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Abstract. This study applies the Carbon-Generic Estuary

Model (C-GEM) modeling platform to simulate the es-

tuarine biogeochemical dynamics – in particular the air–

water CO2 exchange – in three idealized tidal estuaries

characterized by increasing riverine influence, from a so-

called “marine estuary” to a “riverine estuary”. An inter-

mediate case called “mixed estuary” is also considered. C-

GEM uses a generic biogeochemical reaction network and

a unique set of model parameters extracted from a com-

prehensive literature survey to perform steady-state simula-

tions representing average conditions for temperate estuaries

worldwide. Climate and boundary conditions are extracted

from published global databases (e.g., World Ocean Atlas,

GLORICH) and catchment model outputs (GlobalNEWS2).

The whole-system biogeochemical indicators net ecosystem

metabolism (NEM), C and N filtering capacities (FCTC and

FCTN, respectively) and CO2 gas exchanges (FCO2) are cal-

culated across the three idealized systems and are related

to their main hydrodynamic and transport characteristics.

A sensitivity analysis, which propagates the parameter un-

certainties, is also carried out, followed by projections of

changes in the biogeochemical indicators for the year 2050.

Results show that the average C filtering capacities for

baseline conditions are 40, 30 and 22 % for the marine, mixed

and riverine estuary, respectively, while N filtering capaci-

ties, calculated in a similar fashion, range from 22 % for the

marine estuary to 18 and 15 % for the mixed and the river-

ine estuaries. Sensitivity analysis performed by varying the

rate constants for aerobic degradation, denitrification and ni-

trification over the range of values reported in the literature

significantly widens these ranges for both C and N. Simula-

tions for the year 2050 suggest that all estuaries will remain

largely heterotrophic, although a slight improvement of the

estuarine trophic status is predicted. In addition, our results

suggest that, while the riverine and mixed systems will only

marginally be affected by an increase in atmospheric pCO2,

the marine estuary is likely to become a significant CO2 sink

in its downstream section. In the decades to come, such a

change in behavior might strengthen the overall CO2 sink of

the estuary–coastal ocean continuum.

1 Introduction

Located at the interface between land and ocean, estuaries

are highly dynamic ecosystems, which process variable frac-

tions of land-derived inputs of carbon (C) and nutrients (N,

P, Si) through a wide range of chemical and biological pro-

cesses (Alongi, 1998; Crossland et al., 2005; Bianchi, 2007).

Gaseous species, in particular CO2, are produced and further

exchanged with the atmosphere as a result of these intense

biogeochemical dynamics. Recent compilations of observed

data reveal that the vast majority of estuarine systems are net

CO2 emitters (Laruelle et al., 2010, 2013; Borges and Abril,

2011) and are responsible for a global CO2 outgassing rang-

ing between 0.15 and 0.25 PgC yr−1 (Cai, 2011; Bauer et al.,

2013; Regnier et al., 2013a). This flux corresponds to about

20–25 % of the riverine carbon inputs and is of similar mag-

nitude to the global uptake of CO2 by continental shelves

(Laruelle et al., 2014). Estuaries are thus important modula-

tors of the carbon and associated bio-elements fluxes from

the land to the open ocean (e.g., Jahnke, 1996; Billen and

Garnier, 1997; Gattuso et al., 1998; Lancelot et al., 2005;

Mackenzie et al., 2005; Arndt et al., 2009, 2011a; Laru-
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elle et al., 2009; Borges and Abril, 2011; Cai, 2011; Bauer

et al., 2013; Regnier et al., 2013a). However, the extent to

which their biogeochemical dynamics and thus their role in

the global cycles will change in the future in response to an-

thropogenically driven changes in land use, climate and at-

mospheric CO2 remains poorly known.

Over the past 30 years, highly resolved, process-oriented

and often multi-dimensional models have helped disen-

tangle and quantify estuarine biogeochemical dynamics

(e.g., Thomann and Fitzpatrick, 1982; Lung and Paerl, 1988;

Regnier et al., 1997, 1999; Margvelashvili et al., 2003;

Baklouti et al., 2011; Cerco, 2000; Arndt et al., 2007, 2009;

Mateus et al., 2012). Most of these studies have focused on

specific estuarine systems, and comparative studies cover-

ing the wide range of estuarine systems are limited. There-

fore, a quantitative evaluation of the role of estuaries in the

global biogeochemical cycles and their potential response to

global change are characterized by large uncertainties (Hob-

bie, 2000; Borges and Abril, 2011; Laruelle et al., 2013;

Regnier et al., 2013a). This lack can be partly attributed to

the high data requirements for model calibration and valida-

tion, as well as the high computational demand, which have

prevented their application to regional and/or global scales

(Bauer et al., 2013). In addition, the limited availability of

comparative studies compromises the identification of com-

mon patterns across the wide range of estuarine types (Geyer

et al., 2000; Hobbie, 2000; Borges and Abril, 2011; Regnier

et al., 2013b). Moreover, the diagnostic modeling of the CO2

dynamics has so far only been performed for a temperate es-

tuary in Europe (the Scheldt; Vanderborght et al., 2002), al-

though observational data are now available for more than

100 land–ocean transition systems (Chen et al., 2013; Laru-

elle et al., 2013). To our knowledge, prognostic simulations

of greenhouse gas emissions in estuaries are currently lack-

ing.

The objectives of this paper are thus to develop a uni-

fied modeling approach to identify similarities and differ-

ences in the biogeochemical dynamics across different es-

tuarine systems and to explore quantitative relationships be-

tween the estuarine biogeochemical functioning and a set of

key hydro-geometrical characteristics. The overarching goal

is to enhance our ability to transfer information from well-

constrained estuarine systems to poorly surveyed systems,

to improve upscaling strategies and to enable projections.

In the first part of this paper, the description of the concep-

tual framework underlying our generic approach is provided.

In particular, we build on the mutual dependency between

geometry and hydrodynamics (Savenije, 1992, 2005, 2012)

and further hypothesize that hydrodynamics exert a strong

control on biogeochemistry in alluvial estuaries (e.g., Alpine

and Cloern, 1992; Arndt et al., 2007; Volta et al., 2014). Next,

three idealized systems, characterized by variable riverine in-

fluence and covering the main hydro-geometrical features of

tidal alluvial estuaries, are modeled using the recently devel-

oped C-GEM modeling platform (Volta et al., 2014). These

systems are designed to represent a tidal estuary dominated

by marine characteristics, a tidal estuary dominated by its

riverine characteristics, and an intermediate case (so-called

mixed system). Here, C-GEM uses a generic biogeochem-

ical reaction network and a unique parameter set extracted

from a large literature survey of more than 40 local mod-

eling studies. Steady-state simulations representing average

conditions for temperate estuaries worldwide are performed

for the present decade, as well as for the mid-21st century.

The whole-system biogeochemical indicators net ecosystem

metabolism (NEM), C and N filtering capacities (FCTC and

FCTN, respectively) and CO2 gas exchanges (FCO2) are cal-

culated across the three idealized systems and are related

to their main hydrodynamic and transport characteristics. A

sensitivity analysis is also carried out to assess the sensitivity

of the estuarine biogeochemical functioning to parameter un-

certainties synthesized in the present study. Finally, the main

findings are summarized and their significance and limita-

tions are critically analyzed in the context of improving up-

scaling strategies for regional and global CO2 emissions of

estuaries.

2 Description of modeling approach

2.1 Theoretical support

Most tidal estuaries are alluvial estuaries (Regnier et al.,

2013b), which are defined as estuarine systems with movable

beds, consisting of material from marine and terrestrial ori-

gin, and a measurable freshwater inflow (e.g., Hobbie, 2000;

Savenije, 2005, 2012). The global distribution of alluvial es-

tuaries is roughly equivalent to that of the tidal estuaries as

defined in the estuarine coastal typology of Dürr et al. (2011).

The approach developed here builds on this intercompati-

bility, already mentioned in Regnier et al. (2013b). In tidal

estuaries, two different zones can be identified along their

longitudinal gradient: a lower zone, the so-called saline es-

tuary, whose dynamics are essentially controlled by mixing

with marine waters, and an upstream zone, referred to as the

tidal river, where processes are mainly driven by the fresh-

water input from rivers (e.g., Jay et al., 1990; Dalrymple et

al., 1992; Regnier et al., 2013b). Alluvial estuaries are char-

acterized by a mutual dependency of the estuarine geome-

try and hydrodynamics. The magnitude of the water flow en-

tering or leaving the estuarine channel is entirely controlled

by its shape (Pethick, 1984). In turn, the water movement,

mainly driven by tides and freshwater discharge, leads to

a redistribution of the unconsolidated sediments that deter-

mines the shape of the estuary. This dynamic interplay be-

tween hydrodynamics and morphology results in a contin-

uum of estuarine shapes that cover the entire spectrum be-

tween two end-member cases: (1) systems with rapidly con-

verging banks towards the land and (2) systems characterized

by parallel banks (Savenije, 1992). Although the exact shape
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of alluvial estuaries can vary, they nonetheless show com-

mon geometrical characteristics that are compatible with an

idealized representation of the estuarine geometry (Savenije,

2005, 2012). The tidally averaged estuarine width B (in m)

typically shows an exponential decrease in the landward di-

rection (e.g., Pethick, 1992; Lanzoni and Seminara, 1998;

Savenije, 1992, 2005), while the tidally averaged estuarine

depth H (in m) remains nearly constant along the estuarine

gradient (Savenije, 1992, 2005, 2012):

B(x)= B0 · exp
(
−
x

b

)
, (1)

H(x)=H0, (2)

where x (in m) is the distance from the estuarine mouth,

B0 and H0 denote the estuarine width and depth (in m) at

the estuarine mouth (x= 0), respectively, and b is the width

convergence length (in m), defined as the distance over which

the estuarine width reduces to 37 % (e−1) of its value at the

mouth. The shape of alluvial estuaries can, thus, be fully de-

fined by the width convergence length, b, and the channel

depth, H0 (Savenije, 2012). The ratio between these two ge-

ometrical key parameters is generally defined as the dimen-

sionless estuarine shape number, S (Savenije, 1992):

S =

(
b

H0

)
. (3)

The hydrodynamic characteristics of alluvial estuaries may,

in turn, be directly related to their main hydrodynamic forc-

ings, such as tidal influence and freshwater inflow (Wright

et al., 1973) by means of the dimensionless hydrodynamic

Canter–Cremers estuary number N (Simmons, 1955):

N =
Qb · T

P
≈
Qb · T

A0 ·E
, (4)

where Qb denotes the bankfull discharge or, in other words,

the temporary maximum river discharge (in m3 s−1) that is

associated with a state of maximum flow velocity and, thus,

to the maximum ability to shape the estuary (Savenije, 2012).

T is the tidal period (in s). P is the tidal prism (in m3),

which represents the volume of saline water entering the es-

tuary over a tidal period, T , and can be approximated by the

product of the cross-sectional area at the estuarine mouth A0

(in m2) (A0=B0 ·H0) and the tidal excursion length E (in

m), defined as the maximum distance a water particle trav-

els during a tidal period T . By using a regression analysis

based on measurements from 16 alluvial estuaries world-

wide, Savenije (1992) showed that the estuarine shape num-

ber (S; Eq. 3) is related to the hydrodynamic Canter–Cremers

number (N ; Eq. 4) through a power law relationship, result-

ing in the dimensionless hydro-geometrical relationship:

b

H0

= 12 500 ·

(
Qb · T

A0 ·E

)0.26

. (5)

Certain hydro-geometrical characteristics, such as the tidal

period T , the tidal excursion E and the estuarine depth at

the mouth H0 can be approximated by characteristic values.

For instance, E is usually close to 10 km for a semi-diurnal

(T ≈ 12 h) tidal estuary, while an alluvial estuary flowing in

a coastal plain generally reveals a tidally averaged depth (H )

of about 7 m (Savenije, 1992; Volta et al., 2014). Note that,

for estuaries in which the freshwater discharge is known, a

new formulation proposed by Gisen and Savenije (2015) can

be used to estimate the estuarine depth. On the other hand,

other characteristics, such as the bankfull discharge Qb, the

width convergence length b, and the cross-sectional area at

the estuarine mouth A0, are system-specific characteristics,

depending on the hydrological regime of the estuarine wa-

tershed and on the local balance between riverine and ma-

rine energies. Therefore, they cannot be easily approximated.

The width convergence length, b, and the bankfull riverine

discharge, Qb, can thus be considered key parameters for

defining the hydro-geometrical character of alluvial estuar-

ies and for predicting their salt intrusion profiles (Savenije,

2005, 2012). Important transport and mixing properties can

be directly related to these hydro-geometrical characteris-

tics. Hence, Eq. (5) not only provides a universal theoreti-

cal framework for analyzing the tight link between geome-

try, hydrodynamics and transport but also offers a theoretical

basis for a classification of alluvial estuaries. Savenije (2005,

2012) identified two main estuarine types, which differ in

terms of geometrical features, hydrodynamics characteristics

and salt intrusion patterns:

1. funnel-shaped (or marine-dominated) estuaries that are

typically characterized by a short width convergence

length, b, and thus rapidly converging banks, a low

freshwater discharge, a dome-shaped salinity profile

with a small salinity gradient at the estuarine mouth and

an intrusion of saltwater far upstream;

2. prismatic (or river-dominated) estuaries that are char-

acterized by a theoretically infinite width convergence

length, b, and, thus, a constant channel width, a high

river discharge and a steep salt intrusion profile with a

strong salinity gradient close to the estuary mouth and a

short salt intrusion length.

These estuarine classes represent the extreme ends of the

wide range of estuarine hydro-geometrical properties. As a

consequence, a series of systems, which show intermediate

conditions and fall in between the funnel-shaped and the pris-

matic end-member cases, can be hypothesized between them

(Savenije, 1992). Physical and hydrodynamic characteristics

as they relate to the estuary shape are synthesized in Fig. 1

by specifying how they behave in a predominantly funnel-

shaped or prismatic estuary and by reporting real-world es-

tuaries as examples.

The identification of two end-member estuarine classes

and an intermediate group, on the one hand, and the recog-
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Figure 1. Relationships between morphological and hydrodynamical factors in alluvial estuaries. Examples refer to real-world estuaries

typically reported as marine- and riverine-dominated systems in the estuarine research: a Jiang et al. (2008), b Savenije (1992), c Wells (1995),
d Dauvin et al. (2008), e Pritchard (1967), f Gaulke et al. (2010), g Toffolon et al. (2006), h Goñi et al. (2003).

nition of the first-order control of hydrodynamics on estuar-

ine biogeochemistry (e.g., Alpine and Cloern, 1992; Nixon

et al., 1996; Arndt et al., 2007, 2009; Laruelle et al., 2009),

on the other hand, allow hypothesizing that each estuarine

type might respond in a specific way to the tight coupling be-

tween geometry, hydrodynamics, transport and biogeochem-

istry. Hence, important biogeochemical properties in estuar-

ies might, just as salinity profiles, be predicted on the basis

of hydro-geometrical features (Fig. 2; Volta et al., 2014).

