our framework. Just as
natural transformations relate functors, conjugates relate adjoint pairs of functors. Given the
adjunctions LaR : C ⇀D and L′ aR′ : C ′⇀D ′, and functors H : C →C ′ and K : D→D ′,
the distributive laws σ : L′ ◦K→̇H◦L and τ : K◦R→̇R′ ◦H are conjugates, written σ a τ,
if one of the following conditions holds

bH f · σ Ac′ = τ B · K bfc , (3.11a)

H dge · σ A = dτ B · K ge′ , (3.11b)

for all f : L A→ B : C and g : A→ R B : D . The equivalence of the two conditions is a
consequence of (3.10). In fact, each natural transformation uniquely determines the other:

σ A = dτ (L A) · K (η A)e′ , (3.12a)

τ B = bH (ε B) · σ (R B)c′ . (3.12b)

We obtain two distributive laws for the price of one; this fact will be used a lot. The following
diagrams record the types.

D ′ D

C ′ C

σL′

K

L

H

a
C C ′

D D ′

R

H

R′

K

τ

(As an aside, the data—the functors H and K and the laws σ and τ—are also called an
adjoint square, a pair of functor squares, from L a R to L′ a R′. Above, we have taken the
first steps towards defining the double category of adjoint squares (Palmquist, 1971).)

Example 3.5
A lifting H provides an important example of a conjugate between categories of algebras
where the second transformation τ : H◦UF = UG ◦H is manifestly the identity.

Adjunctions and Monads Huber (1961) discovered that an adjunction (ε,L a R,η) in-
duces a comonad (L ◦R,ε,L ◦η ◦R) and a monad (R ◦L,η,R ◦ε ◦L). For example, the
adjunction FreeF a UF induces the so-called free monad F∗ = UF ◦FreeF, the carrier of the
free F-algebra, representing first-order terms with variables. (The comonad that arises
is less interesting.) Dually, the adjunction UG a CofreeG induces the cofree comonad
G∞ = UG ◦CofreeG. This can be seen as the type of generalised streams of observations—
‘generalised’ because the ‘tail’ is a G-structure of ‘streams’ rather than just a single one; we
obtain streams for G= Id. (Now the monad is less interesting.)

4 Warm-up: Mutumorphisms from Product Categories

Before we introduce the unified framework, it is instructive to walk through a specific
instance. In Section 2 we mentioned that functions defined by mutual recursion, mutumor-

ZU064-05-FPR URS 15 September 2015 9:20

12 R. Hinze and N. Wu

phisms, are not simple folds. They are, however, in one-to-one correspondence with folds.
Mutumorphisms are captured by the following scheme:

x1 · in = b1 · D (x1 M x2) and x2 · in = b2 · D (x1 M x2) .

The split combinator makes the results of both recursive calls available to the ‘algebras’
bi : D (B1×B2)→ Bi. Think of xi : µD→ Bi as unknowns; we aim to show that they are
uniquely determined by the two equations. We proceed in two steps:

First, we abstract away from the initial algebra (in,µD), generalising to an arbitrary
D-algebra (a,A), and turn the two equations into a form we can work with. Product
categories provide a natural setting, simply because we have two equations. (Recall that
split M is the left adjunct of ∆ a (×), see Example 3.2.)

x1 · a = b1 · D (x1 M x2) and x2 · a = b2 · D (x1 M x2)

⇐⇒ { product category C ×C }
(x1,x2) · (a,a) = (b1,b2) · (D (x1 M x2),D (x1 M x2))

⇐⇒ { definition of ∆ and definition of b−c= M }
(x1,x2) · ∆ a = (b1,b2) · ∆ (D b(x1,x2)c)

⇐⇒ { set x :=(x1,x2) and b :=(b1,b2) }
x · ∆ a = b · ∆ (D bxc)

We obtain a single equation, where the algebra a is wrapped in a left adjoint. From here, a
short calculation demonstrates that the transpose of x is a homomorphism:

x · ∆ a = b · ∆ (D bxc) : ∆ (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · ∆ ac= bb · ∆ (D bxc)c
⇐⇒ { b−c is natural (3.4a) }

bxc · a = bbc · D bxc : D A→ (×) B .

Thus, bxc is a D-homomorphism, and so x is the transpose of a D-homomorphism. Further-
more, b is the transpose of a D-algebra—this is an important observation. Let us record the
correspondence we have just calculated by expressing it as a diagram.

∆ (D A) ∆ (D ((×) B))

∆ A B

∆ a

∆ (D bxc)

b

x

⇐⇒

D A D ((×) B)

A (×) B

a

D bxc

bbc

bxc

Note that B is an object of C ×C , that is, a pair of objects in C , and recall that bxc= x1Mx2.
Second, we instantiate (a,A) to the initial algebra (in,µD). The solution of the original

pair of equations is then given by

x1 M x2 = b1 Mb2 ,

which is Fokkinga’s mutu-CHARN law (Fokkinga, 1992).
Several special cases are worth singling out. If x2 does not depend on x1, we obtain

zygomorphisms (i.e. b2 := b2 · D outr and consequently x2 := b2). Further, when x2 is
the identity, the zygomorphism specialises to a paramorphism (i.e. b2 := in · D outr and

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 13

consequently x2 := in = id). Pushing this to the extreme, if we have two independent
homomorphisms (i.e. b1 :=b1 ·D outl and b2 :=b2 ·D outr and consequently x1 = b1 and
x2 = b2), we derive the banana-split law (Bird & de Moor, 1997), an important program
optimisation that replaces a double tree traversal by a single one.

b1 M b2 = b1 · D outlMb2 · D outr (4.1)

The law can also be justified in a different way: b1 M b2 is the unique homomorphism
to a product algebra:

(b1,B1)× (b2,B2) = (b1 · D outlMb2 · D outr,B1×B2) .

We shall see later that this is not just a lucky coincidence.

5 A Unified Framework for Recursion Schemes

This section introduces the promised unifying theory for recursion schemes. As noted in
the introduction, the unifying concept, called generalised iteration in (Matthes & Uustalu,
2004) and adjoint fold in (Hinze, 2013), is not new. What is novel is the presentation, which
makes essential use of conjugate pairs of distributive laws and liftings, rendering the proofs
concise and elegant. Before we embark on our unification, we first take a short detour and
explain some of the background that will help to connect the abstract concepts to concrete
programs.

5.1 Background: Mendler-style Folds

Mendler-style folds (Mendler, 1991; Uustalu & Vene, 1999a) arise from taking a logical
(specifically, second-order simply-typed lambda calculus) rather than an algebraic approach
to inductive datatypes. As such, they provide a smooth transition path from explicit recursion
to the use of recursion schemes. To illustrate, the semantics of depth is roughly the fixed-
point of the so-called base function depth

depth depth (Empty) = 0
depth depth (Node l a r) = 1+(depth l ‘max‘ depth r) ,

which abstracts away from the recursive calls. There is an additional twist: we have replaced
the Tree constructors by the corresponding Tree constructors, which results in a rank-1 type:

depth ::∀tree . (tree→ N)→ (Tree tree→ N) .

The polymorphic type ensures that the original recursion equation, depth · in = depth depth
has a unique solution—this is only ‘roughly’ the fixed point because of the occurrence of in.

Translated into category theory, Mendler-style folds are solutions in an unknown function
x : µD→ B to recursion equations of the form

x · in = Ψ (µD) x , (5.1)

where the base function Ψ is a natural transformation of type C (−,B)→̇C (D−,B). Our
example is the special case where x = depth, when Ψ = depth.

ZU064-05-FPR URS 15 September 2015 9:20

14 R. Hinze and N. Wu

Very briefly, the Yoneda lemma (Mac Lane, 1998) shows that the space of base functions
such as Ψ is isomorphic to the space of D-algebras. Thus, Mendler-style folds are in
one-to-one correspondence with standard folds of the form

x · in = b · D x .

Conversely, a standard fold is a Mendler-style fold, as the right-hand side as a function in x
satisfies the naturality requirement. We therefore overload the notation for folds, where the
unique solution to Equation (5.1) is written Ψ .

5.2 Background: Mendler-style Adjoint Folds

We have noted in Section 2 that many functions do not quite fit the pattern of simple
folds: depths, for instance, uses an accumulating parameter. However, to provide a precise
semantics we can take a similar approach as in the previous section. We define a base
function that additionally replaces the Tree constructors on the left-hand side (and only
those) by the corresponding Tree constructors.

depths ::∀tree . ((tree,N)→ Tree)→ ((Tree tree,N)→ Tree)
depths depths (Empty, n) = Empty
depths depths (Node l a r,n) = Node (depths (l,n+1)) n (depths (r,n+1))

The type of the base function is similar to what we had before, except that tree and Tree tree
are wrapped in a left adjoint: (−,N) or, categorically speaking, −×N. Nonetheless, one
can show that depths · (in×N) = depths depths has a unique solution.

This motivates the following generalisation of Mendler-style folds. Given an adjunction
L a R, an Mendler-style adjoint fold x : L (µD)→ B is the unique solution to the recursion
equation

x · L in = Ψ (µD) x , (5.2)

where the base function Ψ : C (L−,B)→̇C (L (D−),B) is again a natural transformation.
This time, our example is the special case where x = depths, when Ψ = depths.

The main difficulty in translating the examples of Section 2 into adjoint folds is to identify
the left adjoint. For some examples this is obvious, for instance, in depths we use the curry
adjunction −×N a (−)N; for others it is less obvious, for instance, for total the left adjoint
is type application (applying a functor to a constant object), which has a right adjoint under
some mild conditions (Hinze, 2013).

5.3 Adjoint Folds

Standard folds are restricted to the case that the control structure of a function ever follows
the structure of its input data. Mendler-style adjoint folds loosen this tight coupling. The
control structure is given implicitly through the adjunction, but it can also be made explicit
by introducing a ‘control functor’ C.

Definition 5.1 (Adjoint recursion equation)
Given an adjunction L a R : C ⇀D , functors C : C → C and D : D→D , a distributive law
σ : L◦D→̇C◦L, and an algebra b : C B→ B, an adjoint recursion equation in the unknown

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 15

x : L (µD)→ B has the form

x · L in = b · C x · σ (µD) . (5.3)

The functor C is called a control functor because it governs the recursive call structure. The
diagram below displays the functors involved (D as in data functor, C as in control functor).

C D⊥
R

C

L

D (5.4)

The distributive law σ : L ◦D →̇C ◦L serves as an impedance matcher relating data and
control functors. To show that (5.3) has a unique solution, we proceed in two steps, following
the pattern set out in Section 4.

First, we abstract away from the initial algebra (in,µD), generalising to an arbitrary
D-algebra (a,A), and establish a bijection between arrows x : L A→ B satisfying

x · L a = b · C x · σ A , (5.5)

and D-algebra homomorphisms. The key step in the calculation below is the penultimate
one, which replaces the distributive law σ : L◦D→̇C◦L by its conjugate τ : D◦R→̇R◦C,
effectively shifting the recursive call to the right.

x · L a = b · C x · σ A : L (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · L ac= bb · C x · σ Ac
⇐⇒ { b−c is natural (3.4a) }

bxc · a = R b · bC x · σ Ac
⇐⇒ { σ a τ conjugates (3.11a) }

bxc · a = R b · τ B · D bxc
⇐⇒ { definition of lifting (3.1a) }

bxc · a = Rτ b · D bxc : D A→ R B

Voilà: the transpose bxc : (a,A)→ Rτ (b,B) is a D-homomorphism between a and a lifting
of b. To fix some terminology, we call x a transposed homomorphism, or traho for short.