2.2 Representative estuarine systems

In this study, we explore the link between biogeochemi-

cal dynamics and key hydro-geometrical properties in three

idealized, tidal alluvial estuaries characterized by variable

marine/riverine influence by means of a reactive-transport

model. For this purpose, three idealized geometries are de-

fined to be representative of the two extreme classes and the

intermediate types as described in Sect. 2.1 (marine- and

riverine-dominated estuaries and intermediate cases). The

width convergence length, b, recognized as a shape and hy-

drodynamic key parameter (see Sect. 2.1), is used to dis-

criminate between the three estuarine types. First, a refer-

ence estuary, characterized by an idealized geometry resem-

bling that tested in Volta et al. (2014), is defined. Then, its

width convergence length (b= 30 km) is decreased and in-

creased by 50 % in order to intensify the marine (b= 15 km)

and the riverine (b= 45 km) character of the system, re-

spectively. This allows defining two other idealized systems,

which can be regarded as representative of the marine and

river-dominated estuarine classes and between which the

reference estuary can be considered an intermediate case.

Henceforth, according to Regnier et al. (2013b) and Volta

et al. (2014), the marine-dominated estuary, the reference

case and the riverine-dominated estuary will be referred to as

the marine, the mixed and the riverine estuary, respectively.

The estuarine width at the seaward limit, B0, and the estu-

arine length, EL, of the marine and the riverine estuaries are

adjusted so that their total, tidally averaged volume corre-

sponds to that of the mixed estuary (V ≈ 1.5× 109 m3). This

allows minimizing the effect of volume variations on the bio-

geochemical dynamics across the three estuarine types. As

a result, the channel width of the marine-dominated estuary

reduces, over a distance of 90 km, from 13 830 m at the es-

tuarine mouth to 30 m close to the upper limit, whereas the

width of the riverine-dominated estuary decreases, over a dis-

tance of 226 km, from 4760 m at the estuary mouth to 30 m

at the upper limit. All estuaries are assumed to be coastal

plain estuaries. Hence, their tidally averaged water depth is

approximated to 7 m (see Sect. 2.1). Furthermore, it is as-

sumed that the three idealized systems are subject to a semi-

diurnal tidal forcing, thus resulting in an identical tidal ex-

cursion length, E, of approximately 10 km (see Sect. 2.1).

Based on these geometrical characteristics, Eq. (5) can be
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Figure 2. Conceptual scheme of the generic modeling approach (from Volta et al., 2014). Each estuarine type responds in a specific manner

to the interdependence between geometry and hydrodynamics and to the first-order control of the hydrodynamics on transport and biogeo-

chemistry. Small panels correspond to longitudinal distribution of (a) A (cross-section area, in m2), B (width, in m), and H (depth, in m);

(b) water flow velocity (in m s−1); (c) salinity; and (d) O2 concentration (in µM O2).

used to calculate the bankfull discharge, Qb in m3 s−1, for

each system. New formulations are now available to con-

strain the bankfull discharge from geometrical parameters

(i.e., depth and width; see Gisen and Savenije, 2015) and they

could be used in future applications of C-GEM. The geomet-

rical features of the three idealized estuaries are illustrated

in Fig. 3 and summarized, together with their hydrodynamic

properties, in Table 1. Table 1 also reveals that both the estu-

arine shape (S, Eq. 3) and the hydrodynamic Canter–Cremers

(N , Eq. 4) numbers of the three idealized systems cover the

whole range of observed values for temperate tidal estuaries

(2500<S > 6000, N < 0.05; Savenije, 1992). As a conse-

quence, they may be considered as representative of a large

range of hydro-geometrical conditions observed in this type

of estuaries. Note that higher values of S have been reported

for tropical estuaries (Gisen et al., 2015).

2.3 Model description

Simulations presented in this study are performed by using

the C-GEM modeling platform, fully described and avail-

able as supplementary material in Volta et al. (2014). C-GEM

dynamically resolves hydrodynamics, transport and pelagic

biogeochemistry using the numerical schemes described in

Regnier and Steefel (1999) and explicitly accounts for vari-

ations induced by tides. Here, we use a version of C-GEM

similar to that described in Volta et al. (2014), but its bio-

geochemical reaction network was extended to include a

non-siliceous phytoplanktonic group and an inorganic car-

bon module.

www.hydrol-earth-syst-sci.net/20/991/2016/ Hydrol. Earth Syst. Sci., 20, 991–1030, 2016
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Table 1. Geometrical and hydrodynamic parameters describing the three idealized estuaries. Following Eq. (2),H0=H for alluvial estuaries

flowing in a coastal plain. V is the total estuarine volume calculated as V =
EL∫
0

[(H(x)+ ζ(x)) ·B(x)] dx.

Name Description Value

Marine Mixed Riverine

estuary estuary estuary

EL Estuarine length [km] 90 160 226

H0 Depth at the estuarine mouth [m] 7 7 7

B0 Width at the estuarine mouth [m] 13 830 7100 4760

Bx Width at the estuarine upper limit [m] 30 30 30

A0 Cross-sectional area at the estuarine mouth [m2
] 96 810 49 700 33 320

V Total tidally averaged estuarine volume [km3
] 1.548 1.535 1.524

b Width convergence length [m] 15 000 30 000 45 000

T Tidal period [s] 45 720 45 720 45 720

E Tidal excursion [m] 10 000 10 000 10 000

P Tidal prism [km3
] 1.38 0.71 0.48

ζ0 Tidal amplitude at the estuarine mouth [m] 3.5 3.5 3.5

Qb Bankfull freshwater discharge [m3 s−1
] 24 177 565

S Estuarine shape number [–] 2143 4286 6429

N Canter–Cremers estuary number [–] 8.0× 10−4 1.1× 10−2 5.4× 10−2

2.3.1 Physical model support and hydrodynamic

module

The three idealized hydro-geometrical estuarine cases, as de-

scribed in Sect. 2.2, form the physical support and provide

the boundary conditions for the hydrodynamic module of

C-GEM. The latter resolves the cross-sectionally integrated

mass and momentum conservation equations for a channel

with arbitrary geometry (Nihoul and Ronday, 1976; Regnier

et al., 1998; Regnier and Steefel, 1999):

rs
∂A

∂t
+
∂Q

∂x
= 0, (6)

∂U

∂t
+U

∂U

∂x
=−g

∂ζ

∂x
− g

U |U |

C2
hH

, (7)

where t is the time (in s); x is the space (in m); rs is the di-

mensionless storage water ratio that is typically equal to 1 for

idealized representations of estuarine geometries (Davies and

Woodroffe, 2010); A is the cross-sectional area (in m2), cal-

culated by the product of the estuarine width B, formulated

as in Eq. 1, and the instantaneous water depth H , computed

as the sum of the tidally averaged water depth (in m) and the

water elevation ζ(x, t) (in m); Q is the cross-sectional dis-

charge (in m3 s−1), calculated by the product of A (in m2)

and the flow velocity U (in m s−1); g is the gravitational

acceleration (in m s−2); and Ch is the Chézy coefficient (in

m1/2 s−1).

2.3.2 Coupling reaction and transport

The coupling of mass transport and chemical reactions

is described by using a one-dimensional, tidally resolved

advection–dispersion equation for gaseous, solute and solid

species in the water column (e.g., Pritchard, 1958):

∂Ci

∂t
+
Q

A

∂Ci

∂x
=

1

A

∂

∂x

(
AD

∂Ci

∂x

)
+Pi, (8)

where Ci is the concentration of the species i, A is the cross-

sectional area (in m2) and D is the dispersion coefficient (in

m2 s−1), which decreases in the upstream direction according

to the Van der Burgh equation (Savenije, 1986) and is dynam-

ically calculated as in Volta et al. (2014). Finally, Pi is the

sum of volumetric biogeochemical reactions and exchanges

through the material surfaces of the estuary (e.g., gas transfer

through the air–water interface, erosion and deposition pro-

cesses), affecting species i. The transport and reaction terms

are solved in sequence by applying the operator-splitting

approach proposed by Regnier et al. (1998) and a finite-

difference scheme on a regular grid (1x= 2000 m) with a

time step1t = 150 s. In the transport equation, the dispersive

and the advective terms are solved by using the semi-implicit

Crank–Nicolson algorithm (Press et al., 1992) and the third-

order Leonard total variation diminishing scheme (Leonard,

1984; Datta-Gupta et al., 1991), respectively. These schemes

guarantee mass conservation to within > 1 %. Reaction pro-

cesses are numerically integrated using the Euler method

(Press et al., 1992). A spin-up period of 24 months is im-

posed.
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Figure 3. Variability along the estuarine axis of (a) width B (m), (b) cross-sectional area A (m2) and (c) volume V (m3) in the three

idealized estuaries. Note that the estuarine length EL (km) varies across systems. A is calculated as the product of the tidally averaged

depth H (H = 7 m along EL) and B and V is the product between A and1x. Profiles are obtained by using geometrical parameters reported

in Table 1.

Figure 4. Conceptual scheme of the C-GEM reaction network as implemented in this study. The new variables and reactions compared to

the version presented in Volta et al. (2014) are highlighted in bold.

2.3.3 Reaction network

The reaction network of C-GEM includes 12 state variables

and 10 biogeochemical processes (Table 2). Table 3 summa-

rizes the stoichiometric equation and mathematical formula-

tion of each biogeochemical reaction, while the biogeochem-

ical scheme of the reaction module is shown in Fig. 4. The

original version C-GEM 1.0 is described in detail in Volta et

al. (2014). Here, it is extended by a second phytoplankton

group (nDIA), which represents non-siliceous phytoplank-

tonic species, such as cyanobacteria, green algae and flagel-

lates, whose growth does not depend on silica concentrations.

Furthermore, a new inorganic carbon module, which allows

quantifying the estuarine inorganic carbon dynamics, was

also implemented. Its mathematical formulation is adapted

from Arndt et al. (2011b). pH is considered the master vari-

able for the estimation of dissolution and hydration of CO2

and is calculated by using the computationally fast approach
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Table 2. State variables and processes explicitly implemented in C-

GEM.

Name Symbol Unit

State variables

Salinity S –

Diatoms DIA µM C

Non-diatom phytoplankton nDIA µM C

Oxygen O2 µM O2

Dissolved silica DSi µM Si

Total organic carbon TOC µM C

Ammonium NH4 µM N

Nitrate NO3 µM N

Phosphate PO4 µM P

Dissolved inorganic carbon DIC µM C

Total alkalinity TAlk µM C

Suspended particulate matter SPM g L−1

Biogeochemical reactions

Gross primary production GPP µM C s−1

Net primary production NPP µM C s−1

Phytoplankton mortality M µM C s−1

Aerobic degradation R µM C s−1

Denitrification D µM C s−1

Nitrification N µM N s−1

O2 exchange with the atmosphere FO2 µM O2 s−1

CO2 exchange with the atmosphere FCO2 µM C s−1

SPM erosion ESPM g L−1 s−1

SPM deposition DSPM g L−1 s−1

provided by Follows et al. (2006) by means of an iterative

procedure, which accounts for total (TAlk) and carbonate al-

kalinities. While the model accounts for borate species, con-

tributions from ammonium, fluorine, phosphate, silicate, sul-

fide and other minor species are neglected because their con-

centrations are much lower than those of carbonate species

(Vanderborght et al., 2002). The apparent equilibrium con-

stants for CO2 solubility and dissociation of carbonic acid

(HCO−3 ), bicarbonate (CO2−
3 ), water (H2O) and boric acid

(B(OH)−4 ) vary with temperature and salinity according to

equations formulated by Cai and Wang (1998) and Dick-

son (1990). Moreover, new generic temperature-dependent

functions for different physiological processes, such as for

instance microbial and phytoplankton growth and decay, are

implemented in the current version of C-GEM. The imple-

mentation of these terms is informed by a large modeling

literature survey and further details are provided in the fol-

lowing section (Sect. 3).

2.3.4 Model parameterization

Sediment parameters

The sediment (SPM) module of C-GEM (Volta et al., 2014)

requires specification of six parameters (Table 4). Although

assembling a generic data set for sediment parameters is

beyond the scope of this study, some generic assumptions

are adopted for the Chézy coefficient (Ch in m1/2 s−1) and

the SPM settling velocity (ws in mm s−1). In particular, as

suggested by Savenije (2001, 2012), a Ch value of 40 and

60 m1/2 s−1 is applied in the tidal river and in the saline es-

tuary, respectively, while ws is approximated to 1 mm s−1

(Winterwerp, 2002). On the other hand, sediment parameters,

such as the critical shear stress for erosion and deposition (τcr

in N m−2) and the erosion coefficient (Eero in kg m−2 s−1),

are usually calibrated on the basis of local SPM observations

and represent system-specific fitting parameters with a lim-

ited transferability (Volta et al., 2014). Here, we adapt values

reported for an idealized, tidal alluvial estuary by Volta et

al. (2014).

Biogeochemical parameters

Biogeochemical parameters and their corresponding numer-

ical values used in the C-GEM simulations are listed in Ta-

ble 5. In natural waters, the Redfield ratio C : N : Si : P, which

is instrumental for estimating carbon and nutrient produc-

tion/consumption rates (Table 3), can be approximated by

the Redfield–Brzezinski ratio 106 : 16 : 15 : 1 (Redfield at al.,

1963; Brzezinski, 1985). The background light extinction co-

efficient (KD1 in m−1) and the specific light attenuation of

SPM (KD2 in mg−1 m−1) are system-specific attributes that

are generally derived from local underwater light and SPM

observations (Volta et al., 2014) and they are adapted here

from values reported for an idealized, tidal alluvial estuary

by Volta et al. (2014). All other biogeochemical parameters

(n=18, identified in bold in Table 5) are derived from a com-

prehensive literature review of all published estuarine bio-

geochemical model applications in temperate regions over

the last 30 years. In this study, we define temperate regions

as those lying between 30 and 60◦ in either hemisphere. As

a consequence, the generic biogeochemical parameterization

provided and applied in this study should be considered rep-

resentative of these zones. A more detailed description of the

biogeochemical parameter review and analysis is provided in

Sect. 3.

2.3.5 Climate forcings and boundary conditions

Except for the freshwater discharge, all model simulations

are forced with the same set of climate and hydrological

forcings, representative of the mean annual conditions in

temperate regions during the 2000s (Table 6). Annually av-

eraged values of irradiance and photoperiod are calculated

by using the astronomical equation of Brock (1981), while
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Table 3. Formulations of the biogeochemical and sediment processes with the corresponding stoichiometric equations as implemented in the

current C-GEM reaction network. Tabs and T denote the absolute and the Celsius temperature, respectively. H is the instantaneous water

depth. PHY is the phytoplankton concentration. If PHY=DIA, nlim also accounts for the silica limitation for the phytoplankton growth.

Further details can be found in Arndt et al. (2011b) and in Volta et al. (2014). Temperature functions are deduced from a Garcia et al. (2010);
b Cerco (2000), Kim and Cerco (2003), Cerco and Noel (2004); c Chapelle et al. (1994, 2000); d calibration; e Solidoro et al. (2005); and
f Robson and Hamilton (2004), Zheng et al. (2004). Further details about the temperature functions are given in Sect. 3.2.

Gross primary production GPP=PBmax(T ) · nlim ·PHY ·
0∫
H

1− exp
(
−

α
PBma (T )

· I (0) · exp(−KD ·H)
)

dz

Net primary production NPP= GPP
H
· (1− kexcr) ·

(
1− kgrowth

)
− kmaint(T ) ·PHY

Phytoplankton mortality M = kmort(T ) ·PHY

Aerobic degradation R= kox(T ) ·
TOC

TOC+KTOC
·

O2
O2+KO2,ox

Denitrification D= kdenit(T ) ·
TOC

TOC+KTOC
·

NO3
NO3+KNO3

·
Kin,O2

O2+Kin,O2

Nitrification N = knit(T ) ·
NH4

NH4+KNH4
·

O2
O2+KO2,nit

Oxygen air exchange FO2=
vp
H
·
(
O2,sat−O2

)
Carbon dioxide air exchange FCO2= 0.913

vp
H
·
(
KH ·pCO2,atm−CO2

)
Nutrient limitation for phytoplankton growth nlim=

NO3+NH4
NO3+NH4+KN

·
PO4

PO4+KPO4

Switch between NH4 and NO3 utilization fNH4
=

NH4
10+NH4

Light extinction coefficient KD =KD1+KD2 ·SPM

Piston velocity vp= kflow+ kwind

Current component for piston velocity kflow=

√
U ·DO2

(Tabs)

H

Wind component for piston velocity kwind=
1

3.6×105 · 0.31 ·
(
Uwind,10m · exp(−x)

)2
·

√
Sc(T ,S)

660

Sediment erosion ESPM=
1
H
·pero ·Eero

Sediment deposition DSPM=
1
H
·pdep ·ws ·SPM

Probability for erosion
pero=

τb
τcr
− 1 if τcr≤ τb

pero= 0 if τcr>τb

Probability for deposition
pdep= 1−

τb
τcr

if τcr≥ τb

pdep= 0 if τcr<τb

Critical shear stress for erosion and deposition τb=
ρw·g·|U |·U

C2

T dependence for P
B,a
max PB

max(T )=P
B
max · 1.067(T−Tref)

T dependence for kb
maint

kmaint(T )= kmaint · exp(0.0322 · (T − Tref))

T dependence for kc
mort kmort(T )= kmort · exp(0.07 · T )

T dependence for kd
ox kox(T )= kox · 2

((T−Tref)/10)

T dependence for ke
denit

kdenit(T )= kdenit · 1.07(T−Tref)

T dependence for kf
nit

knit(T )= knit · 1.08(T−Tref)

dPHY/dt =NPP−M

dDSi/dt =−redsi ·NPPDIA

dTOC/dt =−R−D+M
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Table 3. Continued.

dNO3/dt =−94.4/106 ·D− redn ·
(
1− fNH4

)
·NPP+N

dNH4/dt = redn ·
(
R− fNH4

·NPP
)
−N

dO2/dt =−R+ fNH4
·NPP+ 138/106 ·

(
1− fNH4

)
·NPP− 2 ·N+FO2

dPO4/dt =−redp · (R+D−NPP)

dDIC/dt =R+D−NPP−FCO2

dTAlk/dt = 15/106 ·R+ 93.4/106 ·D− 2 ·N − 15/106 · fNH4
·NPP+ 17/106 ·

(
1− fNH4

)
·NPP

dSPM/dt =DSPM−ESPM

Table 4. Sediment parameters used in C-GEM simulations. ∗ indicates that a linear variation is applied in the tidal river zone. In such cases,

reported parameter values correspond to those imposed at the estuarine upper limit. Bold parameters refer to generic assumptions valid in

alluvial estuaries, while other parameters are adapted from Volta et al. (2014).

Sediment parameters

Name Description [unit] Value

Marine Mixed Riverine

estuary estuary estuary

g Acceleration due to gravity [m s−2
] 9.81 9.81 9.81

ρw Density of pure water [kg m−3
] 1000 1000 1000

ws SPM settling velocity [m s−1
] 1× 10−3 1× 10−3 1× 10−3

Ch,EST Chézy coefficient in the saline estuary [m1/2 s−1
] 60 60 60

Ch,TID Chézy coefficient in the tidal river [m1/2 s−1
] 40∗ 40∗ 40∗

τcr,EST Critical shear stress for erosion and deposition in the saline estuary [N m−2
] 0.4 0.4 0.4

τcr,TID Critical shear stress for erosion and deposition in the tidal river [N m−2
] 1.0∗ 1.0∗ 1.0∗

Eero,EST Erosion coefficient in the saline estuary [kg m−2 s−1
] 3.5× 10−6 3.5× 10−6 3.5× 10−6

Eero,TID Erosion coefficient in the tidal river [kg m−2 s−1
] 6.0× 10−8∗ 6.0× 10−8∗ 6.0× 10−8∗

wind speed and water temperature are extracted from data

reported for the coastal temperate zones by the CCMP data

set (Atlas et al., 2011) and the World Ocean Atlas global

database (http://www.nodc.noaa.gov/OC5/indprod.html), re-

spectively. A constant tidal amplitude (ζ0= 3.5 m) is applied

at the mouth of all estuaries, whereas a different system-

specific freshwater discharge is imposed at their upper lim-

its (see Sect. 2.2 and Table 1). Model simulations are forced

with two different sets of biogeochemical boundary condi-

tion (Table 7). The first set, referred to as the baseline set,

is representative of present-day conditions, while the second

set represents a scenario for the year 2050. The riverine in-

puts of organic carbon, nutrients and suspended particulate

matter of the baseline set are derived from the global sta-

tistical model GlobalNEWS2 (Mayorga et al., 2010). Val-

ues represent the average calculated over all watersheds in

temperate regions that discharge to the sea through a tidal

estuary. For these calculations, we use the estuarine coastal

typology of Dürr et al. (2011), which identifies four types

of estuaries: small deltas, tidal systems, lagoons and fjords.

In this typology, tidal systems (type 2) represent a good ap-

proximation of the domain of applicability of C-GEM (Reg-

nier et al., 2013b). NO3 and NH4 concentrations are derived

by applying a NH4 / DIN ratio equal to 0.2 to DIN concen-

trations provided by GlobalNEWS2. The latter is calculated

as the median of the NH4 / DIN ratios reported by Mey-

beck (1982) in more than 40 rivers. Alkalinity is derived

from the GLORICH database (Hartmann et al., 2014) and

represents the average value for all watersheds in temper-

ate regions. A constant CO2 concentration typical of tem-

perate rivers worldwide (≈ 90 µM C, from 3-year time se-

ries in more than 1000 sampling locations; Lauerwald et al.,

2015) is then used to calculate dissolved inorganic carbon

(DIC) concentration at the upstream limit. Because of the

lack of relevant global database and in order to minimize

the influence of boundary conditions on estuarine phyto-

plankton and oxygen profiles, arbitrary low riverine concen-

trations are imposed for both phytoplanktonic groups (DIA

and nDIA), while the saturation concentration is imposed

for O2. The downstream boundary is located 50 km away

from the estuarine mouth in order to minimize its influ-

ence on the estuarine biogeochemical dynamics. Here, salin-

ity, organic carbon, nutrient and oxygen concentrations are

extracted from data reported for the temperate regions by

the World Ocean Atlas global database (http://www.nodc.

noaa.gov/OC5/indprod.html), while phytoplankton concen-
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Table 5. Values of the biogeochemical parameters used in this study. a indicates temperature-dependent parameters. b and c refer to generic

parameters estimated from the average and the median of literature values, respectively. Redfield ratios are from Redfield et al. (1963) and

Brzezinski (1985). KD1 and KD2 are from Volta et al. (2014). All rates are defined at 20 ◦C.

Biogeochemical parameters

Name Description [unit] Value

PB
max

a,c
Maximum specific photosynthetic rate [s−1

] 2.58× 10−5

α+ Photosynthetic efficiency [m2 s µE−1 s−1
] 4.11× 10−7

kmaint
a,c Phytoplankton maintenance rate constant [s−1

] 4.6× 10−7

kmort
a,c Phytoplankton mortality rate constant [s−1

] 1.56× 10−6

k+excr Phytoplankton excretion constant [–] 5.0× 10−2

kgrowth
b Phytoplankton growth constant [–] 2.9× 10−1

KD1 Background light extinction coefficient [m−1
] 1.3

KD2 Specific light attenuation of suspended matter [mg−1 m−1
] 6.0× 10−2

kox
a,b Aerobic degradation rate constant [µM C s−1

] 6.08× 10−4

kdenit
a,c Denitrification rate constant [µM C s−1

] 5.05× 10−4

knit
a,c Nitrification rate constant [µM N s−1

] 2.73× 10−5

Kin,O2
b Inhibition term for denitrification [µM O2] 33.0

KDSi
c Michaelis–Menten constant for dissolved silica [µM Si] 1.07

KPO4
c Michaelis–Menten constant for phosphate [µM P] 0.20

KNH4
b Michaelis–Menten constant for ammonium [µM N] 228.9

KNO3
b Michaelis–Menten constant for nitrate [µM N] 26.07

KTOC
b Michaelis–Menten constant for organic carbon [µM C] 186.25

KO2,ox
c Michaelis–Menten constant for oxygen in aerobic degradation [µM O2] 31.0

KO2,nit
c Michaelis–Menten constant for oxygen in nitrification [µM O2] 51.25

KN
c Michaelis–Menten constant for dissolved nitrogen [µM N] 1.13

redsi Redfield ratio for silica [mol Si mol C−1
] 15/106

redn Redfield ratio for nitrogen [mol N mol C−1
] 16/106

redp Redfield ratio for phosphorous [mol P mol C−1
] 1/106

Table 6. Values used for the climate forcings as representative of

temperate regions.

Climate forcings Unit Value

Water temperature, T ◦C 12

Wind speed at the estuarine mouth, WS0 m s−1 8

Mean solar radiation, I µE m−2 s−1 780

Photoperiod, r h 12

trations are deduced from SeaWIFS data (http://oceancolor.

gsfc.nasa.gov). TAlk and DIC are calculated by assuming

a typical seawater pH of 8.2 (Mackenzie et al., 2011) and

an average difference between atmospheric and shelf sea-

water pCO2 (1pCO2) of 20 µatm for the year 2000 (Cai,

2011) consistent with a CO2 sink for the coastal ocean un-

der present-day conditions (Bauer et al., 2013; Laruelle et

al., 2014). No database is available to constrain average to-

tal organic carbon and suspended particulate matter concen-

trations at the lower boundary and both concentrations are

arbitrarily set to 0. In the case of SPM, the implementa-

tion in C-GEM of a sediment transport module allows for

enough internal production of SPM to generate realistic pro-

files along the entire estuarine length. In addition, the low

concentration reflects the low values typically observed on

the shelf compared to those observed in shallow nearshore

areas (e.g., Ruddick et al., 2003). On the other hand, although

a variable load of organic carbon can be imported from the

adjacent coast into the estuary (e.g., Arndt et al., 2011a) and

assuming a TOC concentration of 0 at the lower boundary

may thus be an approximation, our choice allows focusing

on the fate of organic matter brought the estuary from rivers

by minimizing the effect of organic carbon produced and

imported from the sea into estuaries. The second biogeo-

chemical boundary condition set represents a future scenario
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Table 7. Boundary conditions used for the different scenario simulations.

Upper boundary Lower boundary

Baseline Future scenario Baseline Future scenario

(year 2000) (year 2050) (year 2000) (year 2050)

S [–] 0 0 34 34

DIA [µM C] 10 10 1 1

nDIA [µM C] 10 10 1 1

NO3 [µM N] 72 93 5 5

NH4 [µM N] 18 23 1 1

TOC [µM C] 545 514 0 0

DSi [µM Si] 87 82 9 9

O2 [µM O2] 280 280 280 280

PO4 [µM P] 3 5 1 1

DIC [µM C] 1837 1837 2000 2040

TAlk [µM C] 1749 1749 2223 2223

SPM [g L−1
] 0.1 0.08 0 0

for the year 2050. The latter assumes a continuous increase

of anthropogenic CO2 emissions (scenario RCP6.0; Moss et

al., 2010; IPCC Report, 2013), as well as a rising socioeco-

nomic development and a reactive approach to environmen-

tal problems (global orchestration scenario; Seitzinger et al.,

2010). The global orchestration scenario is used to constrain

future riverine inputs of DIN, PO4, TOC, DSi and SPM by

year 2050 (Seitzinger et al., 2010). It predicts an increase of

about 29 and 57 % in DIN and PO4, respectively, essentially

induced by increased inputs of sewage, fertilizer and manure,

and a decrease in TOC, DSi and SPM of about 6, 5 and

17 %, respectively, owing to the influence of damming. On

the other hand, no generic predictions are available for river-

ine DIC and TAlk concentrations and long time-series analy-

ses indicate diverging trends that are inconclusive (e.g., Jones

Jr. et al., 2003; Raymond et al., 2008). As a consequence, no

future evolution can be confidently attributed to riverine DIC

and TAlk at the moment. Because of the increase in atmo-

spheric CO2 concentrations, ocean DIC concentrations are

expected to increase, while ocean alkalinity will stay con-

stant over the next decades due to the buffering capacity of

the ocean (e.g., Andersson et al., 2005; Mackenzie et al.,

2011; IPCC Report, 2013). However, the exact magnitude

of these variations remains unconstrained and the CO2 up-

take rate by the coastal ocean may double or even triple by

year 2050 (Andersson and Mackenzie, 2004; IPCC Report,

2013). Here, future marine DIC concentrations are calculated

using MatLab csys.m (Zeebe and Wolf-Gladrow, 2001) by

assuming that TAlk does not change in the near future and

an average atmospheric pCO2 of 468 µatm, corresponding

to the value predicted by the IPCC RCP6 scenario for the

year 2050 (IPCC Report, 2013), while a seawater pCO2 of

408 µatm is imposed in order to test the influence of an hypo-

thetical future 3-fold increase of the atmospheric and marine

water 1pCO2 (i.e., 60 µatm) with respect to the year 2000.

2.4 Biogeochemical indicators

The biogeochemical dynamics of the three representative es-

tuarine systems are investigated and compared by means

of four whole-system biogeochemical indicators: the net

ecosystem metabolism (NEM), the CO2 exchange flux with

the atmosphere (FCO2) and the total nitrogen and carbon fil-

tering capacities (FCTN and FCTC, respectively).

2.4.1 Net ecosystem metabolism (NEM)

The NEM is defined as the whole-system difference between

net primary production (NPP) and heterotrophic degrada-

tion (aerobic degradation+ denitrification) (Andersson and

Mackenzie, 2004). The NEM is, thus, controlled by the in-

put, export, production and decomposition of terrestrial and

in situ-produced organic matter (Odum, 1956) and is typi-

cally used to assess the trophic status of an estuary (e.g., Caf-

frey, 2003; Borges and Abril, 2011). Heterotrophic systems

are characterized by the dominance of organic matter degra-

dation over production (NEM< 0), which leads to a net re-

generation and export of inorganic carbon and nutrients. In

contrast, autotrophic estuaries, dominated by photosynthetic

production (NEM> 0), are characterized by a net burial and

export of organic matter. As a consequence, the estuarine

NEM can be used not only in defining the trophic status of

system but also as an indicator of carbon and nutrient sources

and sinks in an estuary.
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2.4.2 CO2 exchange flux (FCO2)

The balance between autotrophic and heterotrophic pro-

cesses also controls to a large extent the estuarine inorganic

carbon dynamics and, thus, the CO2 exchange across the

water–atmosphere interface (FCO2). In general, FCO2 de-

pends on the overall effect of biogeochemical processes on

dissolved inorganic carbon (DIC) and total alkalinity (TAlk).