L (D A) C (L A) C B

L A B

L a

σ A C x

b

x

⇐⇒
D A D (R B)

A R B

a

D bxc

Rτ b

bxc

(5.6)

Second, if we instantiate (a,A) to the initial algebra (in,µD), we obtain the following

Theorem 5.2 (Adjoint folds)
Given an adjunction L a R : C ⇀ D , functors C : C → C and D : D → D , a distributive
law σ : L◦D→̇C◦L with conjugate τ : D◦R→̇R◦C, and an algebra b : C B→ B, then the
adjoint recursion equation (5.3) in the unknown x : L (µD)→ B is

x · L in = b · C x · σ (µD) ,

and has the unique solution x = d Rτ b e. The arrow x is called an adjoint fold.

ZU064-05-FPR URS 15 September 2015 9:20

16 R. Hinze and N. Wu

Proof
This is an immediate consequence of initiality.

x · L in = b · C x · σ (µD)

⇐⇒ { see above }
bxc · in = Rτ b · D bxc

⇐⇒ { (in,µD) initial }
bxc= Rτ b

⇐⇒ { b−c and d−e are isomorphisms (3.3) }
x = d Rτ b e

So an adjoint fold is a traho from the initial algebra. Using the bijection (5.6) we can easily
generalise from initial to free algebras. Then bxc can be seen as evaluating a first-order term,
and is uniquely determined by an evaluation function for variables.

There is an interesting observation to be made. Adjoint folds arise out of a situation that
is not symmetric. The distributive law τ allows us to lift the right adjoint R to categories of
algebras:

C-Alg(C) D-Alg(D)

C D

Rτ

UC UD

⊥
R

C

L

D

σ : L◦D→̇C◦L a τ : D◦R→̇R◦C .

(5.7)

Alas, we cannot lift the left adjoint L with the data at hand: a lifting of L requires a
distributive law of type C◦L→̇L◦D. The asymmetry can be traced back to the definition
of algebras. Consider the type of an action, a : D A→ A; the base functor D only appears
to the left of the arrow, in a contravariant position. Symmetry can be restored if σ is an
isomorphism, an important special case, which we explore in the Section 5.6. But first, let
us look at an example.

Example 5.3 (Mutumorphisms)
Mutumorphisms are an instance of adjoint folds where the adjunction involved is ∆ a (×),
the control functor is ∆◦D◦ (×), and σ= ∆◦D◦η.

D2 D⊥
(×)

∆◦D◦(×)
∆

D

The conjugate of σ is τ= η◦D◦ (×) (3.12b) and thus

(×)τ (b1,b2) = b1 Mb2 .

Note that the lifted product functor (×)τ is just the left adjunct. Looking more closely, one
might notice that once the adjunction was established, very few choices needed to be made:
the choice of control functor and its associated conjugates were all deeply connected. This
motivates the introduction of a canonical adjoint fold in the next section.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 17

5.4 Canonical Adjoint Folds

Adjoint folds involve several pieces of data: an adjunction, an algebra, and a control functor
equipped with a conjugate pair of distributive laws. A canonical choice for the control
structure is C= L◦D◦R—we simply go round in a loop (5.4). Using this definition, the
type of σ expands to L◦D→̇L◦D◦R◦L, which suggests defining a canonical choice for
the conjugate too:

σ= L◦D◦η : L◦D→̇C◦L a τ= η◦D◦R : D◦R→̇R◦C .

For this case the development of adjoint folds in Section 5.3 can be simplified.
The proof of uniqueness then boils down to a two-stepper (this is the proof of Section 4,

more abstractly):

x · L a = b · L (D bxc) : L (D A)→ B
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

bx · L ac= bb · L (D bxc)c
⇐⇒ { b−c is natural (3.4a) }

bxc · a = bbc · D bxc : D A→ R B .

This is indeed an instance of the previous development: some easy calculations show that
bbc= Rτ b and L (D bxc) = C x · σ A.

L (D A) L (D (R B))

L A B

L a

L (D bxc)

b

x

⇐⇒
D A D (R B)

A R B

a

D bxc

bbc

bxc

(5.8)

Now, if (a,A) is initial, then x = d bbc e. This gives us the following definition.

Definition 5.4 (Canonical adjoint recursion equation)

Given an adjunction L aR : C ⇀D , a functor D : D→D , and an algebra b : (L◦D◦R) B→
B, a canonical adjoint recursion equation in the unknown x : L (µD)→ B has the form

x · L in = b · (L◦D◦R) x · (L◦D◦η) (µD) . (5.9)

The adjective ‘canonical’ needs some justification. We show that every other choice of
control functor and conjugates can be reduced to the canonical one. Assume that we have
another control functor C′, and a pair of conjugate distributive laws

σ′ : L◦D→̇C′ ◦L a τ′ : D◦R→̇R◦C′ .

Using bijection (3.10b), the distributive law σ′ gives rise to a natural transformation
γ : L◦D◦R→̇C′ = C→̇C′, namely γ = C′ ◦ε · σ′ ◦R. This natural transformation in
turn induces the lifting γ-Alg(C), which maps C′-algebras to C-algebras. Since it is a lifting
of the identity functor, γ-Alg(C) is faithful. Moreover, we have the following commutative

ZU064-05-FPR URS 15 September 2015 9:20

18 R. Hinze and N. Wu

diagrams of functors.

C-Alg(C) D-Alg(D)

C′-Alg(C) D-Alg(D)

Rτ

γ-Alg(C)

Rτ′

(5.10)

We first note that γ relates σ a τ and σ′ a τ′ in the following way (the proofs are routine but
uninstructive).

σ′ = γ◦L · σ (5.11a)

τ′ = R◦γ · τ (5.11b)

For the proof of (5.10) it suffices to concentrate on the algebras:

Rτ (γ-Alg(C) a) = R (a · γ A) · τ A = R a · τ′ A = Rτ′ a .

Furthermore, every traho can be translated into a traho that uses the canonical control
functor:

x · L a = b · C′ x · σ′ A
⇐⇒ { (5.11a) }

x · L a = b · C′ x · γ (L A) · σ A
⇐⇒ { γ is natural and x : L A→ B }

x · L a = b · γ B · C x · σ A
⇐⇒ { definition of lifting (3.1b) }

x · L a = γ-Alg(C) b · C x · σ A .

This result tells us that we only need a canonical adjoint fold, and that uniqueness follows
from this alone.

5.5 From Mendler-style to Canonical Adjoint Folds

Recursive Haskell programs are easily framed as Mendler-style adjoint folds (5.2). Adjoint
folds (5.3) are, however, preferable for the theoretical development as they avoid sophistica-
tions such as natural transformations between hom-functors. Nevertheless, Mendler-style
adjoint folds are useful in their own right: they make the translation from definitions with
explicit recursion relatively simple. To illustrate the difference between the two styles, let
us consider how depths, which we defined with a Mendler-style adjoint fold in Section 5.2
might be rendered using a canonical adjoint fold.

The adjunction has already been identified as−×Na (−)N, which is the curry adjunction.
Thus, using a canonical adjoint fold, we choose the control functor to be−×N◦Tree◦(−)N,
we need only supply an algebra depths:

depths :: (Tree (N→ Tree),N)→ Tree
depths (Empty,n) = Empty
depths (Node l a r,n) = Node (l (n+1)) n (r (n+1))

Showing that this results in the definition of depths, however, requires us to work with the
distributive law, as well as the action of the canonical functor on the recursion equation. In

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 19

this case, we have η= pair, where pair x y = (x,y), and we recall that the actions on arrows
for our functors are (−)N f = (f ·) and (−×N) f = f× id. Putting this together, we have:

depths · (in× id) = depths · (−×N◦Tree) ((−)N depths · pair)
= depths · (Tree ((depths ·) · pair)× id)

By doing case analysis, we do indeed recover the original definition: the Empty case falls
out almost immediately, and we can calculate the case for Node:

depths (Node l a r,n) = depths (Node (((depths ·) · pair) l) a (((depths ·) · pair) r),n)
= Node (((depths ·) · pair) l (n+1)) n (((depths ·) · pair) r (n+1))
= Node (depths (l,n+1)) n (depths (r,n+1)

While we have successfully retrieved the definition of depths, even for this simple example
the process is not as straight-forward as the Mendler-style adjoint fold we saw in Section 5.2.

As in the vanilla case, Mendler-style adjoint folds (5.2) and adjoint folds (5.3) are
interchangeable. Every adjoint fold is a Mendler-style one, since the right-hand side of (5.3)
as a function in x satisfies the naturality requirement. The other direction is more interesting:

Given a base function Ψ : C (L −,B)→̇C (L (D −),B), we have to construct a control
functor C, a distributive law σ : L◦D→̇C◦L and a C-algebra b : C B→ B. Since we have
an adjunction at our disposal, we can choose the canonical control functor and distributive
law. All that is left is the C-algebra, which we can derived from the base function: b =

Ψ (R B) (ε B) : L (D (R B))→ B. To prove that Ψ X x = b · C x · σ X we reason as follows:

b · C x · σ X
= { definition of b, C, and σ X }

Ψ (R B) (ε B) · L (D (R x)) · L (D (η X))
= { functoriality of L and D }

Ψ (R B) (ε B) · L (D (R x · η X))
= { naturality of Ψ }

Ψ X (ε B · L (R x · η X))
= { functoriality of L }

Ψ X (ε B · L (R x) · L (η X))
= { naturality of ε }

Ψ X (x · ε (L X) · L (η X))
= { triangle identity (3.5a) }

Ψ X x

On the surface, the canonical control functor and its associated conjugates are rather
mysterious, especially if we try to link the Haskell programs in Section 2 directly to the
recursion scheme of adjoint folds (5.3). This calculation shows how canonical adjoint folds
connect directly to the more familiar Mendler-style equations.

5.6 Restoring Symmetry

Let us now assume that the distributive law σ is an isomorphism. When this is the case
we can continue the first calculation of Section 5.3 ‘in the opposite direction’. We start

ZU064-05-FPR URS 15 September 2015 9:20

20 R. Hinze and N. Wu

with (5.5) and reason

x · L a = b · C x · σ A : L (D A)→ B
⇐⇒ { σ is an isomorphism, with inverse σ◦ }

x · L a · σ◦ A = b · C x
⇐⇒ { definition of lifting (3.1a) }

x · Lσ◦ a = b · C x : C (L A)→ B .

Overall, we have established the following one-to-one correspondence between algebra
homomorphisms.

C (L A) C B

L A B

Lσ
◦

a

C x

b

x

σ iso⇐⇒
D A D (R B)

A R B

a

D bxc

Rτ b

bxc

(5.12)

In other words, jointly with L we have lifted the entire adjunction L a R to an adjunction
Lσ
◦ a Rτ between categories of algebras.