For instance, the aerobic degradation of organic matter gen-

erally releases large amounts of DIC, decreases pH and thus

promotes CO2 outgassing, whereas NPP increases water pH

and limits CO2 evasion. Denitrification, on the other hand,

increases both DIC and TAlk and thus exerts a limited influ-

ence on the inorganic carbon budget, while nitrification de-

creases pH and generally sustains CO2 outgassing. FCO2 is,

thus, an integrative measure of all biogeochemical processes

that exert an influence on the carbonate systems in estuaries

(Regnier et al., 2013b).

2.4.3 Nitrogen and carbon filtering capacities (FCTN

and FCTC)

Total nitrogen and total carbon filtering capacities (FCTN and

FCTC, respectively) provide a measure for how much nitro-

gen or carbon is lost during the estuarine transit. By consider-

ing denitrification as the (negative) net process rate affecting

estuarine nitrogen, FCTN is calculated as the ratio between

denitrification and total riverine nitrogen (TN) flux, defined

as the sum of the dissolved inorganic nitrogen and the or-

ganic nitrogen bound to living and detrital organic matter

(Arndt et al., 2009). Similarly, FCTC is defined as the ratio

between carbon loss through the water–atmosphere interface

and the total riverine carbon (TC) influx, which accounts for

both inorganic and organic carbon (Regnier et al., 2013b).

Carbon and nitrogen cycles are typically strongly altered

by biogeochemical processes within the estuarine bioreactor

and estuarine removal efficiency may thus have relevant im-

plications for the coastal biogeochemistry and for processes

producing and releasing greenhouse gases (e.g., N2O, CO2)

(e.g., Seitzinger, 1988; Soetaert and Hermann, 1995; Voss et

al., 2011; Bauer et al., 2013; Regnier et al., 2013a). An anal-

ysis of FCTN and FCTC may thus advance the understanding

of the role of estuaries in the carbon and nitrogen biogeo-

chemical cycling.

2.5 Sensitivity study

A sensitivity analysis is carried out to assess the response

of the biogeochemical indicators (FCTN, FCTC, FCO2 and

NEM) in the three idealized estuaries to variations in aer-

obic degradation, denitrification and nitrification rate con-

stants (kox, kdenit and knit, respectively). These parameters

are selected because of the heterotrophic character of estu-

aries (Borges and Abril, 2011; Volta et al., 2014) and the sig-

nificant effect of nitrification rates on water pH and, thus,

on DIC speciation, water pCO2 and FCO2 (Regnier et al.,

2013b). The generic rate constants (Table 5) are used as base-

line values and are exponentially increased and decreased

over 1 order of magnitude. That range of variation corre-

sponds to the range of kox values reported in the literature

and minimum and maximum values may be regarded as rep-

resentative of refractory and labile organic carbon loads, re-

spectively (see Sect. 3). Similarly, the outermost knit and

kdenit values may be considered as representative of differ-

ent ammonia-oxidizing and nitrate-reducing microbial com-

munities, respectively. For each estuary, 10 parameter com-

binations are tested. An additional sensitivity test is also per-

formed in which, kox and kdenit vary over 2 orders of mag-

nitude as in the first test (SA1), but knit remains constant at

its baseline value (Table 5). This second sensitivity analy-

sis (SA2) allows assessing the relative importance of the het-

erotrophic and nitrification reactions on the estuarine biogeo-

chemical indicators in the three idealized estuaries by com-

paring results from both series of tests. All the parameter val-

ues used in SA1 and SA2 are provided in Table A1.

3 Biogeochemical parameter review and analysis

3.1 Literature review

Values for 18 biogeochemical parameters included in the bio-

geochemical reaction network of the C-GEM modeling plat-

form (Table 3) were compiled by a literature review com-

prising 49 model applications for tidal estuarine systems in

temperate regions (Table 5). The review comprises models of

different complexity ranging from 0- to 3-D models, which

were developed and applied to investigate different aspect

of estuarine biogeochemistry, such as water quality control

(e.g., HydroQual Inc., 1987; Lin et al., 2007), bacterial and

phytoplankton dynamics (e.g., Robson and Hamilton, 2004;

Macedo and Duarte, 2006; Gypens et al., 2013), or estuar-

ine nutrient budgets (e.g., Soetaert and Herman, 1995; Arndt

et al., 2009) at different timescales ranging from months to

several years. The review covers the following 12 parame-

ters, assumed to be temperature-independent:

– Michaelis–Menten half-saturation constants (KDSi,

KPO4
, KNH, KNO3

, KTOC, KO2,ox, KO2,nit, and KN in

µM), which account for the dependency of biogeochem-

ical reaction rates on substrate availability;

– the inhibition constant for denitrification (Kin,O2
in

µM O2), describing the inhibition of denitrification re-

action by oxygen;

– the photosynthetic efficiency (α in m2 s µE−1 s−1),

which represents the light harvesting efficiency of phy-

toplankton;

– the phytoplankton excretion (kexcr) and growth con-

stants (kgrowth), accounting for the fraction (in %) of the
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gross production lost through exudation processes and

the maximum growth of phytoplankton, respectively.

In addition, 6 temperature-dependent parameters (as well as

their associated temperature functions) are covered:

– the maximum specific photosynthetic rate (PB
max in s−1),

which corresponds to the light-saturated, carbon uptake

rate by primary production;

– the phytoplanktonic maintenance (kmaint in s−1) and

mortality (kmort in s−1) rate constants, representing the

loss of biomass due to maintenance activity and phyto-

plankton mortality, respectively;

– the rate constants for aerobic degradation (kox in

µM C s−1) and denitrification (kdenit in µM C s−1) de-

scribing the reactivity of organic matter towards het-

erotrophic decay and the nitrification rate constant (knit

in µM N s−1), which defines the reactivity of ammonia

towards biologically mediated oxidation.

In order to include as many studies as possible, a unit ho-

mogenization was performed for the parameters involved in

biogeochemical reactions whose mathematical formulations

differ from those implemented in C-GEM (Table 3). First-

order reaction rate constants of aerobic degradation, denitri-

fication and/or nitrification, expressed in s−1 (e.g., Soetaert

and Herman, 1995; Robson and Hamilton, 2004; Hofmann et

al., 2008), were converted to zero-order constants in µM s−1

by multiplying the first-order reaction constant by the typical

watershed concentration of the substrate involved in the spe-

cific reaction (i.e., TOC for aerobic degradation and denitri-

fication and NH4 for nitrification). Both TOC and NH4 con-

centrations were extracted from the global statistical model

GlobalNEWS2 (Mayorga et al., 2010). Watershed-specific

NH4 concentration are estimated on the basis of reported

DIN concentrations by assuming a NH4 / DIN ratio of 0.2,

representing the median of the NH4 / DIN ratios reported by

Meybeck (1982) in more than 40 uncontaminated and pol-

luted rivers worldwide. Similarly, maximum specific photo-

synthetic rate constants (PB
max), expressed in gC g Chl−1 s−1

(e.g., Cerco, 2000; Kim and Cerco, 2003; Desmit et al.,

2005), are converted to first-order carbon-production-based

PB
max expressed in s−1, by dividing PB

max in gC g Chl−1 s−1

by the associated carbon-to-chlorophyll ratio in gC g Chl−1.

Biogeochemical parameter values reported in the literature

are summarized in Fig. 5. The latter shows that, with the ex-

ception of PB
max, for which very large variability (> 35 orders

of magnitude) is found, biogeochemical parameter values

typically span over a maximum of 5 orders of magnitude. The

Michaelis–Menten constant KO2,ox and the inhibition con-

stant for denitrification (Kin,O2
), as well as the phytoplankton

parameters α, kexcr and kgrowth, vary over 1 order of magni-

tude. On the other hand, a variability over 2 orders of mag-

nitude is found for the five Michaelis–Menten terms KNH4
,

KNO3
, KTOC, KO2,nit, KN, as well as for the phytoplankton

parameter kmaint and the rate constant for aerobic degrada-

tion (kox). Finally, the Michaelis–Menten terms KDSi, the

mortality rate for phytoplankton, kmort, and the nitrification

constant rate (knit) display a relatively large variability over 3

orders of magnitude, while the Michaelis–Menten parameter

KPO4
and the denitrification constant rate (kdenit) vary over

4 and 5 orders of magnitude, respectively. The large vari-

ability range observed for phytoplankton parameters, such as

PB
max, kmaint, kmort and KPO4

, is likely related to the fact that

these parameters typically represent different phytoplank-

tonic species or groups, with varying traits. However, in the

reviewed modeling applications, phytoplanktonic parameter

values vary not only from a phytoplankton species to an-

other but also within the same group. For example, different

kmaint values are reported for the same phytoplankton group

(i.e., diatoms) in Soetaert et al. (1994), Garnier et al. (1995)

and Kim and Cerco (2003). On the other hand, some mod-

eling applications used the same parameter value for differ-

ent phytoplanktonic groups (e.g., same mortality rate con-

stant for diatoms, flagellates and Phaeocystis in Blauw et al.,

2009). The literature review also reveals that biogeochemi-

cal parameter values do not strongly vary from one estuarine

system to another, but different values are also used in mod-

eling studies of the same estuary (e.g., four different kox val-

ues used in modeling applications to the Scheldt estuary by

Soetaert and Herman, 1995; Regnier et al., 1997; Regnier and

Steefel, 1999; Hofmann et al., 2008; Arndt et al., 2009; Volta

et al., 2014).

For the temperature-dependent parameters, corresponding

temperature functions are also included in the review. The

review reveals that the temperature dependence of the aero-

bic and the denitrification rate constants (kox and kdenit, re-

spectively) is typically expressed as an exponential increase

of the rate constants with temperature (e.g., Regnier et al.,

1997; Hofmann et al., 2008; Arndt et al., 2009; Volta et

al., 2014). On the other hand, the temperature dependence

of autotrophic parameters, such as the nitrification rate con-

stant (knit), the maximum specific photosynthetic rate (PB
max),

and the phytoplankton maintenance and mortality rate con-

stants (kmaint and kmort, respectively) can be implemented as

exponential functions, where the parameter value increases

with temperature (e.g., Peterson and Festa, 1984; Le Pape

and Ménesguen, 1997; Guillaud et al., 2000; Laruelle et al.,

2009), or as Gaussian functions, where the value increases

until an optimum temperature is reached and then progres-

sively decreases (e.g., Garnier et al., 1995; Kim and Cerco,

2003; Gypens et al., 2013; Zheng et al., 2004).

A summary of the reviewed biogeochemical parameters,

as well as their values, the location of the respective mod-

eling studies and the corresponding reference, is provided in

Tables B1 and B2. For the temperature-dependent parameters

(Table B2), temperature functions are also reported.
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Figure 5. Biogeochemical parameters reported in modeling studies applied to tidal estuaries in temperate regions (black circles) displayed

on a logarithmic scale. Red dots represent the values used in this study (see Table 5). ∗ and + indicate when literature parameters showed a

skewed or a normal distribution, respectively (refer to Sect. 3.2 for more details). The symbols are stacked when the same parameter value is

reported by more than one modeling application. For references and values, see Tables B1 and B2.
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Figure 6. Results from the outlier/distribution analysis for the in-

hibition term for denitrification (Kin,O2
in µM O2; left panel) and

for the nitrification rate constant (knit in µM N s−1; right panel).

Dots correspond to parameter values from our literature review. The

straight black line represents the theoretical normal distribution. In

the left panel, Kin,O2
reveals a normal distribution, while on the

right panel knit displays a distribution strongly skewed by the pres-

ence of outliers (blue dots). Data are plotted on similar scales to

facilitate the comparison. In each panel, the inset represents the

corresponding whisker plot, where boxes contain literature values

included between the 25th and the 75th percentiles; the whiskers

extend between the maximum and the minimum, beyond which a

value is considered an outlier; and blue dots and red lines represent

outlier values and the median of literature values, respectively.

3.2 Parameter analysis

A statistical analysis was performed to determine a generic

biogeochemical parameter set representing the mean or the

median of the respective published parameter values. Gener-

ally, the mean is considered a rigorous estimate of the central

tendency of a set of normally distributed numerical scores.

However, it is not a well-suited measure for data sets with

a skewed distribution since it is largely influenced by out-

lier values. In this case, a numerical measure able to min-

imize the outlier influence on the generic trend, such as

the median, should be preferred (Mendenhall et al., 2013).

Here, the presence of outliers is used to determine whether

a biogeochemical parameter may be approximated with the

arithmetical mean or the median of a data set. If no out-

liers are detected, the literature parameter set can be consid-

ered normally distributed and thus the generic biogeochemi-

cal parameter can be approximated by the mean. Otherwise,

when at least one outlier is identified, the distribution of val-

ues in the parameter set is assumed to be skewed and the

generic biogeochemical parameter is calculated as the me-

dian of the literature values (Fig. 6). Parameter values are

classified as outliers if they are larger than q3+w · (q3− q1)

or smaller than q1−w · (q3− q1), where q1 and q3 are the

25th and 75th percentiles, respectively, while w is the max-

imum whisker length. The latter is set equal to 1.5, which

corresponds to approximately 99 % coverage if the data are

normally distributed and represents a rational compromise

Figure 7. Longitudinal distributions of tidal amplitude (a), com-

puted as difference between simulated maximum/minimum and av-

erage water depths, salinity (b) and SPM (c), modeled in the three

representative estuaries using parameters listed in Tables 1 and 4

and baseline boundary conditions reported in Table 7.

between a rigorous parameter value selection, which aims to

identify a generic tendency of the literature parameter distri-

butions without being influenced by values too high or too

low compared to the rest of the sample, and the conservation

of a statistically relevant number of parameter values.

For the sake of generalization, although in some model-

ing applications phytoplankton parameters were associated

with specific groups, no distinctions between different phyto-

plankton species and/or groups were made during the analy-

sis and any numerical value was assigned the same weight in

the parameter estimation. Therefore, the generic set of phyto-

plankton parameters derived here should represent a generic

estuarine phytoplankton group. Moreover, when a modeling

study reported different aerobic degradation and denitrifica-

tion rate constants (kox and kdenit, respectively) for differently

reactive organic matter pools (e.g., Soetaert and Herman,

1995; Schroeder, 1997; Hofmann et al., 2008), the value con-

sidered in the parameter analysis corresponds to the average

value of the two constants reported. Therefore, the generic

values for kox and kdenit may be regarded as representative of

organic matter decomposition through high-energy-yielding

metabolic pathways.

A generic set of temperature functions, associated with

temperature-dependent biogeochemical parameters, is de-

rived by analyzing the T functions reported by the reviewed

modeling applications. For phytoplankton temperature-

dependent parameters, generic temperature functions were

preferentially chosen over group-specific temperature for-

mulations. For the phytoplankton maintenance rate con-

stants (kmaint), all temperature functions reported in the lit-

erature referred to specific phytoplanktonic groups. In this

case, the function associated with the largest number of dif-

ferent phytoplankton groups was considered the most generic

and, thus, retained. On the other hand, although all tempera-
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ture functions reported in the literature for aerobic degrada-

tion and denitrification rate constants are exponential, they

nevertheless show different trends depending on the initial

values and exponential factors applied. In this case, the for-

mulation showing the average trend is selected as generic

function (refer to Fig. B1). Finally, for the temperature func-

tion associated with the rate constant of nitrification (knit), the

most frequently used function is chosen (refer to Table B2 for

more details). For the generic temperature functions of bio-

geochemical parameters as implemented in C-GEM, refer to

Table 3.

4 Results and discussion

4.1 Hydrodynamics and salt transport

In an estuarine system, the interplay between tidal and fluvial

influence results in important longitudinal variations in tidal

amplitude and salinity (Fig. 7a and b). The comparison of the

simulated longitudinal tidal amplitude and the salinity pro-

files for the three representative estuaries (Table 1) reflects

the strong mutual dependency between estuarine geometry

and hydrodynamic characteristics.

The distortion of the tidal wave in upstream direction

(Fig. 7a) is mainly controlled by the balance between energy

gain due to channel convergence and energy loss through

friction. In the marine estuary, the strong convergence of the

estuarine banks (short convergence length) compensates for

the energy loss through friction and the tidal amplitude in-

creases landward to 5.5 m at the upper estuarine boundary.

In the mixed estuary, on the other hand, the weak amplifi-

cation of the tidal amplitude indicates that the energy gain

through convergence is almost balanced by the energy lost

through friction. Upstream, tidal amplitude increases more

rapidly to reach a maximum of about 5 m where convergence

and friction effect are both of low magnitude. Beyond this

point, close to the inland limit, the relative importance of the

friction increases, owing to a relatively higher fluvial energy,

and triggers a slight dampening of the tidal amplitude. In the

riverine estuary, the weak channel convergence (long conver-

gence length) combined with the dominant fluvial influence

leads to a dampening of the tidal amplitude, in particular in

the upper reach where frictional energy loss reaches a max-

imum. In summary, the marine and the mixed estuaries are

typically characterized by a net energy gain through conver-

gence and thus by a tidal amplitude amplification along their

longitudinal gradients, whereas the large fluvial influence al-

ways induces a net reduction of estuarine energy by bottom

friction and a consequent tidal damping in the riverine sys-

tem.

In alluvial estuaries, the salinity intrusion is controlled by

the balance between upstream dispersion and downstream

advective transport and, thus, by the system’s geometric and

hydrodynamic properties (Savenije, 2005, 2012). Simulated

salinity profiles for the three idealized systems (Fig. 7b) re-

flect this dependency. Despite identical lower boundary con-

ditions (S= 34 at 50 km beyond the estuarine mouth; see

Sect. 2.3.5), the shape of the simulated salinity profile and, in

particular, the salinity gradient close to the estuarine mouth,

as well as the salt intrusion length, reveal the characteristic

differences generally observed across the different estuarine

types (Savenije, 1992, 2005, 2012). These differences can be

largely attributed to the relative significance of the tidal ver-

sus the fluvial influence in each system. The marine estuary

is characterized by a dominant tidal influence and, thus, a

small salinity gradient close to the mouth (1S= 7), a con-

cave salinity profile and a long salinity intrusion length of al-

most the 75 % of the total estuarine length (EL). On the other

hand, in the mixed estuary, tidal and fluvial influences are of

roughly equal importance and the salinity gradient close to

the mouth is thus larger than in the marine estuary (1S= 17).

Moreover, the larger fluvial influence, results in a recession

shape profile and a shorter salinity intrusion length of 40 %

of the EL. Similarly, the riverine estuary displays a recession-

shape salinity profile. However, the salinity gradient at the

estuarine mouth is much larger (1S= 24) and the salinity

intrusion shorter (20 % of the EL) than in the mixed system

due to the large riverine discharge and the smaller tidal ex-

change.

4.2 Solid transport

In alluvial estuaries, the main features of the longitudinal

distribution of suspended particulate matter (SPM) can be

linked to the mechanical energy provided by the tides and the

riverine discharge (Jay et al., 1990; Dalrymple et al., 1992).

The longitudinal SPM profiles simulated in the marine and

the mixed estuary reveal similar SPM trends (Fig. 7c). In both

cases, SPM concentrations increase in the lower estuary due

to the progressive compression of the incoming flood into

a smaller cross-sectional area and to a consequent increase

in the flood-tidal current speed and reach locally high values

where the total energy (fluvial+ tidal) is maximal, while, fur-

ther upstream, SPM concentrations decrease to a minimum

at the so-called balance point, where fluvial and tidal energy

contributions are of similar but low magnitude. In the up-

per reaches, SPM concentrations are largely controlled by the

riverine influence. The progressive decrease in fluvial energy

from the upper estuarine limit to the sea induces a reduction

of erosion and a consequent increase in deposition rates. As

a result, decreasing SPM from the upper limit to the energy

balance point is simulated. On the other hand, the riverine

estuary reveals two turbidity maxima separated by a zone of

low SPM concentrations, corresponding to the energetic bal-

ance point (Fig. 7c). As for the marine and the mixed cases,

the progressive increase in SPM from the downstream limit

upwards is essentially related to the progressive compression

of the marine inflow into a progressively smaller volume.

Nonetheless, in the upper reaches, maximum SPM concen-
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trations are likely induced by the high river discharges pro-

moting net erosion, as well as by the strong volumetric reduc-

tion associated with the large tidal wave dampening (Fig. 7a).

A quantitative comparison of the SPM concentrations simu-

lated in the three representative estuaries (Fig. 7c) reveals

that the marine system shows very low SPM levels. The latter

are likely related to the strong funnel character of this system

that, bearing relatively steeper and larger volumetric varia-

tions along the estuarine gradient (Fig. 3), entails a larger di-

lution effect on SPM concentrations. Overall, modeled SPM

distributions agree well with the conceptual, mechanical en-

ergy patterns described by Dalrymple et al. (1992), who iden-

tified two high-energy zones separated by a low-energy area

(the balance point) in tidal estuaries. Moreover, they indicate

that the extent of these zones along the three idealized estuar-

ies, as well as their sediment loads, can be strongly affected

by different hydro-geometrical characteristics.

4.3 Biogeochemistry

4.3.1 Biogeochemical dynamics – baseline simulations

Figure 8 shows the longitudinal distribution of ammo-

nium (NH4), nitrate (NO3), phosphate (PO4), dissolved sil-

ica (DSi), oxygen (O2), total organic carbon (TOC), di-

atoms (DIA), non-diatom phytoplankton (nDIA), dissolved

inorganic carbon (DIC), total alkalinity (TAlk), pH and wa-

ter pCO2 in the three idealized estuaries simulated with the

set of baseline boundary conditions (Table 7).

Simulated concentration and biogeochemical rate profiles

reveal several characteristic features that are common across

the three estuaries. In addition, although a direct quantitative

comparisons with observations is difficult, the simulated con-

centration and rate profiles qualitatively agree with observed

chemical distributions from different temperate tidal sys-

tems, such as, for instance, the Chesapeake Bay (e.g., Hor-

rigan et al., 1990) and the Delaware (e.g., Sharp et al., 2009),

the Scheldt (e.g., Baeyens et al., 1998), the Thames and

the Gironde (e.g., Frankignoulle et al., 1998), the Severn

(e.g., Jonas and Millward, 2010) and the Tweed (Howland et

al., 2000) estuaries. TOC and nutrient (NH4, NO3, PO4 and

DSi) concentrations show an overall decrease in downstream

direction (Fig. 8a) due to dilution and high reaction rates in

the upper reaches of the estuarine systems (Fig. 9). However,

the estuarine profiles of NH4 and PO4 reveal a mid-estuary

maximum (Fig. 8a), which results from the slow degradation

of TOC in this area (Fig. 8a). Although slightly positive net

primary production rates are simulated in the upper estuar-

ies, average annual conditions (e.g., temperature, photope-

riod and solar irradiation) prevent the occurrence of phyto-

planktonic blooms and phytoplankton concentrations (DIA

and nDIA, Fig. 8a) progressively decrease downstream due

to dilution and phytoplankton mortality effects. The lower

reaches are consistently characterized by high O2, DIC and

TAlk concentrations and a high pH, which decrease in up-

Table 8. Biogeochemical indicators calculated for the three ideal-

ized estuaries by using the baseline and the future boundary con-

ditions (columns a and b, respectively). NEM and FCO2 are in

kmol C day−1, while FCTN and FCTC are expressed as percent-

age of the total riverine input. FCO2 is negative when towards

the atmosphere. Integrated rates for NEM’s constitutive reactions

are also provided (R: aerobic degradation in kmol C day−1; D:

denitrification in kmol C day−1; NPP: net primary production in

kmol C day−1). Relative variations in biogeochemical indicators

(and NEM’s constitutive reactions) compared to their baseline val-

ues, are also reported in column b (values inside brackets). MAR,

MIX and RIV correspond to the marine, the mixed and the riverine

estuary, respectively.

Biogeochemical Estuarine type Scenario simulation

indicator (a) (b)

[unit] Baseline Future

(year 2000) (Year 2050)

NEM

MAR

−916 −867 (−5 %)

[kmol C day−1
] R 859 812 (−6 %)

D 79 81 (+3 %)

NPP 22 23 (+4 %)

MIX

−8161 −7703 (−6 %)

R 7664 7197 (−6 %)

D 492 503 (+2 %)

NPP −5 −2 (+56 %)

RIV

−21 476 −20 601 (−4 %)

R 20 199 19 283 (−5 %)

D 1299 1347 (+4 %)

NPP 21 29 (+35 %)

FCO2 MAR −2018 −1606 (−20 %)

[kmol C day−1
] MIX −10 940 −10 033 (−8 %)

RIV −25 612 −24 474 (−4 %)

FCTN MAR 22 20 (−9 %)

[%] MIX 18 17 (−9 %)

RIV 15 14 (−8 %)

FCTC MAR 40 33 (−19 %)

[%] MIX 30 28 (−7 %)

RIV 22 21 (−5 %)

stream direction. Aerobic degradation is by far the domi-

nant pathway of organic carbon degradation in all estuar-

ies (Fig. 9a) and, together with the O2 transfer across the

air–water interface, it is the dominant control on the O2

longitudinal distribution (Fig. 9b). TAlk profiles are essen-

tially determined by total heterotrophic degradation (aero-

bic degradation+ denitrification) and nitrification (Fig. 9d),

while DIC concentrations largely depend on a dynamic bal-

ance between production via aerobic degradation and loss

through CO2 outgassing (Fig. 9e). These two processes are

also the main drivers of the pH changes along the longitudi-

nal axis of all estuaries (Fig. 9f). In the upper reaches, maxi-

mum pCO2 concentrations (Fig. 8b) correspond to the areas

where minimum pH values are simulated.

Although the three idealized estuarine types reveal sim-

ilar biogeochemical dynamics, they also show distinct fea-

tures. In particular, the increasing significance of freshwa-
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Figure 8. Longitudinal distributions of chemical species involved in organic (a) and inorganic carbon (b) dynamics in the three representative

estuaries. Simulations are forced with parameters reported in Tables 1, 4 and 5 and with the baseline biogeochemical boundary conditions

summarized in Table 7.

ter discharge from the marine to the riverine estuary re-

sults in a stronger residual transport in downstream di-

rection, which systematically pushes the biogeochemical

fronts towards the estuarine mouth. Large quantitative dif-

ferences between the three idealized estuaries are also ev-

ident when comparing the values of their integrated bio-

geochemical indicators (Table 8, column a). Although re-

sults show that all estuaries are net heterotrophic (NEM< 0)

and act as net sources for atmospheric CO2 (FCO2< 0),

the system-scale NEM and FCO2 increase from the marine

(−916 and −2018 kmol C day−1, respectively) to the mixed

(−8161 and −10 940 kmol C day−1) and to the riverine sys-

tem (−21 476 and −25 612 kmol C day−1) due to the strong

correlation between these indicators and the riverine influx

(Regnier et al., 2013b; refer to Tables 1 and 7). Yet, the nitro-

gen and carbon filtering capacities (FCTN and FCTC, respec-

tively) decrease from the marine to the riverine type (Table 8,

column a), reflecting the progressively shorter transit times

of the water masses as the discharge increases (e.g., Nixon et

al., 1996; Arndt et al., 2009, 2011a; Regnier et al., 2013b).

The simulated integrative measures of NEM and FCO2

for the three idealized estuaries, ranging between −2 and

−39 mol C m−2 yr−1 and −4 and −47 mol C m−2 yr−1, re-

spectively, fall within the range of values observed in tidal

estuaries in temperate regions (−63 to +25.1 and −76 to

+6 mol C m−2 yr−1 for NEM and FCO2, respectively; refer

to Borges and Abril, 2011, and Laruelle et al., 2013, for a

complete list of values). Furthermore, N filtering capacities

of the three systems (15–22 %) are comparable to typical

values reported in the literature for temperate tidal estuar-

ies, such as the Seine (< 7–40 %; Garnier et al., 2001), the

Scheldt (13–78 %; Arndt et al., 2009) and the James (24–

40 %; Bukaveckas and Isenberg, 2013) estuary, while their C-

removal efficiencies (22–40 %) are comparable to the range

calculated in Regnier et al. (2013b) for three idealized, west-

ern European tidal estuaries (25–31 %).
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Figure 9. Distributions along the three estuarine types of process

rates affecting TOC (a), O2 (b), NO3 (c), TAlk (d), DIC (e) and

H+ (f). Net: net rate; R: aerobic degradation; NPPNO3
: net pri-

mary production consuming NO3; NPP: total net primary produc-

tion (NPPNH4
+NPPNO3

);N : nitrification;D: denitrification; FO2:

O2 exchange with the atmosphere; M: phytoplankton mortality;

FCO2: CO2 exchange with the atmosphere. Negative gas exchange

rates indicate gas evasion from water towards the atmosphere, while

positive rates represent gas fluxes from atmosphere to water col-

umn. Process contributions are calculated as in Regnier et al. (1997,

2013b).

4.3.2 Sensitivity analysis

Two sensitivity tests (refer to Sect. 2.5) are performed to

quantify the responses of the biogeochemical indicators

(NEM, FCO2, FCTN and FCTC) to different combinations of

aerobic degradation, denitrification and nitrification rate con-

stants (kox, kdenit and knit, respectively) in the three idealized

estuaries (Fig. 10). The first sensitivity test (SA1) analyzes

the response of the biogeochemical functioning of the three

systems to changes in reaction kinetics or, in other words,

the characteristic timescales of reactions. In this case, it is

Figure 10. Sensitivity analysis of the biogeochemical indicators

(NEM, FCO2, FCTC, FCTN) to changes in aerobic degradation,

denitrification and nitrification rate constants over 2 orders of mag-

nitude. For the NEM, values normalized by specific-system organic

carbon loads are also provided (FCorg). SA1 and SA2 (black and

grey circles, respectively) refer to the two sensitivity analyses per-

formed, while BS (black dots) indicates baseline simulations. The

x axes do not report the values of applied parameters but instead the

factor by which the parameters are modified compared to their base-

line values (BS on the x axes). Values of the reaction rate constants

used are summarized in Table A1. All simulations are forced with

the baseline biogeochemical scenario for the year 2000 (Table 7).

assumed that the ammonification, induced by the degrada-

tion of organic matter, and the nitrification are tightly coupled

(e.g., Billen et al., 1985). These results are then compared

to those obtained with variable kox and kdenit but constant

knit (SA2) in order to assess the relative importance of het-

erotrophic degradation and nitrification on the biogeochemi-

cal indicators in the three estuarine systems.

In all three idealized estuaries, the NEM becomes obvi-

ously more negative as kox, kdenit and knit increase (Fig. 10a).