C-Alg(C)(Lσ
◦
(a,A),(b,B))∼= D-Alg(D)((a,A),Rτ (b,B))

We arrive at a situation that is perfectly symmetric. Trahos appear at some intermediate stage,
at the point where we apply the assumption that the distributive law σ is an isomorphism.

We can now complete (5.7) with the missing left adjoints.

C-Alg(C) D-Alg(D)

C D

⊥
Rτ

UCa ∼=

Lσ
◦

UDa

⊥
R

C

FreeC

L

D

FreeD

σ : L◦D∼= C◦L a τ : D◦R→̇R◦C

(5.13)

Overall, we have four (!) adjunctions, which form a commuting square of adjunctions. The
proof of this fact makes use of the high-level reasoning principle (3.7). If we instantiate (3.7)
to the compositions of left and right adjoints (note that left adjoints are composed in the
opposite order) we obtain:

Lσ
◦ ◦FreeD ∼= FreeC ◦L σ iso⇐⇒ UD ◦Rτ ∼= R◦UC .

Since Rτ is a lifting, the isomorphism on the right is valid—indeed, it is even an equality.
Consequently, the compositions of left adjoints are isomorphic, as well. We record the
following

Theorem 5.5
Let L a R : C ⇀ D be an adjunction, and let C : C → C and D : D →D be functors.

L◦D∼= C◦L =⇒ L◦D∗ ∼= C∗ ◦L ,

where F∗ is the free monad for an endofunctor F, defined at the end of Section 3.3.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 21

Proof
Plugging in the definitions, F∗ = UF ◦FreeF, we conclude

L◦UD ◦FreeD = UC ◦Lσ◦ ◦FreeD ∼= UC ◦FreeC ◦L .

As a corollary (using µF∼= F∗ 0 and L 0∼= 0) we obtain the fusion rule of Backhouse et al.
(1995)’s categorical fixed-point calculus.

Corollary 5.6 (Type fusion)
Let L a R : C ⇀ D be an adjunction, and let C : C → C and D : D →D be functors.

L◦D∼= C◦L =⇒ L (µD)∼= µC .

Example 5.7
The diagonal functor ∆ satisfies a simple property: ∆◦D= D2 ◦∆. Since ∆ is a left adjoint,
Corollary 5.6 implies

∆ (µD)∼= µD2 .

The initial algebra of D2, a functor over a product category, consists of two copies of µD—
we will later need this simple fact. The conjugate of the distributive law id : ∆◦D= D2 ◦∆

is τ= D outlMD outr (3.12b) and thus

(×)τ (b1,b2) = b1 · D outlMb2 · D outr .

Instantiating Diagram (5.13) we can see the global picture.

D-Alg(D)2 ∼= D2-Alg(D2) D-Alg(D)

D2 D

⊥
(×)τ

UD2

∆id

UD

⊥
(×)

D2
∆

D

Since D2-Alg(D2) ∼= D-Alg(D)2, we obtain that (×)τ modulo the isomorphism is the
product functor for D-Alg(D), which gives us the entire infrastructure for products: outl,
outr and M. (This also provides us with another proof of the banana-split law (4.1))

Example 5.8
We have now encountered two control functors associated with the adjunction ∆ a (×):
mutumorphisms are based on the canonical control functor C= ∆◦D◦ (×); banana-split
employs the ‘perfect’ control functor D2. In Section 4 we noted that the banana-split
law (4.1) arises as an extreme case of mutumorphisms. We can relate the two by showing
the appropriate lifting.

The lifting γ-Alg(C 2) : D2-Alg(C 2)→ C-Alg(C 2) induced by γ = (D outl,D outr) :
C→ D2 serves as the adaptor, translating D2-algebras into C-algebras.

ZU064-05-FPR URS 15 September 2015 9:20

22 R. Hinze and N. Wu

6 Detour: Zygomorphisms from Slice Categories

In Section 4, we saw that zygomorphisms can be expressed as a special case of mutumor-
phisms. However, we can also express zygomorphisms directly in terms of an adjoint fold
using the adjunction that exists in the construction of slice categories.

A zygomorphism is essentially a recursion equation that depends on some auxiliary
recursion equation over the same data structure. A slice category adorns objects in its base
category with an arrow that points to some object of interest. In our setting, this allows us to
carry around information about the auxiliary function. In fact, this technique of using a slice
category has been used to give a semantics to generic functions by the authors in (Hinze &
Wu, 2011); much of the background required is identical, and we repeat it here.

6.1 Background: Slice Categories

Slice categories are a construction that involve the objects and arrows of some base category.
The fact that they resemble categories of coalgebras should be no surprise, since they are a
special case where the functor is constant.

Slice Categories Let C be a category and let Y : C be an object of C . An object of the
slice category C ↓Y is a pair (A,a) where A : C is an object and a : A→ Y : C is an arrow.
An arrow f : (A,a)→ (B,b) : C ↓Y of the slice category is an arrow f : A→ B : C of the
underlying category such that a = b · f.

A

Y

a

A B

Y

a

f

b

B

Y

b

In short, objects are arrows and arrows are commuting triangles. Identity and composition
are inherited from the base category C . Clearly, idA serves as the identity on (A,a) as
a = a · idA. The diagram below shows that composition takes commuting triangles to
commuting triangles: b = c · g and a = b · f imply a = c · g · f.

A A

Y

idA

a a

A B C

Y

f

a

g

b c

A slice category adds structure on top of a base category. In such a situation, there
is a functor that forgets about the extra structure. The forgetful or underlying functor
UY : C ↓Y→ C forgets about the base object Y and the arrows into Y:

UY (A,a) = A ,

UY f = f .

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 23

If the category C has products, then the forgetful functor UY has a right adjoint, the so-called
pairing functor PY : C → C ↓Y.

C C ↓Y⊥
PY

UY

(6.1)

The pairing functor is defined

PY A = (A×Y,outr) ,

PY f = f×Y .

The functor PY pairs its argument with Y, hence its name. It respects the types, PY f : PY A→
PY B, as outr = outr · (f× Y). To establish the adjunction we have to show that certain
arrows in C are in one-to-one correspondence with certain arrows in C ↓Y:

C (UY (A,a),B)∼= (C ↓Y)((A,a),PY B) .

Intuitively the adjunction captures the idea of caching: an attribute a : A→ Y is cached by
pairing B with a’s value. The adjuncts make this explicit

bf : UY (A,a)→ Bc= fMa ,

dg : (A,a)→ PY Be= outl · g .

The left adjunct respects the types, bfc : (A,a)→ PY B, as a = outr · (fMa). We leave it as
an exercise to prove that these functions are indeed inverses.

Liftings Given a functor F : C →D , we say that the functor F̄ : C ↓Y→D ↓Z is a lifting
if there is the equivalence

UZ ◦ F̄= F◦UY . (6.2)

Such liftings are known to be in a one-to-one correspondance with natural transformations
of the type

κ : ∀A . C (A,Y)→D (F A,Z) . (6.3)

Given such a natural transformation, the lifting Fκ : C ↓Y→D ↓Z is given by:

Fκ (A,a) = (F A,κ A a) ,

Fκ f = F f .

The action on A and f are given by F and since this is functorial it follows that Fκ preserves
identity and composition. The only difficulty in showing that this is a functor lies in
establishing that κ respects the types. We must show that

f : (A,a)→ (B,b)⇒ Fκ f : Fκ (A,a)→ Fκ (B,b) .

We reason

ZU064-05-FPR URS 15 September 2015 9:20

24 R. Hinze and N. Wu

κ B b · F f
= { κ is natural }

κ A (b · f)
= { assuming f : (A,a)→ (B,b) }

κ A a .

The fact that Fκ is a lifting follows directly from the definition. On objects we have:

UZ (Fκ (A,a)) = UZ (F A,κ A a) = F A = F (UZ (A,a)) ,

and on arrows:

UZ (Fκ f) = UZ (F f) = F f = F (UZ f) .

6.2 Zygomorphisms Revisited

A zygomorphism is a pair of morphisms x1 :µF→B1 and x2 :µF→B2, where the definition
of x1 depends on x2. The equations rely on algebras b1 : F (B1×B2)→B1 and b2 : FB2→B2,
and are the solution to the following pair of equations:

x1 · in = b1 · F (x1 M x2) and x2 · in = b2 · F x2 . (6.4)

Our task is to show how we can express these two equations as a catamorphism in the slice
category.

The definition of x1 relies on the existence of x2, and so intuitively we will need
information to recover x2. The definition of x2 can be depicted by the following commuting
triangle:

F (µF) µF

B2

b2·F x2

in

x2

This motivates us to work with the slice category C ↓B2. The underlying functor that we
have to start with is F : C → C and we will lift this to a functor on the slice category where
F̄ :=Fκ is given by a natural transformation κ : ∀A . C (A,B2)→ C (F A,B2). Since we
have b2 at our disposal, the following suggests itself:

κ A (h : A→ B2) = b2 · F h . (6.5)

This definition conveniently gives us the equality

F̄ (µF,x2) = (F (µF),b2 · F x2) , (6.6)

and this corresponds to the left-hand-side of the commuting triangle above.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 25

Now we can investigate the result of applying the canonical adjoint fold to the functor F̄.
Instantiating Equation (5.8) with this data gives us:

UB2 (F̄ (µF,x2)) UB2 (F̄ (PB2 B))

UB2 ((µF,x2)) B

UB2 in

UB2 (F̄ bxc)

b1

x

⇐⇒
F̄ (µF,x2) F̄ (PB2 B)

(µF,x2) PB2 B

in

F̄ bxc

bb1c

bxc

(6.7)

The diagram on the right is a catamorphism in the slice category. On the left hand side,
we can unpack the definitions to reveal that x · in = b1 · F (xM x2) and this is precisely the
defining equation for the zygomorphism x1.

7 Unifying Recursion Schemes from Comonads

Recursion schemes from comonads (Uustalu et al., 2001), rsfcs for short, form a general
recursion principle that makes use of a comonad N to provide ‘contextual information’ to
the algebra. This scheme covers a wide range of different morphisms from the zoo, but not
all of them: nested datatypes are an example. In this section we will show how rsfcs are in
fact an instance of adjoint folds.

First, we introduce the relevant background to understand the construction of an rsfc
in Section 7.1. The formal definition of an rsfc is then given in Section 7.2. We introduce
Eilenberg-Moore categories in Section 7.3, and bialgebras in Section 7.4 since these concepts
will be required to prove that rsfcs have a unique solution. This uniqueness is shown in
Section 7.5 where an adjunction to the Eilenberg-Moore category is used to instantiate an
adjoint fold.

7.1 Background: Comonads and Distributive Laws

Recursion schemes from monads make use of two concepts: comonads and distributive laws
over comonads. These concepts are presented in this section.

Comonads Functional programmers have embraced monads, and to a lesser extent, comon-
ads, to capture effectful and context-sensitive computations. A comonad is a functor
N : C → C equipped with natural transformations ε : N →̇ Id (counit), that extracts a
value from a context, and δ : N→̇N◦N (comultiplication), that duplicates a context, such
that the following laws hold:

ε◦N · δ = N , (7.1a)

N◦ε · δ = N , (7.1b)

δ◦N · δ = N◦δ · δ . (7.1c)

The first two properties, the counit laws, state that duplicating a context and then discarding
a duplicate is the same as doing nothing. The third property, the coassociative law, equates
the two ways of duplicating a context twice. Monads (M,η,µ) are dual to comonads,
with transformations η : Id→̇M (unit) and µ : M◦M→̇M (multiplication) that obey dual
properties.

ZU064-05-FPR URS 15 September 2015 9:20

26 R. Hinze and N. Wu

Distributive laws over comonads A distributive law λ : F◦N→̇N◦F of an endofunctor F
over a comonad N is a natural transformation satisfying the two coherence conditions:

ε◦F · λ = F◦ε , (7.2a)

δ◦F · λ = N◦λ · λ ◦N · F◦δ . (7.2b)

Distributing the comonad outside the functor and focusing is the same as focusing inside
the functor. Distributing the comonad outside the functor and duplicating is the same as
duplicating inside the functor, and then distributing.

7.2 Recursion schemes from comonads

Just as with an adjoint fold, an rsfc is ‘doubly generic’: it is parametric in a datatype µF, and
in a comonad N. As a particularly nice example, histomorphisms, the Squiggol rendering
of course-of-values recursion, employ the cofree comonad, which makes available the
results of recursive calls on all subterms. (An even better choice is the cofree recursive
comonad (Uustalu & Vene, 2011), but this is outside the scope of this paper.) To this end it
makes use of a coalgebra fan : µF→ N (µF) that embeds a subterm in a context. For the
cofree comonad, fan maps a term to the cotree of all subterms. The coalgebra can be defined
generically in terms of a distributive law λ : F◦N→̇N◦F as detailed below.

Definition 7.1 (Comonadic recursion equation)
Given a functor F, a comonad (N,ε,δ), a distributive law λ : F◦N→̇N◦F, and an algebra
b : F (N B)→ B, a comonadic recursion equation in the unknown f : µF→ B has the form

f · in = b · F (N f · fan) , (7.3)

where fan = N in · λ (µF) : µF→ N (µF).

The composition N f · fan creates a context that makes the results of ‘recursive calls’ available
to the algebra b, which is a context-sensitive algebra—an (F◦N)-algebra, rather than merely
an F-algebra. Uustalu et al. (2001) showed the following

Theorem 7.2 (Rsfcs)
The comonadic recursion equation (7.3) has the unique solution

f = ε B · N b · λ (N B) · F (δ B) .

A couple of remarks are in order. The recursion scheme involves both algebras and
coalgebras, and combines them in an interesting way. We noted above that fan is a coalgebra,
but it is actually a bit more: it is a coalgebra for the comonad N. Furthermore, the algebra in
and the coalgebra fan go hand-in-hand. They are related by the distributive law λ and
form what is known as a λ -bialgebra, a combination of an algebra and a coalgebra with a
common carrier.

We postpone our proof of Theorem 7.2 to Section 7.5, after we have provided the
necessary background in Sections 7.3 and 7.4, which can be skipped by those already
familiar with the material.

When the cofree comonad is used to provide the contextual information for an rsfc, the
ensuing recursion scheme is a histomorphism (Uustalu et al., 2001). In Haskell, we can

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 27

represent the cofree comonad for a functor as:

data G∞ a = Cons∞ {head∞ :: a, tail∞ ::G (G∞ a)}

For the definition of the counit, we simply have ε = head∞. The comultiplication can
be given in terms of the so-called trace function, written - . This uses a coalgebra to
corecursively build a new level of the structure from a seed.

- :: Functor G⇒ (c→ G c)→ c→ G∞ c
c = h where h = cons∞ · (idM fmap h · c)

A given seed is used to both populate the outer level of the structure, and as an argument to
the coalgebra that unpacks a new level of seeds, to which the trace is corecursively applied.
We make use of cons∞, the uncurried version of Cons∞ to assemble these two parts. In effect,
this is the fan that corresponds to a cofree comonad. The comultiplication is then simply
δ= tail∞ , where the seed is a cofree comonad, and the tail of its structure is recursively
embedded. The trace can also be used to define a distributive law:

λ :: Functor G⇒ G (G∞ a)→ G∞ (G a)
λ = fmap (fmap head∞) · fmap tail∞

This gives us all the ingredients we need to construct a histomorphism from an rsfc.

Example 7.3
The knapsack function is an example of a histomorphism, where the underlying functor is
Nat, with constructors Zero and Succ. The algebra is given by knapsack, where we assume
that wvs :: [(N,R)] is implicitly supplied.

knapsack ::Nat (Nat∞ R)→ R
knapsack Zero = 0
knapsack (Succ table) =

maximum0 [v+u | (w+1,v)← wvs,Just u← [lookup∞ table w]]

This makes use of an auxiliary function lookup∞ that takes a table of type Nat∞ a of values
indexed by natural numbers.

lookup∞ ::Nat∞ a→ N→Maybe a
lookup∞ (Cons∞ a m) 0 = Just a
lookup∞ (Cons∞ a Zero) (n+1) = Nothing
lookup∞ (Cons∞ a (Succ table)) (n+1) = lookup∞ table n

This definition is given by induction on the naturals. In the base case, we simply retrieve
the value at the head of table. Otherwise, we look deeper into the table: if the tail is empty,
then the result is Nothing, since there are no more values to look up, otherwise, we recurse
deeper into the table.

Putting the pieces together, we can obtain the following definition of knapsack:

knapsack :: N→ R
knapsack = head∞ · fmap knapsack · λ · fmap tail∞

While this construction corresponds to the interpretation of a histomorphism as an rsfc, it
suffers from the fact that the body of the fold involves applying the algebra to the result of a

ZU064-05-FPR URS 15 September 2015 9:20

28 R. Hinze and N. Wu

trace: its behaviour is quadratic. A little more work is required to derive a linear version,
but the details are beyond the scope of this paper and covered fully by Hinze & Wu (2013).
In short, we can collapse this into a fold that invokes the algebra only once per level.

7.3 Background: Eilenberg-Moore Categories

Coalgebras for a comonad A coalgebra for a comonad N is an N-coalgebra (C,c) that
respects ε and δ:

ε C · c = idC , (7.4a)

δ C · c = N c · c . (7.4b)

If we first create a context and then focus, we obtain the original value. Creating a nested
context is the same as first creating a context and then duplicating it. For example, the
so-called cofree coalgebra (N C,δ C) is respectful, which follows directly from (7.1b) and
(7.1c). The second law (7.4b) also enjoys an alternative reading: c is a homomorphism
of type (C,c) → (N C,δ C). This observation is at the heart of the Eilenberg-Moore
construction, which we discuss below. Coalgebras that respect ε and δ, and coalgebra
homomorphisms between them, form a category, known as the (co)-Eilenberg-Moore
category and denoted CN. Eilenberg-Moore categories generalise categories of coalgebras:
G-Coalg(C)∼= CN where N= G∞ is the cofree comonad.

Distributive laws and liftings We can use λ to colift F to the category CN. The coherence
conditions guarantee that Fλ : CN→ CN preserves respect for ε and δ. Dually, λ induces
the lifting Nλ : F-Alg(C)→ F-Alg(C). Now, the coherence conditions ensure that Nλ is a
comonad with εa,A = ε A and δa,A = δ A. In particular, the lifted transformations ε : Nλ →̇ Id

and δ : Nλ →̇Nλ ◦Nλ are F-algebra homomorphisms.

Eilenberg-Moore construction As noted above, every adjunction generates a comonad.
The converse is also true: every comonad N induces an adjunction that generates N—in
fact, in two canonical ways. One construction was discovered by Kleisli (1965), the other
by Eilenberg & Moore (1965). Here we need the latter, which constructs a right adjoint to
the forgetful functor UN : CN→ C .

C CN⊥
CofreeN

UN

The functor CofreeN maps an object to the cofree coalgebra for N:

CofreeN B = (N B,δ B) , (7.5a)

CofreeN f = N f . (7.5b)

The counit ε : UN ◦CofreeN →̇ Id of the adjunction UN a CofreeN is the counit of N; the unit
η : Id→̇CofreeN ◦UN, defined η (C,c) = c, extracts the action of a coalgebra, which is an
N-coalgebra homomorphism of type (C,c)→ (N C,δ C) (7.4b). The bijection framed in
terms of the units reads:

f = ε B · UN h ⇐⇒ CofreeN f · η (C,c) = h ,

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 29

for all f : UN (C,c)→ B and h : (C,c)→ CofreeN B. The adjunction UN a CofreeN indeed
generates the comonad N: we have UN ◦CofreeN = N and δ= UN ◦η◦CofreeN. Since UN

is faithful, we can simplify the bijection slightly:

f = ε B · h ⇐⇒ N f · c = h , (7.6)

for all f : C→ B and homomorphisms h : (C,c)→ (N B,δ B). Have we seen an arrow of the
form N f · c before?

7.4 Background: Bialgebras

A bialgebra combines an algebra and a coalgebra with a common carrier. Bialgebras come
in many flavours; we need the variant that combines F-algebras and coalgebras for a
comonad N. The two functors have to interact coherently, described by a distributive law.

Bialgebras Let λ : F ◦N →̇N ◦ F be a distributive law for the endofunctor F over the
comonad N. A λ -bialgebra (a,X,c) consists of an F-algebra (a,X) and a coalgebra (X,c)
for the comonad N such that the pentagonal law holds:

c · a = N a · λ X · F c . (7.7)

Loosely speaking, the law allows us to swap the algebra a and the coalgebra c. A λ -bialgebra
homomorphism is both an F-algebra and an N-coalgebra homomorphism. λ -bialgebras and
their homomorphisms form a category, denoted λ -Bialg(C).

The pentagonal law (7.7) also has two asymmetric renderings, which relate it to liftings
and coliftings.

F X F (N X)

X N X

a

F c

Nλ a

c

F X

F (N X)

X

N (F X)

N X

a

F c

λ X

c

N a

X F X

N X N (F X)

c

a

Fλ c

N a

(7.8)

The diagram on the left shows that c : (a,X)→ Nλ (a,X) is an F-algebra homomorphism.
Dually, the diagram on the right identifies a : Fλ (X,c)→ (X,c) as an N-coalgebra homo-
morphism. Thus, we can interpret the bialgebra (a,X,c) both as an algebra over a coalgebra
(a,(X,c)), or as a coalgebra over an algebra ((a,X),c). Formally, we have the following
isomorphisms of categories:

Fλ -Alg(CN)∼= λ -Bialg(C)∼= (F-Alg(C))Nλ . (7.9)

The alternative interpretations are useful to determine initial and final objects in λ -Bialg(C).
To determine the initial object, we use the ‘coalgebra over algebra’ view, as categories of
G-coalgebras have a trivial initial object: (0,0 G 0), where 0 is the initial object in the
underlying category and 0 G 0 the unique arrow from it. Consequently, (in,µF, fan) with
fan = Nλ in is indeed initial.