However, results indicate that this trend is much more pro-

nounced in the riverine than in the marine estuary. Further-

more, despite large variations in parameter values, none of

the estuaries becomes autotrophic. Because the strong cor-

relation between the NEM and the system-specific riverine

organic carbon influx does not allow for a direct quantita-

tive comparison of the NEM variability across the three sys-

tems, the integrated NEM value is normalized with respect
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Figure 11. Longitudinal profiles of (a) total heterotrophic degradation (TH, in mmol C m−1 day−1), (b) CO2 outgassing (FCO2, in

mmol C m−1 day−1) and (c) denitrification (D, in mmol C m−1 day−1) rates in the three idealized estuaries for each of the simulations

of the first sensitivity analysis (SA1; see Table A1). S1 to S10 refer to different simulations, each corresponding to a specific parameter

combination while BS indicates baseline parameter values (Table 5). Black vertical lines indicate the position of the maximal rates simulated

by using the BS biogeochemical parameter sets, while arrows displays the longitudinal shift of the biogeochemical fronts by varying reaction

rate constants.

to the total organic carbon input flux of each estuary as a

relative measure of the amount of organic carbon that is pro-

cessed within the estuary (FCorg in Fig. 10b). In the marine

estuary, FCorg is high and weakly sensitive to variations in

rate constants. On the other hand, in the mixed and the river-

ine estuary, FCorg is high and fairly constant when parameter

values are larger than BS values, but rapidly decreases when

reducing kox, kdenit and knit below their BS values. Above

the BS threshold, a rapid degradation of organic matter re-

sults in a significant consumption of the organic carbon flux

(about 90 % of the riverine flux) irrespective of the estuar-

ine type. These results emphasize the delicate balance be-

tween reaction timescales and residence time in determin-

ing filtering capacities. In general, increasing the values of

the rate constants above BS values shifts the heterotrophic

degradation zone further upstream in all estuaries (Fig. 11a),

where residence times are, due to smaller volumes, shorter.

However, although the shape and the peak value of the total

heterotrophic longitudinal profile vary, the integrated degra-

dation rates and thus the FCorg are similar across estuaries

(Fig. 10a and b). Therefore, results reveal that differences

in geometrical characteristics do not exert a strong influence

on organic carbon dynamics. On the other hand, a reduction

of kinetic rate constants below BS values triggers a down-

stream shift of the heterotrophic zone (Fig. 11a). Here, larger

volumes and thus longer residence times may partly compen-

sate for the low reaction rates. This is particularly true for the

marine estuary, where the long residence time strongly com-

pensates for the reduced rate constants and translates in high

and fairly constant FCorg, while the continuous decrease in

FCorg values simulated in the mixed and the riverine estuary

suggests that the increase in residence time is not sufficient

to compensate for low reaction rates.

Figure 10c and d summarizes the FCO2 and the FCTC

simulated in the three idealized estuaries for the set of rate

constants SA1. Since the C filtering capacity depends on the

estuarine efficiency in scavenging carbon through CO2 de-

gassing, FCTC’s and FCO2’s sensitivity results are discussed

together. As for the NEM, the strong correlation between

FCO2 and system-specific riverine carbon inputs limits the

quantitative comparison of the FCO2 variability across the

three systems. However, a qualitative analysis reveals that

CO2 outgassing (FCO2< 0) increases with increasing pa-

rameter values in all systems. As a consequence, enhanced

C-removal efficiencies, which increase from the riverine to

the marine estuary, are also simulated. Closer inspection of

the different responses suggests that decreasing kox, kdenit

and knit below BS values only induces small FCTC variations

in the marine estuary, whereas a larger sensitivity is simu-

lated in the mixed and the riverine estuaries. Such behavior
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is very similar to that of the NEM and further confirms that

system-specific differences in residence time play an impor-

tant role in controlling the estuarine biogeochemical func-

tioning when reaction rates are low and biogeochemical re-

action zones are pushed further downstream (Fig. 11b). On

the other hand, increasing kox, kdenit and knit above BS val-

ues results in a larger sensitivity in the marine estuary, where

FCTC can reach values up to 90 %, while the mixed and the

riverine systems only reveal a weak sensitivity and fairly con-

stant FCTC values (about 40 %). These differences reflect the

direct dependence of FCO2 on gas exchange and thus the es-

tuarine surface area. As shown in Fig. 11b, increasing rate

constants above BS values induces an upstream shift of the

zone where maximum CO2 degassing occurs. Here, smaller

surface areas may, however, partly limit the gas exchange.

This is particularly true for the mixed and the riverine sys-

tems, where long convergence length and thus comparably

smaller surface areas limit the potential positive effect of

higher reaction rate constants on CO2 outgassing. In contrast,

the large increase in FCTC simulated in the marine estuary by

increasing kox, kdenit and knit above BS values suggests that

its strong funnel-shaped character, entailing relatively larger

surface, always allows for enhanced C-removal efficiencies

even if the FCO2 front is located in the upper zone.

The FCTN sensitivities in the three idealized estuaries to

changes in parameter combinations are presented in Fig. 10e.

The close similarity between the results obtained for FCTN

and FCTC suggests that N removal is also controlled by res-

idence time when the rate constants decrease below BS val-

ues and the denitrification zone is pushed further seawards

(Fig. 11c). However, unlike FCTC, the progressive FCTN in-

crease simulated in the three idealized estuaries by increas-

ing the rate constants indicates that denitrification and, thus,

FCTN could theoretically be enhanced by a further increase

in rate constants in all systems.

The comparison of the results from the two sensitivity

tests (SA1 and SA2 in Fig. 10) shows that nitrification rate

constants exert small effects on all biogeochemical indica-

tors in the three idealized estuaries. Slightly larger varia-

tions are simulated for FCO2 (and consequently for FCTC),

as well as for FCTN, by varying the knit value and re-

flect the biogeochemical coupling between nitrification and

inorganic carbon dynamics (higher nitrification promotes

CO2 outgassing) and between nitrification and denitrifica-

tion (higher nitrification promotes higher denitrification), re-

spectively. On the other hand, although varying knit may

also potentially influence estuarine NEM (and thus FCorg)

through the nitrification–denitrification and nitrification–

primary production couplings as implemented in the C-GEM

biogeochemical module (refer to Table 3), virtually no effects

are simulated, confirming that aerobic degradation is by far

the dominant process in controlling the organic carbon dy-

namics in the three idealized estuaries.

4.4 Future scenarios

The potential effects of future environmental changes on

the biogeochemical functioning of estuaries are assessed

by comparing the biogeochemical indicators (NEM, FCO2,

FCTN and FCTC) simulated under baseline conditions

(year 2000) with those simulated using a future scenario rep-

resenting the year 2050 (Table 7). Results and integrated

rates for the reactions influencing the NEM are summarized

in Table 8. Compared to the biogeochemical boundary con-

ditions of the baseline run, the future scenario using the

global orchestration projections (Seitzinger et al., 2010) pre-

dicts an increase in PO4 and dissolved inorganic nitrogen

(DIN=NH4+NO3) loads from rivers (+57 and +29 %, re-

spectively), as well as a decrease in TOC, DSi and SPM

(−6, −1 and −17 %, respectively). Simulation results in-

dicate that, in 2050, NEM will still be dominated by het-

erotrophic degradation and all estuaries will remain largely

net heterotrophic (Table 8), although a slight improvement of

the estuarine trophic status (less negative NEM values com-

pared to baseline conditions) is simulated. These results es-

sentially reflect the effect of increasing nutrient and decreas-

ing TOC and SPM concentrations on primary production and

heterotrophic degradation reactions. In particular, the larger

nutrient and light availability, promoting higher NPP rates,

and the smaller organic carbon input from rivers, sustaining

lower degradation rates, translate into a less negative NEM

in all three idealized systems in the future (Table 8). In quan-

titative terms, the magnitude of NEM variations in the three

estuaries is always smaller than 6 %, because the influence of

NPP on the overall carbon balance, as well as the predicted

drop in organic carbon inputs from rivers, is marginal.

Table 8 also reveals that the CO2 outgassing flux from the

three idealized estuarine systems will decrease in the future.

While such trends may appear to contradict a simulated in-

crease in water pCO2 (data not shown) and decrease in pH

(Fig. 12a), the higher atmospheric pCO2 expected in 2050

(468 µatm) actually leads to a net decrease in the pCO2 gra-

dient at the air–water interface and to an acidification of the

estuarine water masses. As a consequence, the three estuaries

will become less important CO2 sources for the atmosphere

in 2050 because the atmospheric CO2 increase will largely

offset the estuarine CO2 increase (Fig. 12b, Table 8). Further-

more, Table 8 indicates that the mixed and the riverine estu-

aries reveal low sensitivities to increased atmospheric CO2

concentrations (−8 and −4 % in CO2 evasion for the mixed

and the riverine cases, respectively), while the marine estu-

ary shows a larger reduction in CO2 outgassing (−20 %). Al-

though all estuaries remain net CO2 sources for atmosphere

in 2050 when the exchange rate is integrated over the en-

tire estuarine volume, a reversal trend is simulated in the

downstream zone of the marine estuary, which will become a

net sink for atmospheric CO2 (Fig. 12b). On the other hand,

the mixed and the riverine systems will remain atmospheric

CO2 sources all along their longitudinal profiles. These re-
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Figure 12. Longitudinal distributions of pH (a) and depth- as well as width-integrated FCO2 (b) simulated using a biogeochemical scenario

for years 2000 and 2050 in the three idealized estuaries. Note that results from simulations carried out until year 2100 are also reported. The

bar graphs in the lower panels represent the volume-integrated FCO2 for the three simulated years (data are plotted on a different y axis

scale). Positive FCO2 values represent CO2 emissions, while negative values correspond to CO2 flux from the atmosphere towards the water.

sults essentially reflect the different influences of the adjacent

coastal zone on the estuarine biogeochemistry in the three

systems. If simulations are carried out until year 2100, as-

suming a pCO2 gradient as high as 234 µatm at the marine

boundary and an atmospheric pCO2 of 660 µatm (Moss et al.,

2010), the downstream zone of the marine estuary could be-

come strongly undersaturated with respect to the atmospheric

equilibrium and largely compensate for CO2 outgassing in

the upper reaches (Fig. 12b). For instance, volume-integrated

CO2 exchange rate over the entire domain indicates that the

marine estuary might become a sink for atmospheric CO2 in

2100. Furthermore, a sink zone could develop in the mixed

estuary in 2100, while the riverine system will remain a net

source (Fig. 12b).

By definition, FCTC depends on CO2 outgassing and on

the TC riverine input flux. Therefore, the overall decrease

in CO2 emissions simulated in the future in the three ide-

alized systems translates into consistent reductions in FCTC

(Table 8). Finally, simulation results also reveal that the ef-

ficiency of the three estuaries in removing nitrogen will de-

crease in the future (FCTN in Table 8), because the projected

increase in riverine nitrogen loads (+29 %) is comparatively

larger than the enhanced nitrogen removal through denitrifi-

cation simulated in each idealized estuary (D in Table 8). The

outcomes of our scenarios are in overall agreement with the

future increase in carbon and nitrogen export to the coastal

ocean predicted at global scale (e.g., Kroeze and Seitzinger,

1998; Bauer et al., 2013). Although these projections can

only be regarded as a first-order estimate for future trends be-

cause of the great deal of uncertainty in predicting future con-

ditions, our findings highlight that, by the end of the century,

changes in carbon and nutrient loads from the catchments

may lead to a significantly smaller impact on the overall es-

tuarine C balance than the atmospheric CO2 increase. Fur-

thermore, the latter may be such that estuaries under strong

marine influence could experience a shift from being net CO2

sources to net CO2 sink, in a manner similar to that already

advocated for the coastal ocean (e.g., Mackenzie et al., 2004;

Bauer et al., 2013; Regnier et al., 2013a).

5 Conclusions and outlook

A generic modeling approach was used to quantitatively ex-

plore the biogeochemical dynamics across three idealized al-

luvial estuaries (marine, mixed and riverine) and to relate

their behavior to their main hydro-geometrical characteris-

tics. To this end, a comprehensive literature review of biogeo-

chemical parameter values (e.g., rate and half-saturation con-

stants) used in estuarine model applications was performed.

This allowed deriving a generic set of parameter values for

our simulations including reasonable ranges to perform sen-

sitivity tests. This large literature survey, to our knowledge

the first of its kind, highlighted that modeling studies are

largely biased towards temperate latitudes. Out of a total of

51 modeling applications, 49 are from temperate regions and

two are from the tropics (see map provided in the Supple-

ment). Results from our simulations performed for typical

temperate conditions (30–60◦ in either hemisphere) are in

line with recent literature syntheses (Borges and Abril, 2011;

Laruelle et al., 2013) showing that the vast majority of es-

tuaries are net heterotrophic and act as net sources for at-

www.hydrol-earth-syst-sci.net/20/991/2016/ Hydrol. Earth Syst. Sci., 20, 991–1030, 2016



1014 C. Volta et al.: Linking biogeochemistry to hydro-geometrical variability in tidal estuaries

Figure 13. Main results of the sensitivity analysis and scenario simulations summarized as functions of the key hydro-geometrical parameters:

freshwater discharge (Q in m3 s−1) and width convergence length (b in m). Results of the sensitivity analysis report ranges corresponding

to the maximum and minimum values obtained for any parameter combination of the sensitivity analysis SA1. Results of the scenario

simulations are expressed in percentages of relative change between years 2000 and 2050.

mospheric CO2. The average C filtering capacities for base-

line conditions are 40, 30 and 22 % for the marine, mixed

and riverine estuary, respectively. Extrapolating these filtra-

tion rates to the carbon loads of all temperate tidal estuaries

worldwide, as defined in Dürr et al. (2011), results in a re-

gional outgassing flux between 0.01 and 0.02 PgC yr−1, as-

suming that the total amount of carbon delivered by rivers to

these systems is 0.06 PgC yr−1 (calculated from Hartmann

et al., 2009, and Mayorga et al., 2010). Moreover, a global

CO2 outgassing comprised between 0.04 and 0.07 PgC yr−1

can be calculated by extending these calculations to all tidal

estuaries worldwide and assuming that the global amount of

carbon delivered by rivers is then 0.17 PgC yr−1 (calculated

from Hartmann et al., 2009, and Mayorga et al., 2010). Since

this estimate ignores that tropical and polar tidal estuaries

may process riverine carbon differently than temperate sys-

tems, it only represents a first-order quantification of the CO2

outgassing flux from tidal estuaries worldwide. Nonetheless,

it is broadly in line with the recent global estimate calculated

by Laruelle et al. (2013) (0.06 PgC yr−1). In addition, results

for baseline conditions indicate that the three idealized es-

tuaries can retain between 15 and 22 % of the total nitrogen

input from the land. On the other hand, sensitivity analysis

performed by varying the rate constants for aerobic degrada-

tion, denitrification and nitrification over the range of values

reported in the literature significantly widens these ranges

(Fig. 13). Although the bulk of published N and C retention

rates are generally based on local studies (e.g., Soetaert and

Herman, 1995; Regnier and Steefel, 1999; Arndt et al., 2009;

Billen et al., 2009), while literature syntheses are limited

(Nixon et al., 1996; Laruelle, 2009; Regnier at al., 2013b),

our estimates confirm the importance of considering the es-

tuarine filter in global and regional C and N budgets.

Overall, our simulations using three idealized estuaries

allow identifying the main influence of a marine or river-

ine character of a system on its biogeochemical functioning

(Fig. 13). For instance, simulation results suggest that ma-

rine estuaries with short width convergence length (banks

that strongly converge in the landward direction) could be

efficient filters for nitrogen but relatively limited sources for

atmospheric CO2. In contrast, mixed and riverine estuaries,

owing to their relatively large CO2 outgassing, could con-

tribute disproportionally to the global estuarine CO2 bud-

get. The presented approach could thus ultimately enhance

our ability to transfer knowledge from well-known estuaries

to poorly constrained systems and to predict their biogeo-

chemical functioning even when available data are scarce.