ZU064-05-FPR URS 15 September 2015 9:20

30 R. Hinze and N. Wu

7.5 Recursion Schemes from Comonads are Adjoint Folds

We now return to the proof of Theorem 7.2 using our new vocabulary to derive the unique
solution. Somewhat surprisingly, as an immediate consequence of this proof, it turns out that
rsfcs are an instance of adjoint folds, when previously, the two frameworks were thought of
as being orthogonal (Hinze, 2013). Of course, the derivation is not strictly necessary, but it
helps to relate the present development to prior work (Uustalu et al., 2001), and it hopefully
helps to understand why rsfcs are an instance of adjoint folds. The development will follow
the pattern we have already established.

First, we abstract away from the initial object (in,µF, fan), generalising to an arbitrary
λ -bialgebra (a,A,c). The goal is to establish a bijection between arrows f : A→ B satisfying
f · a = b · F (N f · c) and λ -bialgebra homomorphisms h : (a,A,c)→ (b],N B,δ B), where
b] is a to-be-determined F-algebra. Now, we already know that arrows of type f : A→ B and
N-coalgebra homomorphisms h : (A,c)→ (N B,δ B) are in one-to-one correspondence (7.6).
So we identify N f · c as the transpose of f and simplify f’s equation to f · a = b · F h. It
remains to show that h is an F-algebra homomorphism of type (a,A)→ (b],N B).

F A F (N B)

A B

F h

a b

f

⇐⇒
F A F (N B)

A N B

F h

a b]

h

(7.10)

The strategy for the proof is clear: we have to transmogrify f into N f · c. Thus, we apply N

to both sides of f · a = b · F h and then ‘swap’ a and c using the pentagonal law (7.7).

f · a = b · F h
=⇒ { N functor }

N f · N a = N b · N (F h)
=⇒ { Leibniz }

N f · N a · Fλ c = N b · N (F h) · Fλ c
⇐⇒ { a : Fλ (A,c)→ (A,c) is an N-coalgebra homomorphism (7.8) }

N f · c · a = N b · N (F h) · Fλ c
⇐⇒ { N f · c = h }

h · a = N b · N (F h) · Fλ c
⇐⇒ { F h = Fλ h : Fλ (A,c)→ Fλ (N B,δ B) is an N-coalgebra homomorphism (7.8) }

h · a = N b · Fλ (δ B) · F h

The proof makes essential use of the pentagonal law (7.7), the fact that a and h are N-
coalgebra homomorphisms, and that Fλ preserves N-coalgebra homomorphisms. Along the
way, we have derived a formula for b]:

b] = N b · Fλ (δ B) = N b · λ (N B) · F (δ B) . (7.11)

We have to show that (b],N B,δ B) is a λ -bialgebra. Since Fλ (N B,δ B) is a coalgebra for
the comonad N, we can conclude using (7.6) that b] is a coalgebra homomorphism of type
Fλ (N B,δ B)→ (N B,δ B), which establishes the desired result. Furthermore b = ε B · b],

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 31

which allows us to complete the proof.

h · a = b] · F h
=⇒ { Leibniz }

ε B · h · a = ε B · b] · F h
⇐⇒ { f = ε B · h and b = ε B · b] }

f · a = b · F h

We have discovered an important fact: b and b] are also related by the Eilenberg-Moore
adjunction UN a CofreeN since b] = bbc! Using the notation for adjuncts, the right-hand
side of (7.10) reads bfc · a = bbc · F bfc. This looks suspiciously like the right-hand side
of (5.8), which relates trahos (adjoint folds) and homomorphisms. However, the original
equation for f does not seem to fit into the picture. This is because it omits the forgetful
functor UN. If we make it explicit, we obtain the following bijection, which is indeed an
instance of (5.8).

UN (Fλ (A,c)) UN (Fλ (CofreeN B))

UN (A,c) B

UN a

UN (Fλ bfc)

b

f

⇐⇒

Fλ (A,c) Fλ (CofreeN B)

(A,c) CofreeN B

a

Fλ bfc

bbc

bfc

If we simplify the composition of functors using UN ◦Fλ = F◦UN and UN ◦Fλ ◦CofreeN =

F◦UN ◦CofreeN = F◦N, we obtain the original equivalence (7.10). The somewhat pedantic
diagrams above explicate all the information that is implicit. For example, we can read off
that a is an N-coalgebra homomorphism.

The second step should be routine by now. If we instantiate (a,A,c) to the initial λ -
bialgebra (in,µF, fan), we obtain that the unique solution of the original equation (7.3) is
f = d bbc e or, expressed using the vocabulary of (Uustalu et al., 2001), f = ε B · b] . We
record

Theorem 7.4

Let N : C → C and F : C → C be endofunctors. A recursion scheme from the comonad N

and the distributive law λ : F◦N→̇N◦F can be framed as a canonical adjoint fold based
on the Eilenberg-Moore adjunction UN a CofreeN. The data functor for the adjoint fold is
Fλ : CN→ CN, the canonical control functor is UN ◦Fλ ◦CofreeN = F◦N, and the algebra
remains b : F (N B)→ B.

C CN⊥
CofreeN

F◦N
UN

Fλ

Let us conclude the section by investigating an alternative control functor: since UN◦Fλ =

F◦UN, the functor F itself can be used as the control! For this case the distributive law σ is
an isomorphism, even an identity, so we can invoke the machinery of Section 5.6 and lift the
adjunction UN a CofreeN to an adjunction between categories of algebras. The conjugate
of σ= id is just λ , we have UN ◦τ= λ . (The coherence condition (7.2b) shows that λ is an

ZU064-05-FPR URS 15 September 2015 9:20

32 R. Hinze and N. Wu

N-coalgebra homomorphism of type Fλ ◦CofreeN →̇CofreeN ◦F.)

F-Alg(C) Fλ -Alg(CN)

C CN

⊥
CofreeτN

UFa ∼=

Uid
N

UF
λa

⊥
CofreeN

F

FreeF

UN

Fλ

FreeFλ

In the upper right corner we find the category of λ -bialgebras (7.9). This shows that the
underlying functor λ -Bialg(C)→ F-Alg(C), which forgets about the algebra part, has
a right adjoint. Since right adjoints preserve final objects, we immediately obtain that
CofreeτN (F 1 1,1) is the final bialgebra.

8 When is an Adjoint Fold an Rsfc?

We have seen that all rsfcs are adjoint folds; and indeed, previous work has shown that
the two share some connection—zygomorphisms have been modelled both by using rsfcs
(Uustalu et al., 2001) and as adjoint folds (Hinze, 2013). But what about the reverse direction:
when can an adjoint fold also be modelled by an rsfc? In this section we show a sufficient
condition: that an adjoint fold based on the canonical control functor can be captured as an
rsfc, if additionally a distributive isomorphism exists.

An adjoint fold is based on an adjunction L a R, and an rsfc on a comonad. Thus, using
Huber’s result, an obvious choice for the comonad is N = L ◦R. However, we also need
to manufacture a distributive law λ : F◦N→̇N◦F. Now, one can show that a conjugate
pair σ a τ of distributive laws, where σ is an isomorphism, induces a distributive law for
an endofunctor over a comonad (Climent & Soliveres, 2010). Consequently, we assume
the following data (we rename F to C to bring the subsequent development in line with
Section 5.6):

σ : L◦D∼= C◦L a τ : D◦R→̇R◦C .

These are the same assumptions as for the type fusion rule, Corollary 5.6. We shall see
shortly that this is not a mere coincidence.

Under these assumptions we aim to show that the following two diagrams are equivalent.
On the left we have the diagram for the canonical adjoint fold (5.8); on the right we have
the diagram for recursion schemes from comonads (7.3).

L (D (µD)) L (D (R B))

L (µD) B

L in

L (D bxc)

b

x

⇐⇒
C (µC) C (N B)

µC B

C (N f·fan)

in b′b·σ◦ (R B)

f

The functions x and f are related by the isomorphism ρ : L (µD) ∼= µC, provided by
Corollary 5.6. The main task is to relate the upper arrows. To this end we will use the
assumption that N= L◦R is a composition of adjoint functors to derive a simple formula

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 33

for fan : µC→ N (µC) by working instead with fan′ : L (µD)→ N (L (µD)), related by
fan = N ρ · fan′ · ρ◦.

But first, we have to set up the infrastructure. From the data above we can generate two
distributive laws (Climent & Soliveres, 2010):

α = τ−σ◦ = R◦σ◦ · τ◦L : D◦M→̇M◦D , (8.1a)

γ = σ◦−τ = L◦τ · σ◦ ◦R : C◦N→̇N◦C . (8.1b)

The distributive law γ satisfies the two requirements for λ (7.2) (note that Nγ = Lσ
◦ ◦Rτ);

the distributive law α of an endofunctor over a monad enjoys analogous conditions:

α · D◦η = η◦D , (8.2a)

α · D◦µ = µ◦D · M◦α · α◦M . (8.2b)

Next we construct an initial γ-bialgebra. Since Lσ
◦

: D-Alg(D)→ C-Alg(C) is left
adjoint (5.13), and left adjoints preserve initial objects (3.8a), we know that Lσ

◦
(in,µD) =

(Lσ
◦

in,L (µD)) is initial in C-Alg(C). To determine a formula for fan′, the corresponding
coalgebra part, we have to delve a bit deeper into the theory. The Eilenberg-Moore adjunction
UN a CofreeN has an important property: it is the largest adjunction that generates N, in
the sense that for every adjunction L a R there is a unique adjoint square from L a R to
UN a CofreeN, depicted in the diagram below. (Since the distributive laws of the adjoint
square are identities, it is actually a so-called map of adjunctions.)

C C

D CN

Ra CofreeNa

E

L UN

The so-called comparison functor E : D → CN is defined

E A = (L A,L (η A)) , (8.3a)

E f = L f . (8.3b)

Since the distributive laws of the adjoint square are identities, we have UN ◦E= Id◦L and
E◦R= CofreeN ◦ Id.

Note that the carrier of E A is L A, which suggests that the coalgebra part of the initial
γ-bialgebra is perhaps just L (η (µD)). Then it remains to verify that Lσ

◦
in and L (η (µD))

satisfy the pentagonal law. We prove, in fact, a slightly more general result: we show that
(Lσ

◦
a,L A,L (η A)) is a γ-bialgebra, where (a,A) : D-Alg(D) is an arbitrary D-algebra, by

lifting the comparison functor E to categories of algebras with a distributive law, as in the
diagram below.

D-Alg(D) Cγ-Alg(CN)

D CN

Eθ

UD UCγ

E

ZU064-05-FPR URS 15 September 2015 9:20

34 R. Hinze and N. Wu

To this end, we need a distributive law θ : E◦D←̇Cγ ◦E. We claim that σ◦ itself fits the
bill: UN ◦θ = σ◦. (Note that UN ◦E ◦D ←̇UN ◦Cγ ◦E = L ◦D ←̇C ◦L). In other words,
we have to show that σ◦ is a natural N-coalgebra homomorphism of type E◦D←̇Cγ ◦E.
Plugging in the definitions, we reason

L◦η◦D · σ◦

= { α respects η (8.2a) }
L◦α · L◦D◦η · σ◦

= { σ◦ is natural }
L◦α · σ◦ ◦M · C◦L◦η

= { σ◦−α= σ◦−τ−σ◦ = γ−σ◦ }
N◦σ◦ · γ◦L · C◦L◦η .

We have established that fan′ = L (η (µD)), and so an attractive definition of fan emerges:

fan = N ρ · L (η (µD)) · ρ◦ , (8.4)

which is in most cases a much more efficient implementation than N in · λ (µF) .
We are now ready to show that adjoint folds are recursion schemes from comonads,

provided that a distributive isomorphism σ : L◦D∼= C◦L exists. Here is the diagram for
rsfcs with applications of the isomorphism σ made explicit.

L (D (µD)) C (L (µD)) C (N B) L (D (R B))

L (µD) L (µD) B B

σ (µD)

L in

C (N x·fan′)

Lσ
◦

in b·σ◦ (R B)

σ◦ (R B)

b

x

Thus, it remains to show that L bxc= N x · fan′.

L bxc
= { b−c expressed in terms of η; (3.4a) with k, f,h := x, id, id }

L (R x · η (µD))

= { L functor }
L (R x) · L (η (µD))

= { definition of N and fan′ (8.4) }
N x · fan′

We record the result in the following

Theorem 8.1
Let x : L (µD)→ B be a canonical adjoint fold based on the adjunction L a R : C ⇀ D with
conjugates σ a τ where σ is an isomorphism, a data functor D : D →D , a control functor
C : C →C , and an algebra b :C B→ B. Since σ is an isomorphism we have ρ : L (µD)∼=µC.
The adjoint fold x can be framed in terms of a recursion scheme f : µC→ B for the comonad
N= L◦R, where x = f · ρ. The distributive law for the rsfc is λ = σ◦−τ : C◦N→̇N◦C,
and its algebra is b · σ◦ (R B) : C (N B)→ B.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 35

Example 8.2
Mutumorphisms are an instance of rsfcs using σ = id : ∆ ◦D = D2 ◦∆, see Example 5.7.
Since the isomorphism is an identity, we can transform the diagram for adjoints folds almost
directly into a corresponding diagram for rsfcs (A :=µD).

∆ (D A) ∆ (D ((×) B))

∆ A B

∆ in

∆ (D bxc)

b

x

⇐⇒
D2 (∆ A)) D2 (∆ ((×) B))

∆ A B

∆ in

D2 (∆ bxc)

b

x

In the upper right corner we discover the comonad N= ∆◦ (×), which works over a product
category. As fan′ = ∆ (idM id), we have ∆ bxc = ∆ ((×) x · (idM id)) = N x · fan′. If we
identify ∆ (µD) and µD2 so that ∆ in = in, the diagram for rsfcs emerges.

We have seen in the previous section that an rsfc (based on a comonad N and a distributive
law λ : F◦N→̇N◦F) can be framed as an adjoint fold using the Eilenberg-Moore adjunction
UN a CofreeN. Now, what happens if we go round in a circle, instantiating the development
above to D= Fλ , C= F, and id : UN ◦Fλ = F◦UN? Recall that UN ◦τ= λ ; consequently,

γ = σ◦−τ = UN ◦τ · id◦ ◦CofreeN = λ .

Hence, we obtain back the original rsfc!
We have seen that mutumorphisms based on ∆ a (×) can be modelled by using an rsfc.

Of course, this does not work for every adjunction. As an example, consider the curry
adjunction. One would need a control functor C such that:

σ : (−×P)◦D∼= C◦ (−×P) .

Such a control functor is not guaranteed to exist for all datatypes.

9 Monadic Catamorphisms

So far we have devoted our attention to the (co)Eilenberg-Moore adjunction, since its
construction on comonads has allowed us to relate adjoint folds to rsfcs. A connected line
of work is to investigate the Kleisli adjunction. Its construction on monads allows us to
relate adjoint folds to yet another recursion scheme: monadic catamorphisms (Fokkinga,
1994). This scheme allows monadic computations to be threaded through the traversal of a
recursive structure. But first we review the construction of the Kleisli adjunction.

9.1 Background: Kleisli Categories

The Kleisli category Given a category C and a monad M : C → C , we can construct the
Kleisli category, written CM. This category imposes further structure on C by incorporating
a monadic value to the target of every arrow. The objects in CM are the same as those in C ,
but the arrows differ. A Kleisli arrow A→ B : CM is a C -arrow of type A→M B : C . The
identity arrow of an object X : CM is the component η X : X→M X of the unit of the monad.
The composition of arrows f : A→M B : C and g : B→M C : C in the Kleisli category is
given by g / f : A→M C : C , where g / f = µ C ·M g · f.

ZU064-05-FPR URS 15 September 2015 9:20

36 R. Hinze and N. Wu

The Kleisli adjunction It is easy to show that the categories C and CM are related by an
adjoint pair of functors LM and RM:

CM C⊥
RM

LM

.

The functor LM promotes arrows of the base category to “pure” Kleisli arrows:

LM A = A , (9.1a)

LM f = η B · f , (9.1b)

where f : A→ B : C .
The functor RM maps objects in the Kleisli category to monadic objects in the underlying

category:

RM A =M A , (9.2a)

RM f = µ B ·M f , (9.2b)

where the arrow f : A→M B : C is first lifted so that its source matches the expected object,
and then ‘rebalanced’ by the multiplication µ : M◦M→̇M of the monad.

The unit η : Id→̇RM ◦LM of this adjunction is simply the unit of the monad M, and the
counit ε : LM ◦RM →̇ Id is the identity idM. A rather curious property of this adjunction is
that the adjuncts merely cast arrows between the categories, where bfc= f and dge= g, as
can be easily verified.

Liftings A lifting of the functor F : C → C is a functor F̄ : CM→ CM such that

LM ◦F= F̄◦LM . (9.3)

Recall that a distributive law λ : F◦M→̇M◦F of an endofunctor F over a monad M is a
natural transformation satisfying the two coherence conditions described by Equations (8.2a)
and (8.2b). We can use such a distributive law to produce the lifting Fλ : CM→ CM:

Fλ A = F A , (9.4a)

Fλ f = λ B · F f , (9.4b)

where f : A→M B : C . Beware that this notation overlaps with that of coliftings to functors
over coalgebras, which we will not use in this section.

The proof that this is a lifting makes use of the distributive law:

LM (F f)
= { definition of LM (9.1b) }

η (F B) · F f
= { distributive law (8.2a) }

λ B · F (η B) · F f
= { F functor and definition of Fλ (9.4b) }

Fλ (η B · f)
= { definition of LM (9.1b) }

Fλ (LM f)

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 37

The lifting induces the conjugate id : LM ◦ F ∼= Fλ ◦ LM, such that id a τ. Using Equa-
tion (3.12b) we can show that λ = τ ◦LM. Since LM is the identity on objects these two
natural transformations have the same components.

9.2 Monadic catamorphisms are adjoint folds

A monadic catamorphism threads a computation through some recursive structure. More
formally, the scheme is defined by the following equation:

Definition 9.1 (Monadic catamorphism equation)
Given a functor F : C → C , a monad (M,η,µ), a distributive law λ : F◦M→̇M◦F, and
an algebra b : F B→ B : CM, a monadic catamorphism in the unknown x : LM (in,µF)→
LM (b,B) has the form

x / LM in = b / Fλ x , (9.5)

where the functor Fλ : CM→ CM is the lifting of F by λ .

The machinery we have set up earlier on in this section allows us to show how this
definition corresponds to an adjoint fold. We have the following situation:

CM C⊥
RM

Fλ

LM
F ,

where Fλ is the lifting of F using a given distributive law λ : F◦M→̇M◦F.
Given an algebra b : Fλ B→ B, we can apply our definitions to Equation (5.12) to yield:

Fλ (LM (µF)) Fλ B

LM (µF) B

L
id◦
M in

Fλ x

b

x

⇐⇒
F (µF) F (RM B)

µF RM B

in

F bxc

Rτ
M b

bxc

The diagram on the left is in the Kleisli category, and corresponds directly to Equation (9.5).
The diagram on the right is a fold f = bxc : µF→M B that involves only the base category
C . Some calculation gives us a clearer implementation:

f · in = Rτ
M b · F f

⇐⇒ { definition of lifting (3.1a) }
f · in = RM b · τ B · F f

⇐⇒ { definition of RM b (9.2b) }
f · in = µ B ·M b · τ B · F f

This is precisely the characterization given by Fokkinga (1994).

Example 9.2
The function accumulate from Section 2 is a monadic fold where the underlying functor is
List and the distributive law is λ : List◦M→̇M◦List, for an arbitrary monad M. In Haskell,

ZU064-05-FPR URS 15 September 2015 9:20

38 R. Hinze and N. Wu

we can implement this law as:

λ :: (Functor m,Monad m)⇒ List a (m x)→ m (List a x)
λ Nil = return Nil
λ (Cons a mx) = mx>>=λx→ return (Cons a x)

The proof that this law respects the unit and multiplication of the monad is a simple exercise.
We are in a position to give a definition that matches the structure of a monadic fold,

bearing in mind that τ and λ agree on their components:

accumulate :: (Functor m,Monad m)⇒ [m x]→ m [x]
accumulate = join · fmap b · λ

where b Nil = return []

b (Cons mx xs) = mx>>=λx→ return (x : xs)

On non-empty input, the algebra b ::List (m x) [x]→ m [x] appends the tail of results to the
head of the list within a monadic context.

10 Calculational Properties

The calculational properties of adjoint folds were studied at depth in (Hinze, 2013). Given
that rsfcs are an instance of adjoint folds, a natural question to ask is how this corresponds
to the properties introduced alongside recursion schemes from comonads (Uustalu et al.,
2001). We start by listing the properties of adjoint folds.

Uniqueness Property The uniqueness property underpins many of the other laws, and
introduces the notation b L to represent the unique solution to the adjoint fold equation
given by Theorem 5.2.

x = b L ⇐⇒ x · L in = b · C x · σ (µD) . (10.1)

Computation Law An immediate consequence of the uniqueness property is the compu-
tation law, which simply arises by substituting the unique solution b L into the defining
equation for adjoint folds:

b L · L in = b · C b L · σ (µD) . (10.2)

Reflection Law The reflection law arises when we substitute id for x in the uniqueness
property:

id = b L ⇐⇒ L in = b · σ (µD) . (10.3)

Example 10.1 (Catamorphisms)
We can bring these properties back to familiar territory by instantiating Equation (10.1) to
the adjunction Id a Id, since this gives rise to standard folds, where the canonical control
functor is C= Id◦D◦ Id=D, and σ is simply the identity. In this setting, the uniqueness
law is rendered:

x = b ⇐⇒ x · in = b · x .

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 39

The computation law becomes the following, which is sometimes also referred to as
cancellation:

b · in = b · D b (10.4)

The standard reflection law arises out of substituting the right hand side into the left:

id = b ⇐⇒ in = b

Example 10.2 (Recursion schemes from comonads)

We have already seen that recursion schemes from comonads are an instance of adjoint
folds where the adjunction is UG a CofreeG, the data functor is Fλ , and the control functor
is the canonical one. As can be expected, specializing the calculational properties above
leads to the properties of rsfcs introduced by Uustalu et al. (2001).