Helpful insights are also provided by the sensitivity analy-

sis, which reveals that, for the parameter ranges tested, the

uncertainty in aerobic degradation and denitrification rates

may translate into large specific-system responses. Finally,

prospective simulations for the year 2050 indicate that, while

the riverine and mixed estuaries will remain heterotrophic

and only marginally affected by river load changes and in-

crease in atmospheric pCO2, the marine estuary is likely to

become a significant CO2 sink in its downstream section.

Such a change in behavior might offset the current balance

between the CO2 emitted by estuaries and that taken up by

continental shelf seas (Andersson et al., 2005; Laruelle et al.,

2010, 2013, 2014; Cai, 2011; Bauer et al., 2013; Regnier et

al., 2013a).

Although this study provides advances on the qualitative

and quantitative understanding of the estuarine biogeochem-

istry in tidal estuaries, our approach also relies on simplifica-

tions and abstractions. As a consequence, even if simulation

results may be considered as representative of the main tidal,

alluvial estuarine classes, they only represent a limited num-
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ber of estuarine cases that may not cover the extremely wide

spectrum of hydro-geometrical and biogeochemical propri-

eties typically observed in estuaries. For instance, our sensi-

tivity results may not be valid in autotrophic estuaries, where

primary production rather than heterotrophic processes con-

trols the estuarine biogeochemistry. In addition, the use of

the generic modeling platform C-GEM, whose reaction net-

work does not include an early diagenetic model at this stage,

hampers the generalization of simulation results to estuaries

that are typically subject to intense biogeochemical process-

ing in sediments. For instance, the lack of a representation

of denitrification in sediment might result in overestimations

of the N export to the coastal ocean. As a consequence, the

implementation of an early diagenetic model for carbon, nu-

trients and O2 will be the next logical step to further improve

our modeling strategy.

In the future, our generic approach could be applied to

perform ensemble runs in order to reduce the predictive un-

certainty by covering a wider range of hydro-geometrical

characteristics and the uncertainty associated with biogeo-

chemical parameters and conditions, as well as climatolog-

ical regimes. This design will ultimately provide a better

understanding of the estuarine dynamics. Moreover, we be-

lieve that a generic approach such as ours can be com-

bined with continuously growing high-resolution environ-

mental databases and, coupled to Earth system models, could

be used to derive robust regional and/or global biogeochem-

ical mass budgets by explicitly incorporating the estuarine

filter into the estimates.
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Appendix A: Sensitivity tests

Table A1. List of the parameter values for aerobic degradation (kox), denitrification (kdenit) and nitrification (knit) rate constants used for the

two sensitivity analyses (SA1 and SA2). S1 to S10 refer to different simulations, each corresponding to a specific parameter combination,

while BS indicates baseline parameter values (see Sect. 2.3.4, Table 5).

Sensitivity analysis 1 (SA1) Sensitivity analysis 2 (SA2)

kox kdenit knit kox kdenit knit

[µM C day−1
] [µM C day−1

] [µM N day−1
] [µM C day−1

] [µM C day−1
] [µM N day−1

]

S1 6.08× 10−5 5.05× 10−5 2.73× 10−6 6.08× 10−5 5.05× 10−5 2.73× 10−5

S2 9.64× 10−5 8.00× 10−5 4.33× 10−6 9.64× 10−5 8.00× 10−5 2.73× 10−5

S3 1.53× 10−4 1.27× 10−4 6.86× 10−6 1.53× 10−4 1.27× 10−4 2.73× 10−5

S4 2.42× 10−4 2.01× 10−4 1.09× 10−5 2.42× 10−4 2.01× 10−4 2.73× 10−5

S5 3.84× 10−4 3.19× 10−4 1.72× 10−5 3.84× 10−4 3.19× 10−4 2.73× 10−5

BS 6.08× 10−4 5.05× 10−4 2.73× 10−5 6.08× 10−4 5.05× 10−4 2.73× 10−5

S6 9.64× 10−4 8.00× 10−4 4.33× 10−5 9.64× 10−4 8.00× 10−4 2.73× 10−5

S7 1.53× 10−3 1.27× 10−3 6.86× 10−5 1.53× 10−3 1.27× 10−3 2.73× 10−5

S8 2.42× 10−3 2.01× 10−3 1.09× 10−4 2.42× 10−3 2.01× 10−3 2.73× 10−5

S9 3.84× 10−3 3.19× 10−3 1.72× 10−4 3.84× 10−3 3.19× 10−3 2.73× 10−5

S10 6.08× 10−3 5.05× 10−3 2.73× 10−4 6.08× 10−3 5.05× 10−3 2.73× 10−5
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Appendix B: Parameter review

Table B1. Values of temperature-independent biogeochemical parameters reported from the literature for which a parameter analysis was

performed. Outlier values are indicated in italic.

Temperature-independent biogeochemical parameters [unit]

Value Continent Location References

α, photosynthetic efficiency [m2 s µE−1 s−1
]

1.67× 10−7 Europe Scheldt estuary Gypens et al. (2013)

2.76× 10−7 Europe Tagus estuary Macedo and Duarte (2006)

2.77× 10−7 Europe Scheldt estuary Gypens et al. (2013)

2.90× 10−7 Europe Scheldt estuary Vanderborght et al. (2007)

3.33× 10−7 Europe Seine estuary; Scheldt estuary Garnier et al. (1995), Gypens et al. (2013)

4.17× 10−7 Europe Hypothetical river-coastal zone Billen and Garnier (1997)

5.80× 10−7 Europe Scheldt estuary Arndt et al. (2007, 2009), Volta et al. (2014)

6.67× 10−7 Europe Scheldt estuary Gypens et al. (2013)

6.94× 10−7 Europe Scheldt estuary Gypens et al. (2013)

kexcr, phytoplankton excretion constant [–]

3.0× 10−2 Europe Scheldt estuary Desmit et al. (2005), Arndt et al. (2007, 2009),

Vanderborght et al. (2007), Volta et al. (2014)

5.0× 10−2 S. America Río de la Plata estuary Huret et al. (2005)

7.0× 10−2 Europe Ria de Aveiro Trancoso et al. (2005)

kgrowth, phytoplankton growth constant [–]

1.0× 10−1 Europe Tagus estuary Mateus et al. (2012)

2.5× 10−1 Europe; N. America Chesapeake Bay; Tagus estuary Cerco and Noel (2004), Mateus et al. (2012)

3.0× 10−1 Europe Carlingford Lough; Scheldt estuary Ferreira et al. (1998), Desmit et al. (2005), Arndt

et al. (2007, 2009),Vanderborght et al. (2007), Volta

et al. (2014)

3.2× 10−1 Europe Scheldt estuary Vanderborght et al. (2002)

5.0× 10−1 Europe Scheldt estuary Gypens et al. (2013)

Kin,O2
, inhibition term for denitrification [µM O2]

15.0 Europe Scheldt estuary Regnier et al. (1997)

19.0 Australia Swan estuary Robson and Hamilton (2004)

20.0 Europe Scheldt estuary Vanderborght et al. (2002)

22.0 Europe Scheldt estuary Hofmann et al. (2008)

30.0 Europe Scheldt estuary Regnier and Steefel (1999)

44.0 Europe Scheldt estuary Soetaert and Herman (1995)

50.0 Europe Scheldt estuary Vanderborght et al. (2007), Arndt et al. (2009),

Volta et al. (2014)

63.0 Europe Urdaibai estuary Garcia et al. (2010)
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Table B1. Continued.

KDSi, Michaelis–Menten constant for dissolved silica [µM Si]

0.30 Europe Tagus estuary Mateus et al. (2012)

0.36 N. America Chester River and Eastern Bay; Kim and Cerco (2003), Cerco and Noel (2004)

Chesapeake Bay

0.40 Europe Scheldt estuary Gypens et al. (2013)

0.50 Europe Hypothetical river-coastal zone Billen and Garnier (1997)

1.00 Europe Bay of Seine; Bay of Brest Le Pape and Ménesguen (1997), Le Pape et al. (1999),

Guillaud et al. (2000), Cugier et al. (2005), Laruelle

et al. (2009)

1.07 N. America Chester River and Eastern Bay; Kim and Cerco (2003), Cerco and Noel (2004)

Chesapeake Bay

1.79 Asia; N. America; Kwangyang Bay; Chesapeake Bay; Cerco and Cole (1994), Soetaert et al. (1994), Park et al. (2005)

Europe Scheldt estuary

5.00 Australia Swan estuary Griffin et al. (2001)

7.00 Europe Hypothetical river-coastal zone; Billen and Garnier (1997), Arndt et al. (2011a),

Scheldt estuary Gypens et al. (2013)

8.93 Europe Seine estuary Garnier et al. (1995)

20.00 Europe Scheldt estuary Arndt et al. (2007, 2009), Vanderborght et al. (2007),

Volta et al. (2014)

KPO4
, Michaelis–Menten constant for phosphate [µM P]

0.001 Europe Scheldt estuary Gypens et al. (2013)

0.02 Asia Kwangyang Bay Lee et al. (2005)

0.03 N. America; Europe Potomac estuary; James estuary; Thomann and Fitzpatrick (1982) (from Lung and Paerl, 1988),

Chesapeake Bay; Satilla estuary; Lung (1986) (via Lung and Paerl, 1988), Cerco and Cole (1994),

Urdaibai estuary; Scheldt estuary Zheng et al. (2004), Garcia et al. (2010), Gypens et al. (2013)

0.05 N. America Chesapeake Bay HydroQual Inc. (1987) (via Lung and Paerl, 1988)

0.08 N. America Chester River and Eastern Bay; Kim and Cerco (2003), Cerco and Noel (2004)

Chesapeake Bay

0.10 N. America; Europe Derwent estuary; Scheldt estuary; Guillaud et al. (2000), Cugier et al. (2005), Wild-Allen et al.

Bay of Seine (2009), Gypens et al. (2013)

0.15 Europe Bay of Seine Guillaud et al. (2000), Cugier et al. (2005)

0.16 N. America; Neuse estuary; Swan estuary; Lung and Paerl (1988), Griffin et al. (2001) Zemlys et al. (2008)

Australia; Europe Curonian lagoon

0.20 Europe Hypothetical river-coastal zone Billen and Garnier (1997)

0.23 Europe Seine estuary Garnier et al. (1995)

0.32 Europe Venice lagoon Solidoro et al. (2005)

0.50 Europe Hypothetical river-coastal zone; Billen and Garnier (1997), Arndt et al. (2011a),

Scheldt estuary Gypens et al. (2013), Volta et al. (2014)

0.52 Australia Swan estuary Griffin et al. (2001)

1.49 Europe Seine estuary Garnier et al. (1995)

1.50 Europe Hypothetical river-coastal zone Billen and Garnier (1997)

2.00 Europe Scheldt estuary Gypens et al. (2013)

3.58 Europe Venice lagoon Canu et al. (2003)

KNO3
, Michaelis–Menten constant for nitrate [µM N]

7.14 N. America Chesapeake Bay; Chester River and Cerco and Cole (1994), Kim and Cerco (2003)

Eastern Bay

45.00 Europe Scheldt estuary Regnier and Steefel (1999), Arndt et al. (2007, 2009),

Vanderborght et al. (2007), Hofmann et al. (2008),

Volta et al. (2014)
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Table B1. Continued.

KNH4
, Michaelis–Menten constant for ammonium [µM N]

71.43 N. America Chesapeake Bay; Chester River and Cerco and Cole (1994), Kim and Cerco (2003)

Eastern Bay

80.00 Europe Scheldt estuary Gypens et al. (2013)

100.00 Europe Scheldt estuary Arndt et al. (2007, 2009), Vanderborght et al. (2007),

Volta et al. (2014)

250.00 Europe Scheldt estuary Regnier and Steefel (1999)

643.00 Europe Scheldt estuary Soetaert and Herman (1995)

KTOC, Michaelis–Menten constant for organic carbon [µM C]

60.00 Europe Scheldt estuary Regnier and Steefel (1999), Arndt et al. (2007, 2009),

Vanderborght et al. (2007), Volta et al. (2014)

312.50 Europe Scheldt estuary Soetaert and Herman (1995)

KO2,ox, Michaelis–Menten constant for oxygen in aerobic degradation [µM O2]

15.00 Europe Scheldt estuary Regnier and Steefel (1999), Arndt et al. (2007, 2009),

Vanderborght et al. (2007), Volta et al. (2014)

30.00 Europe Scheldt estuary Hofmann et al. (2008)

31.00 Australia Derwent estuary Wild-Allen et al. (2009)

31.25 N. America; Chesapeake Bay; Chester River and Cerco and Cole (1994), Kim and Cerco (2003),

Australia Eastern Bay; Swan estuary Robson and Hamilton (2004)

34.00 Europe Scheldt estuary Soetaert and Herman (1995)

KO2,nit, Michaelis–Menten constant for oxygen in nitrification [µM O2]

15.00 Europe Scheldt estuary Regnier and Steefel (1999), Arndt et al. (2007, 2009)

Vanderborght et al. (2007), Volta et al. (2014)

19.00 Europe Scheldt estuary Gypens et al. (2013)

30.00 Europe Scheldt estuary Hofmann et al. (2008)

31.00 Australia Derwent estuary Wild-Allen et al. (2009)

40.00 N. America Satilla estuary Zheng et al. (2004)

62.50 N. America Chesapeake Bay; Chester River and Cerco and Cole (1994), Kim and Cerco (2003)

Eastern Bay

125.00 Europe Venice lagoon; Urdaibai estuary Canu et al. (2003), Garcia et al. (2010)

142.86 Europe Curonian lagoon Zemlys et al. (2008)

156.00 Europe Scheldt estuary Soetaert and Herman (1995)

312.50 Australia Swan estuary Robson and Hamilton (2004)
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Table B1. Continued.

KN, Michaelis–Menten constant for dissolved nitrogen [µM N]

0.10 Asia Kwangyang Bay Lee et al. (2005)

0.20 Australia Derwent estuary Wild-Allen et al. (2009)

0.21 Europe Seine estuary Garnier et al. (1995)

0.36 N. America; Europe James estuary; Seine estuary Lung (1986) (via Lung and Paerl, 1988), Garnier et al. (1995)

0.50 Europe; S. America Hypothetical river-coastal zone; Billen and Garnier (1997), Huret et al. (2005),

Scheldt estuary; Río de la Plata Gypens et al. (2013)

estuary

0.71 N. America Chesapeake Bay Cerco and Cole (1994)

0.80 Europe Scheldt estuary Gypens et al. (2013)

1.00 Europe Ria de Aveiro; Scheldt estuary Trancoso et al. (2005), Gypens et al. (2013)

1.07 N. America Chesapeake Bay; Neuse estuary HydroQual Inc. (1987) (via Lung and Paerl, 1988),

Lung and Paerl (1988)

1.19 Europe Carlingford Lough Ferreira et al. (1998)

1.43 Australia; Chester River and Eastern Bay Griffin et al. (2001), Kim and Cerco (2003)

N. America

1.79 N. America; Europe Potomac estuary; Neuse estuary; Thomann and Fitzpatrick (1982) (via Lung and Paerl, 1988),

Chester River and Eastern Bay; Lung and Paerl (1988), Kim and Cerco (2003), Cerco and

Chesapeake Bay; Urbaibai estuary Noel (2004), Garcia et al. (2010)

2.00 N. America; Europe Satilla estuary; Scheldt estuary; Le Pape and Ménesguen (1997), Le Pape et al. (1999),

Bay of Seine; Bay of Brest Guillaud et al. (2000), Zheng et al. (2004), Cugier et al.