For example, we can show that the computation law is in fact a generalized version
of what was originally called the cancellation law. This is a simple case of plugging in
definitions when the computation law for the canonical control functor is used:

b UN
· UN in = b · UN (Fλ (CofreeN b UN

· η (µFλ)))

⇐⇒ { definition of UN }
b UN

· in = b · Fλ (CofreeN b UN
· η (µFλ))

⇐⇒ { definition of Fλ (3.2b) }
b UN

· in = b · F (CofreeN b UN
· η (µFλ))

⇐⇒ { definition of CofreeN (7.5b) }
b UN

· in = b · F (N b UN
· η (µFλ))

⇐⇒ { definition of fan (8.4) }
b UN

· in = b · F (N b UN
· fan)

Thus we have arrived at the comonadic recursion equation (7.3), and shown that it is solved
uniquely by b UN

.
We can also reason that folding with the algebra b = in · F (ε (µF)) is the identity, which

follows by showing that the right hand side of the reflection law is true.

id = in · (F◦ε) (µF) UN

⇐⇒ { reflection law (10.3) }
UN in = in · (F◦ε) (µF) · (UN ◦Fλ ◦η) (µFλ)

⇐⇒ { definition of UN and µFλ = (µF, in) }
UN in = UN in · (F◦ε◦UN) (µFλ) · (UN ◦Fλ ◦η) (µFλ)

⇐⇒ { Fλ is a colifting }
UN in = UN in · (F◦ε◦UN) (µFλ) · (F◦UN ◦η) (µFλ)

⇐⇒ { functoriality of F }
UN in = UN in · F ((ε◦UN) (µFλ) · (UN ◦η) (µFλ))

⇐⇒ { triangle identity (3.5a) }
UN in = UN in

Example 10.3 (Catamorphisms as recursion schemes from comonads)

ZU064-05-FPR URS 15 September 2015 9:20

40 R. Hinze and N. Wu

Using the uniqueness property for rsfcs, we can show how to express catamorphisms as
rsfcs.

b Id = b · F (ε B) UN

⇐⇒ { uniqueness property (10.1) }
b Id · UN in = b · F (ε B) · (UN ◦Fλ ◦CofreeN) b Id · (UN ◦Fλ ◦η) (µFλ)

⇐⇒ { Fλ is a colifting }
b Id · UN in = b · F (ε B) · (F◦UN ◦CofreeN) b Id · (F◦UN ◦η) (µFλ)

⇐⇒ { functoriality of F }
b Id · UN in = b · F (ε B · (UN ◦CofreeN) b Id · (UN ◦η) (µFλ))

⇐⇒ { naturality of ε }
b Id · UN in = b · F (b Id · ε (µF) · (UN ◦η) (µFλ))

⇐⇒ { definition of UN }
b Id · in = b · F (b Id · (ε◦UN) (µFλ) · (UN ◦η) (µFλ))

⇐⇒ { triangle identity (3.5a) }
b Id · in = b · F b Id

This shows that every catamorphism is an rsfc. Or else, we can view this as a simple program
optimization: an rsfc whose algebra ignores the comonadic context and merely extracts a
value can be simplified to become a catamorphism.

10.1 Fusion

A useful set of laws involve the fusion of a fold with some arrow to produce a different fold.

Fusion Law The simplest instance of fusion, which we simply call the fusion law, gives
the conditions required to fuse an arrow that follows after an adjoint fold.

Given an adjoint fold a L : C (L (µD),A), and an arrow h : C (A,B), we can form a new
adjoint fold b L : C (L (µD) B) under certain conditions, which we can calculate:

h · a L = b L

⇐⇒ { uniqueness property (10.1) }
h · a L · L in = b · C (h · a L · σ (µD)

⇐⇒ { computation (10.2) }
h · a · C a L · σ (µD) = b · C (h · a L) · σ (µD)

⇐⇒ { functoriality of C }
h · a · C a L · σ (µD) = b · C h · C a L · σ (µD)

⇐= { Leibniz law }
h · a = b · C h

Summarizing, we can state the fusion law as follows:

h · a L = b L ⇐= h · a = b · C h . (10.5)

The arrow is required to be a C-homomorphism.

Conjugate Fusion Law The fusion law focuses on creating a new fold whose codomain is
a modification of the original. Another form of fusion of interest is the so-called conjugate

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 41

fusion law, which focuses instead on generating a fold whose domain differs. This time, we
precompose the fold b′ L by a conjugate α : L→̇L′. It is instructive to derive the conditions
required for this situation:

b L′ · α (µD) = b L

⇐⇒ { uniqueness property (10.1) }
b L′ · α (µD) · L in = b · C (b L′ · α (µD)) · σ (µD)

⇐⇒ { naturality of α : L→̇L′ }
b L′ · L

′ in · α (D (µD)) = b · C (b L′ · α (µD)) · σ (µD)

⇐⇒ { computation law (10.2) }
b · C b L′ · σ

′ (µD) · α (D (µD)) = b · C (b L′ · α (µD)) · σ (µD)

⇐⇒ { functoriality of C }
b · C b L′ · σ

′ (µD) · α (D (µD)) = b · C b L′ · C (α (µD)) · σ (µD)

⇐= { Leibniz law }
σ′ (µD) · α (D (µD)) = C (α (µD)) · σ (µD)

We have shown that the precomposition of α with fold yields another, so long as the
conjugates of the fold are related by α:

b L′ · α (µD) = b L ⇐= σ′ · α◦D= C◦α · σ . (10.6)

A natural transformation that satisfies the property on the right is sometimes called a
transformation of conjugates.

General Fusion The previous two laws are an instance of a more general fusion law
where we transform both domain and codomain at once using a natural transformation
α : C (L−,B)→̇C ′ (L′ −,B′). We can calculate the required conditions as follows:

α (µD) b L = b′ L′

⇐⇒ { uniqueness property (10.1) }
α (µD) b L · L

′ in = b′ · C′ (α (µD) b L) · σ
′ (µD)

⇐⇒ { naturality of α }
α (D (µD)) (b L · L in) = b′ · C′ (α (µD) b L) · σ

′ (µD)

⇐⇒ { computation law (10.2) }
α (D (µD)) (b · C b L · σ (µD)) = b′ · C′ (α (µD) b L) · σ

′ (µD)

⇐= { abstraction }
α (D X) · (λx . b · C x · σ X) = (λx . b′ · C′ x · σ′ X) · α X

We can recover the fusion law by applying a transformation that postcomposes with
h : C (A,B), which is natural in its domain: h · − : C (L−,A)→̇C (L−,B). Instantiating
this to the general fusion law gives:

(h · −) (D X) · (λx . a · C x · σ X) = (λx . b · C x · σ X) · (h · −) X
⇐⇒ { extensionality }

∀x . h · a · C x · σ X = b · C (h · x) · σ X
⇐⇒ { functoriality of C }

∀x . h · a · C x · σ X = b · C h · C x · σ X
⇐= { Leibniz }

h · a = b · C h

ZU064-05-FPR URS 15 September 2015 9:20

42 R. Hinze and N. Wu

Similarly, the conjugate fusion law is recovered by applying a transformation that precom-
poses with α : L→̇L, since this is a transformation of type C (L−,A)→̇C (L′ −,A).

11 Adjoint Unfolds

Now that we have studied adjoint folds in detail, we turn our attention to their dual coun-
terparts: adjoint unfolds. Of course, everything dualizes as expected, but it is nevertheless
instructive to see exactly how this works out in practice. We start with the definition of an
adjoint unfold. To find the dual, we must remember that an adjoint fold exists only in a
category that is the codomain of a left adjoint functor. Dually, an adjoint unfold exists only
in a category that is the codomain of a right adjoint functor.

Definition 11.1 (Adjoint corecursion equation)
Given an adjunction L a R : C ⇀D , functors C : C → C and D : D→D , and a distributive
law τ : D◦R→̇R◦C, an adjoint corecursion equation in the unknown y : A→ R (νC) has
the form

R out · y = τ (νD) · D y · a , (11.1)

where a : A→ D A.

Note that this definition falls out naturally from the adjoint recursion equation as a conse-
quence of the conjugate relationship, σ a τ, between the distributive laws. It may help to
view the functors C and D as the codata structure and decision structure, since their roles
are now different: rather than collapsing a value of type µD, we are instead constructing a
value of type νC, where values are decided by a D-coalgebra.

Just as before, there exists a unique solution to this equation. We can proceed with an
analogous pair of steps to obtain adjoint unfolds:

First, we abstract away from the final coalgebra (νC,out) and find the desired transposed
homomorphism.

R b · y = τ B · D y · a : A→ R (C B)
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

dR b · ye= dτ B · D y · ae
⇐⇒ { d−e is natural (3.4b) }

b · dye= dτ B · D ye · L a
⇐⇒ { σ a τ conjugates (3.11b) }

b · dye= C dye · σ A · L a
⇐⇒ { definition of colifting (3.2a) }

b · dye= C dye · Lσ a : L A→ C B

Second, we instantiate the coalgebra (B,b) to the final coalgebra (µC,out).

Theorem 11.2 (Adjoint unfolds)
The adjoint corecursion equation (11.1) has the unique solution y = b Lσ a c, where σ :
L◦D→̇C◦L is the conjugate of τ. The arrow y is called an adjoint unfold.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 43

(a) catamorphism (Hagino, 1987; Malcolm, 1990b) Id a Id depth
mutumorphism (Fokkinga, 1990) ∆ a (×) even/odd

special case: zygomorphism (Malcolm, 1990a) UY a PY perfect
special case: paramorphism (Meertens, 1992) wc

fold with a parameter (Pardo, 2002) −×P a (−)P cat, depths
generalised fold (Bird & Paterson, 1999) (−◦F) a RanF total
recursion scheme from a comonad (Uustalu et al., 2001) UN a CofreeN

special case: histomorphism (Uustalu & Vene, 1999b) knapsack
monadic catamorphism (Fokkinga, 1994) LM a RM accumulate

(b) anamorphism (Hagino, 1987; Malcolm, 1990b) Id a Id from
(mutumorphism) (+) a ∆

special case: apomorphism (Vene & Uustalu, 1998) insert
(generalised unfold) LanF a (−◦F)
λ -coiteration (Bartels, 2003) FreeM a UM

special case: futumorphism (Uustalu & Vene, 1999b)

Table 1. Adjoint folds (a) and unfolds (b); LanP and RanP are left and right Kan extensions,
FreeM a UM is the Eilenberg-Moore adjunction, and LM a RM is the Kleisli adjunction.

Proof
This is an immediate consequence of finality.

R out · y = τ (νD) · D y · a
⇐⇒ { see above }

out · dye= C dye · Lσ a
⇐⇒ { (νC,out) final }

dye= Lσ a
⇐⇒ { b−c and d−e are isomorphisms (3.3) }

x = b Lσ a c

The adjoint unfolds formulation allows us to bring all of the corecursive schemes mentioned
in Section 2 into a single framework. The procedure is much the same as for the recursive
counterparts we have covered: the hard part is identifying the adjunction that needs to be
instantiated. We do not go through the details in this paper, but a summary of the adjoint
unfolds and their corresponding instantiations are to be found in Table 1.