(2005), Laruelle et al. (2009), Gypens et al. (2013)

3.00 Europe Bay of Seine; Bay of Brest Le Pape et al. (1999), Guillaud et al. (2000), Cugier et al. (2005)

3.50 Europe Bay of Seine Le Pape and Ménesguen (1997)

3.57 Europe Venice lagoon; Curonian lagoon Canu et al. (2003), Solidoro et al. (2005), Zemlys et al. (2008)

5.00 Europe Scheldt estuary; hypothetical Billen and Garnier (1997), Arndt et al. (2011a), Volta et al. (2014)

river-coastal zone

7.14 Europe Scheldt estuary Soetaert et al. (1994)

Hydrol. Earth Syst. Sci., 20, 991–1030, 2016 www.hydrol-earth-syst-sci.net/20/991/2016/



C. Volta et al.: Linking biogeochemistry to hydro-geometrical variability in tidal estuaries 1021

Table B2. Values of temperature-dependent biogeochemical parameters reported from the literature for which a parameter analysis was

performed. T corresponds to the temperature in ◦C. Tabs is the absolute temperature. All parameter values are normalized at 20 ◦C. PB
max,L,

kmain,L, kmort,L, kox,L, kdenit,L and knit,L represent the parameter values reported in the corresponding literature source (refer to references).
∗ indicates that the parameter value is calculated from the mean of values reported for reactive and refractory organic carbon. ∗∗ indicates

that the parameter value refers to the mean of values associated with different salinities. Outlier values are indicated in italic.

Temperature-dependent biogeochemical parameters [unit]

Value at T function Continent Location References

20 ◦C

PB
max, maximum specific photosynthetic rate [s−1

]

7.16× 10−41 PB
max(T )=P

B
max,L · exp

(
−(T − 5.5)2/1.62

)
Europe Scheldt estuary Gypens et al. (2013)

1.07× 10−6 PB
max(T )=P

B
max,L · exp

(
−(T − 12)2/52

)
Europe Hypothetical river-coastal zone Billen and Garnier (1997)

1.02× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 37)2/172

)
Europe Seine estuary Garnier et al. (1995)

1.17× 10−5 PB
max(T )=P

B
max,L · exp(0.07 · T ) Europe Bay of Seine Peterson and Festa (1984),

Le Pape et al. (1999),

Guillaud et al. (2000)

1.23× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 25)2/52

)
Europe Scheldt estuary Arndt et al. (2011a)

1.38× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 21)2/132

)
Europe Seine estuary Garnier et al. (1995)

1.49× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 13)2/212

)
Europe Hypothetical river-coastal zone Billen and Garnier (1997)

1.66× 10−5 PB
max(T )=P

B
max,L · exp(0.07 · T ) Europe Bay of Seine Cugier et al. (2005)

2.11× 10−5 PB
max(T )=P

B
max,L · exp(0.07 · T ) Europe Bay of Brest Le Pape et al. (1999)

2.31× 10−5 PB
max(T )=P

B
max,L · 1.067(T−20) Europe Urdaibai estuary Garcia et al. (2010)

2.34× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 15)2/122

)
Europe Scheldt estuary Gypens et al. (2013)

2.35× 10−5 PB
max(T )=P

B
max,L · exp(0.07 · T ) Europe Bay of Seine Cugier et al. (2005)

2.58× 10−5 PB
max(T )=P

B
max,L · exp(0.07 · T ) Europe Bay of Seine Le Pape and Ménesguen (1997),

Guillaud et al. (2000)

2.76× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 37)2/122

)
Europe Scheldt estuary Gypens et al. (2013)

2.80× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 15)2/122

)
Europe Scheldt estuary Gypens et al. (2013)

3.31× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 17)2/372

)
Europe Hypothetical river-coastal zone Billen and Garnier (1997)

3.75× 10−5 PB
max(T )=P

B
max,L · exp

(
−

(
0.0018 · (T − 16)2

))
N. America Chester River and Eastern Bay Kim and Cerco (2003)

3.86× 10−5 PB
max(T )= P

B
max,L · exp

(
−

(
0.0025 · (T − 20)2

))
N. America Chesapeake Bay Cerco (2000)

4.38× 10−5 PB
max(T )=P

B
max,L · exp

(
−

(
0.0025 · (T − 25)2

))
N. America Chesapeake Bay Cerco (2000)

6.10× 10−5 PB
max(T )=P

B
max,L · exp

(
−

(
0.0035 · (T − 29)2

))
N. America Chester River and Eastern Bay Kim and Cerco (2003)

6.90× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 21)2/132

)
Europe Scheldt estuary Gypens et al. (2013)
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Table B2. Continued.

6.95× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 37)2/172

)
Europe Scheldt estuary Gypens et al. (2013)

7.00× 10−5 PB
max(T )=P

B
max,L · exp

(
−(T − 15)2/122

)
Europe Scheldt estuary Gypens et al. (2013)

7.55× 10−5 PB
max(T )=P

B
max,L · exp

(
−

(
0.004 · (T − 29)2

))
N. America Chester River and Eastern Bay Kim and Cerco (2003)

1.58 × 10−4 PB
max(T )= 1.47× 10−5

· ((1/50)+ exp(0.33+ 0.102 · T )) Europe Scheldt estuary Volta et al. (2014)

1.82 × 10−4 PB
max(T )=P

B
max,L · exp((T − 10)/(ln(2.075/10))) Europe Scheldt estuary Soetaert et al. (1994)

kmaint, phytoplankton maintenance rate constant [s−1
]

1.16× 10−7 kmaint(T )= kmaint,L · exp(0.0322 · (T − 20)); N. America Chesapeake Bay; Chester River Cerco and Cole (1994)

kmaint(T )= kmaint,L · exp(0.069 · (T − 20)) and Eastern Bay; Pamlico Sound; Cerco (2000)

Cape Fear estuary Kim and Cerco (2003)

Cerco and Noel (2004)

Lin et al. (2007, 2008)

2.06× 10−7 kmaint(T )=kmaint,L · exp
(
−

(
(T − 37)2/172

))
Europe Seine estuary Garnier et al. (1995)

2.30× 10−7 kmaint(T )= kmaint,L · exp(0.0322 · (T − 20)) N. America Chesapeake Bay Cerco and Noel (2004)

3.50× 10−7 kmaint(T )= kmaint,L · exp(0.0322 · (T − 20)) N. America; Asia Chester River and Eastern Bay; Kim and Cerco (2003),

Kwangyang Bay Park et al. (2005)

4.63× 10−7 kmaint(T )= kmaint,L · exp(0.069 · (T − 20)) N. America Chesapeake Bay Cerco and Cole (1994)

5.57× 10−7 kmaint(T )= kmaint,L · exp
(
−

(
(T − 21)2/132

))
Europe Seine estuary Garnier et al. (1995)

1.16× 10−6 kmaint(T )= kmaint,L · exp((T − 10) · ln(2)/10) Europe Scheldt estuary Soetaert et al. (1994)

2.30× 10−6 kmaint(T )= kmaint,L · exp(0.0322 · (T − 20)) N. America Chesapeake Bay Cerco (2000)

3.50 × 10−6 kmaint(T )= kmaint,L · exp(0.0322 · (T − 20)) N. America Chester River and Eastern Bay Kim and Cerco (2003)
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Table B2. Continued.

kmort, phytoplankton mortality rate constant [s−1
]

2.30× 10−7 – N. America Potomac estuary Thomann and Fitzpatrick (1982)

(via Lung and Paerl, 1988)

2.35× 10−7 kmort(T )= kmort,L · exp(0.07 · T ) Europe Thau lagoon Chapelle et al. (2000)

5.15× 10−7 kmort(T )= kmort,L · exp
(
−

(
(T − 37)2

)
/172

)
Europe Seine estuary Garnier et al. (1995)

5.80× 10−7 – N. America Neuse estuary Lung and Paerl (1988)

9.33× 10−7 kmort(T )= kmort,L · exp(0.07 · T ) Europe Bay of Brest Le Pape et al. (1999)

Laruelle et al. (2009)

1.16× 10−6 – N. America James estuary; Chesapeake Bay Lung (1986) (via Lung

and Paerl, 1988),

HydroQual Inc. (1987) (via

Lung and Paerl, 1988)

1.41× 10−6 kmort(T )= kmort,L · exp(0.07 · T ) Europe Bay of Seine Guillaud et al. (2000)

1.47× 10−6 kmort(T )= kmort,L · exp((T − 10) · ln(2.075)/10) Europe Scheldt estuary Arndt et al. (2007, 2009),

Arndt and Regnier (2007),

Volta et al. (2014)

1.64× 10−6 kmort(T )= kmort,L · exp(0.07 · T ) Europe Bay of Seine Guillaud et al. (2000)

2.09× 10−6 kmort(T )= kmort,L · exp
(
−

(
(T − 21)2

)
/132

)
Europe Seine estuary Garnier et al. (1995)

2.26× 10−6 kmort(T )= kmort,L · 2
((T−15)/10) Australia Derwent estuary Wild-Allen et al. (2009)

2.30× 10−6 – N. America Chesapeake Bay HydroQual Inc. (1987)

(via Lung and Paerl, 1988)

2.35× 10−6 kmort(T )= kmort,L · exp(0.07 · T ) Europe Bay of Brest Le Pape et al. (1999)

3.25× 10−6 kmort(T )= kmort,L · 1.072T Europe Venice lagoon; Veerse Meer Blauw et al. (2009)

4.73 × 10−6 kmort(T )= kmort,L · 1.085T Europe Venice lagoon; Veerse Meer Blauw et al. (2009)

2.35 × 10−5 kmort(T )= kmort,L · exp(0.07 · T ) Europe Bay of Vilaine Chapelle et al. (1994)

kox, aerobic degradation rate constant [µM C s−1
]

9.75× 10−5 – N. America Chester River and Eastern Bay Kim and Cerco (2003)

4.43× 10−4* kox(T )= kox,L · exp((T − 10) · ln(1.65)/10) Europe Scheldt estuary Soetaert and Herman (1995)

5.06× 10−4* kox(T )= kox,L · 2
((T−15)/10) Europe Scheldt estuary Hofmann et al. (2008)

6.66× 10−4 – N. America Chester River and Eastern Bay Kim and Cerco (2003)

7.35× 10−4 kox(T )= kox,L · 1.08(T−20) Australia Swan estuary Robson and Hamilton (2004)

7.38× 10−4 kox(T )= kox,L · 10((Tabs−278.15)/22.6) Europe Scheldt estuary Regnier et al. (1997)

7.50× 10−4∗ kox(T )= kox,L · 1.047(T−20) Europe Elbe estuary Schroeder (1997)

9.26× 10−4 kox(T )= kox,L · 2.75((Tabs−278)/10) Europe Scheldt estuary Regnier and Steefel (1999),

Arndt et al. (2009)

Volta et al. (2014)
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Table B2. Continued.

kdenit, denitrification rate constant [µM C s−1
]

2.60× 10−5 kdenit(T )= kdenit,L · 1.07(T−20) Europe Venice lagoon Solidoro et al. (2005)

3.72× 10−5 – Europe Venice lagoon Blauw et al. (2009)

3.69× 10−4 kdenit(T )= kdenit,L · 10((Tabs−278.15)/22.6) Europe Scheldt estuary Regnier et al. (1997)

4.63× 10−4 kdenit(T )= kdenit,L · 2.75((Tabs−278)/10) Europe Scheldt estuary Regnier and Steefel (1999)

Arndt et al. (2009)

Volta et al. (2014)

5.05× 10−4 kdenit(T )= kdenit,L · 1.08(T−20) N. America Satilla estuary Zheng et al. (2004)

5.06× 10−4 kdenit(T )= kdenit,L · 2
((T−15)/10) Europe Scheldt estuary Hofmann et al. (2008)

6.41× 10−4 kdenit(T )= kdenit,L · 1.05(T−20) Europe Urdaibai estuary Garcia et al. (2010)

7.77× 10−3 kdenit(T )= kdenit,L · exp((T − 10) · ln(1.65)/10) Europe Scheldt estuary Soetaert and Herman (1995)

9.07× 10−3 kdenit(T )= kdenit,L · 1.08(T−20) Australia Swan estuary Robson and Hamilton (2004)

5.22 × 10−1∗ kdenit(T )= kdenit,L · 2
((T−15)/10) Australia Derwent estuary Wild-Allen et al. (2009)

knit, nitrification rate constant [µM N s−1
]

1.06× 10−5 – N. America Chesapeake Bay HydroQual Inc. (1987)

(via Lung and Paerl, 1988)

1.08× 10−5 – N. America Neuse estuary Lung and Paerl (1988),

1.12× 10−5 – N. America James estuary Lung (1986) (via Lung

and Paerl, 1988)

1.16× 10−5 – Europe Venice lagoon Blauw et al. (2009)

1.50× 10−5 – N. America Pamlico Sound Lin et al. (2007)

1.60× 10−5 knit(T )= knit,L · 1.08(T−20) Australia Swan estuary Robson and Hamilton (2004)

1.71× 10−5 knit(T )= knit,L · 1.07(T−20) Europe Venice lagoon Solidoro et al. (2005)

1.93× 10−5 – N. America Potomac estuary Thomann and Fitzpatrick (1982)

(via Lung and Paerl, 1988)

2.67× 10−5 knit(T )= knit,L · 2
((T−15)/10) Australia Derwent estuary Wild-Allen et al. (2009)

2.79× 10−5 – N. America Potomac estuary Thomann and Fitzpatrick (1982)

(via Lung and Paerl, 1988)

3.20× 10−5 – N. America Cape Fear estuary Lin et al. (2008)

3.37× 10−5 – N. America James estuary Lung (1986) (via Lung

and Paerl, 1988)

5.51× 10−5∗∗ knit(T )= knit,L · 1.08(T−20) N. America Satilla estuary Zheng et al. (2004)

2.44× 10−4 knit(T )= knit,L · 2
((T−15)/10) Europe Scheldt estuary Hofmann et al. (2008)

4.64× 10−4 knit(T )= knit,L · exp
(
−0.0045 · (T − 27)2

)
N. America Chesapeake Bay Cerco and Cole (1994)

8.49 × 10−4 knit(T )= knit,L · 5
((Tabs−278.15)/10) Europe Scheldt estuary Regnier et al. (1997)

Regnier and Steefel (1999)

1.72 × 10−3 knit(T )= knit,L · 5
((Tabs−278)/10) Europe Scheldt estuary Arndt et al. (2009)

Volta et al. (2014)

2.17 × 10−3 knit(T )= knit,L · exp((T − 10) · ln(3.37)/10) Europe Scheldt estuary Soetaert and Herman (1995)
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Figure B1. Temperature functions for aerobic degradation (kox, left panel) and denitrification (kdenit, right panel) rate constants as reported

in the reviewed modeling applications (Table B2) for a reference T of 20 ◦C. Red lines indicate the T functions as used in the present study

(Table 3). Note that only T functions associated with kox and kdenit values not recognized as outliers are displayed.
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