12 Related Work

Adjoint folds Mendler-style adjoint folds first appeared in a paper by Bird & Paterson
(1999), where they were used to show that generalised folds are uniquely defined. (Somewhat
ironically, adjoint folds were only used in the proofs, not as a general recursion principle.)
The algebraic variant of adjoint folds that we have employed throughout was introduced
by Matthes & Uustalu (2004) under the name generalised iteration. The first author of
the present paper explored the design space of adjoint folds (Hinze, 2013), identifying the
adjunctions underlying various recursion schemes. The paper also shows how to combine
recursion schemes by combining the underlying adjunctions. Alas, he wrote “However, we

ZU064-05-FPR URS 15 September 2015 9:20

44 R. Hinze and N. Wu

cannot reasonably expect that adjoint (un)folds subsume all existing species of morphisms.
For instance, a largely orthogonal extension of standard folds are recursion schemes from
comonads.”

Recursion schemes from comonads Recursion schemes from comonads are due to Uustalu
et al. (2001). Simultaneously and independently, Bartels (2003) introduced the dual con-
struction under name λ -coiteration. Technically, his work is closest to ours in the use of
λ -bialgebras, although our proofs differ considerably in that we make use of the Eilenberg-
Moore construction. Bartels also discussed variations of the scheme that do not rely on a
monad structure. These and further variations were used in a recent ICFP paper (Hinze &
James, 2011) to prove the unique fixed-point principle correct.

Categorical fixed-point calculus The roots of the initial algebra approach to the semantics
of datatypes can be traced back to the work of Lambek (1968) on fixed points in categories.
Lambek suggests that lattice theory provides a fruitful source of inspiration for results in
category theory. These ideas were picked up by Backhouse et al. (1995), where a number of
lattice-theoretic fixed-point rules were generalised to categories, type fusion being one of
them.

Category theory Most of the category theory utilised in this paper is fairly standard—Mac
Lane (1998) is a good reference—except perhaps the material on distributive laws and
conjugates. An extensive account of the relationship between adjunctions and monads is
provided by Climent & Soliveres (2010). Roughly speaking, they show that the Kleisli
construction is a left biadjoint and the Eilenberg-Moore construction is a right biadjoint to
the Huber construction.

13 Conclusion

This paper shows again the importance of adjunctions. They have played a pivotal role in
the categorical analysis of logic; we believe that will prove just as important in the theory of
programming. The unification of recursion schemes we have presented is mathematically
satisfying: in the economy of expression it provides (for example, for reasoning about
products in F-Alg(C)), and especially in the simple reassurance it provides through things
just fitting together in the right way. But it is more than merely an intellectual curiosity:
the additional structure we have uncovered promises concrete returns, too—for example,
through general techniques for combining different recursion schemes, by composing the
corresponding adjunctions. In practice, most functions do indeed use a combination of
recursion schemes (in particular, functions over parametric datatypes).

An overview of the various morphisms and their duals is presented in Table 1, which
shows how they are captured in the framework of adjoint (un)folds. Notice that in this
paper we have restricted our attention to folds and unfolds and have not considered the
more general setting of hylomorphisms. Hylomorphisms not only express the combination
of a fold and an unfold, but can also be seen as a generalization of them both: folds arise
when the (recursive) coalgebra in question is in◦ (and unfolds arise when the (corecursive)
algebra is in). Very recent work by Hinze et al. (2015) has explored the use of recursive

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 45

coalgebras (Capretta et al., 2006) and corecursive algebras in λ -bialgebras, and how this
can be combined with adjoint functors and conjugate natural transformations. This has led
to the introduction of conjugate hylomorphisms, a generalisation of hylomorphisms that
covers both adjoint folds and unfolds as special cases.

14 Acknowledgements

The authors would like to thank Jeremy Gibbons for his contributions to this work. We
would also like to thank the anonymous reviewers for their insight and detailed suggestions.
This work has been funded by EPSRC grant number EP/J010995/1, on Unifying Theories
of Generic Programming.

References

Backhouse, R., Bijsterveld, M., van Geldrop, R. and van der Woude, J. (1995) Categorical
fixed point calculus. Pitt, D., Rydeheard, D. E. and Johnstone, P. (eds), Category Theory
and Computer Science: 6th International Conference, CTCS ’95. Lecture Notes in
Computer Science 953, pp. 159–179. Springer.

Bartels, F. (2003) Generalised coinduction. Mathematical Structures in Computer Science
13(4):321–348.

Beck, J. (1969) Distributive laws. Eckmann, B. (ed), Seminar on Triples and Categorical
Homology Theory. Lecture Notes in Mathematics 80, pp. 119–140. Springer.

Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice Hall.
Bird, R. and Paterson, R. (1999) Generalised folds for nested datatypes. Formal Aspects of

Computing 11(2):200–222.
Capretta, V., Uustalu, T. and Vene, V. (2006) Recursive coalgebras from comonads.

Information and Computation 204(4):437–468.
Climent, J. and Soliveres, J. (2010) Kleisli and Eilenberg-Moore constructions as parts of

biadjoint situations. Extracta Mathematicae 25(1):1–61.
Eilenberg, S. and Moore, J. C. (1965) Adjoint functors and triples. Illinois Journal of

Mathematics 9(3):381–398.
Fokkinga, M. (1990) Tupling and mutumorphisms. The Squiggolist 1(4):81–82.
Fokkinga, M. (1992) Law and Order in Algorithmics. PhD thesis, University of Twente.
Fokkinga, M. (1994) Monadic Maps and Folds for Arbitrary Datatypes. Memoranda

Informatica 94-28. Department of Computer Science, University of Twente.
Gibbons, J. (2000) Generic downwards accumulations. Science of Computer Programming

37(1-3):37–65.
Hagino, T. (1987) Category Theoretic Approach to Data Types. PhD thesis, University of

Edinburgh.
Hinze, R. (2013) Adjoint folds and unfolds—an extended study. Science of Computer

Programming 78(11):2108–2159.
Hinze, R. and James, D. W. (2011) Proving the unique fixed-point principle correct: an

adventure with category theory. Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’11 pp. 359–371. ACM.

ZU064-05-FPR URS 15 September 2015 9:20

46 R. Hinze and N. Wu

Hinze, R. and Wu, N. (2011) Towards a categorical foundation for generic programming.
Proceedings of the 7th ACM SIGPLAN Workshop on Generic Programming, WGP ’11
pp. 47–58. ACM.

Hinze, R. and Wu, N. (2013) Histo- and dynamorphisms revisited. Proceedings of the 9th
ACM SIGPLAN Workshop on Generic Programming, WGP ’13 pp. 1–12. ACM.

Hinze, R., Wu, N. and Gibbons, J. (2013) Unifying structured recursion schemes.
Proceedings of the 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13 pp. 209–220. ACM.

Hinze, R., Wu, N. and Gibbons, J. (2015) Conjugate hylomorphisms – or: The mother of all
structured recursion schemes. Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15 pp. 527–538. ACM.

Huber, P. J. (1961) Homotopy theory in general categories. Mathematische Annalen
144:361–385.

Kan, D. M. (1958) Adjoint functors. Transactions of the American Mathematical Society
87(2):294–329.

Kleisli, H. (1965) Every standard construction is induced by a pair of adjoint functors.
Proceedings of the American Mathematical Society 16(3):544–546.

Lambek, J. (1968) A fixpoint theorem for complete categories. Mathematische Zeitschrift
103(2):151–161.

Mac Lane, S. (1998) Categories for the Working Mathematician. 2nd edn. Graduate Texts
in Mathematics, vol. 5. Springer.

Malcolm, G. (1990a) Algebraic Data Types and Program Transformation. PhD thesis,
University of Groningen.

Malcolm, G. (1990b) Data structures and program transformation. Science of Computer
Programming 14(2-3):255–280.

Matthes, R. and Uustalu, T. (2004) Substitution in non-wellfounded syntax with variable
binding. Theoretical Computer Science 327(1-2):155–174.

Meertens, L. (1992) Paramorphisms. Formal Aspects of Computing 4(5):413–424.
Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,

lenses, envelopes and barbed wire. Hughes, J. (ed), 5th ACM Conference on Functional
Programming Languages and Computer Architecture, FPCA’91. Lecture Notes in
Computer Science 523, pp. 124–144. Springer.

Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic 51(1-2):159–172.

Palmquist, P. H. (1971) The double category of adjoint squares. Gray, J. (ed), Reports of the
Midwest Category Seminar V. Lecture Notes in Mathematics 195, pp. 123–153. Springer.

Pardo, A. (2002) Generic accumulations. Gibbons, J. and Jeuring, J. (eds), Generic
Programming: IFIP TC2/WG2.1 Working Conference on Generic Programming.
International Federation for Information Processing 115, pp. 49–78. Kluwer Academic
Publishers.

Turi, D. and Plotkin, G. (1997) Towards a mathematical operational semantics. Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS ’97. pp.
280–291. IEEE Computer Society.

Uustalu, T. and Vene, V. (1999a) Mendler-style inductive types, categorically. Nordic
Journal of Computing 6(3):343–361.

ZU064-05-FPR URS 15 September 2015 9:20

Unifying Structured Recursion Schemes 47

Uustalu, T. and Vene, V. (1999b) Primitive (co)recursion and course-of-value (co)iteration,
categorically. Informatica 10(1):5–26.

Uustalu, T. and Vene, V. (2008) Comonadic notions of computation. Electronic Notes in
Theoretical Computer Science 203(5):263–284.

Uustalu, T. and Vene, V. (2011) The recursion scheme from the cofree recursive comonad.
Electronic Notes in Theoretical Computer Science 229(5):135–157.

Uustalu, T., Vene, V. and Pardo, A. (2001) Recursion schemes from comonads. Nordic
Journal of Computing 8(3):366–390.

Vene, V. and Uustalu, T. (1998) Functional programming with apomorphisms (corecursion).
Proceedings of the Estonian Academy of Sciences: Physics, Mathematics 47(3):147–161.

	Introduction
	A Zoo of Morphisms
	Background
	Functor Squares and Distributive Laws
	Algebras and Coalgebras
	Adjunctions

	Warm-up: Mutumorphisms from Product Categories
	A Unified Framework for Recursion Schemes
	Background: Mendler-style Folds
	Background: Mendler-style Adjoint Folds
	Adjoint Folds
	Canonical Adjoint Folds
	From Mendler-style to Canonical Adjoint Folds
	Restoring Symmetry

	Detour: Zygomorphisms from Slice Categories
	Background: Slice Categories
	Zygomorphisms Revisited

	Unifying Recursion Schemes from Comonads
	Background: Comonads and Distributive Laws
	Recursion schemes from comonads
	Background: Eilenberg-Moore Categories
	Background: Bialgebras
	Recursion Schemes from Comonads are Adjoint Folds

	When is an Adjoint Fold an Rsfc?
	Monadic Catamorphisms
	Background: Kleisli Categories
	Monadic catamorphisms are adjoint folds

	Calculational Properties
	Fusion

	Adjoint Unfolds
	Related Work
	Conclusion
	Acknowledgements

