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Investigating Spatial Guidance For a Cooperative Handheld Robot

Austin Gregg-Smith and Walterio W. Mayol-Cuevas

Abstract— In this paper we address the question of
how to provide feedback information to guide users
of a handheld robotic device when performing a spa-
tial exploration task. We consider various feedback
methods for communicating a five degree of freedom
target pose to a user including a stereoscopic VR
display, a monocular see-through AR display and a
2D screen as well as robot arm gesturing. The spatial
exploration task with the handheld robot arm was
compared against a baseline of a passive handheld
wand. We compared the performance of each of
the methods with 21 volunteers using a repeated
measures ANOVA experimental design, and recorded
users’ opinions via a NASA Task Load Index Survey.
The robot assisted reaching feedback methods signifi-
cantly outperform manual reaching with the wand for
all three visual feedback methods. However, there is
little difference between each of the three visual feed-
back methods when using the robot. The completion
time of the task varies with changing difficulty when
using the wand but remains stable when assisted by
the robot. These results convey useful information for
the design of cooperative handheld robots.

I. Introduction

Handheld robotics [1] aims to benefit from the me-
chanical precision, speed and extra degrees of freedom
of a robot that has task knowledge in order to coopera-
tively solve tasks with users (figure 1).

Being able to simply pick up a handheld robot that
knows where and what to do can empower inexperi-
enced users and extend and maintain repeatability of
experts. This novel type of cooperative robot calls for
an investigation on how best to interact with the user
to achieve this goal. In our previous work [1] we studied
user interaction issues as different degrees of autonomy
change, however the way in which the robot communi-
cates instructions to the user was not considered. This
is important for better bringing together the skills and
features of both robot and user and to reduce frustration
at points of divergent intentions.

When doing a job where the robot is tracking task
progression, there are times when the robot needs to
communicate with the user to move to another location
to continue the task. For example, in an inspection
task, the robot can guide the inspector towards the next
inspection location once it confirms that the current area
has been properly examined. In a cleaning application,
if the user has missed cleaning a spot, the robot should
tell the user to move the robot within range of the
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Fig. 1: A cooperative handheld robot assisting a user in a
simulated inspection task using a virtual reality headset
for feedback.

dirty surface so that the robot complete the cleaning.
There are several ways in which the robot can transmit
this information to the user, each of which has its own
advantages, disadvantages, implementation complexity,
saturation of cognitive channels, and cost. In this paper
we explore four feedback method types in a spatial
guidance task and analyse their relative performance
through quantitative measures and user feedback.

The following section reviews the related work in the
areas of reaching and human computer interaction for
spatial positioning tasks. Section III explains the spatial
reaching task and IV covers the details of each of the
feedback methods in more detail. Section V explains
the experimental design and method. The results are
explained in section VI and discussed further in section
VII.

II. Related Work

Cooperative task solving with handheld robots is
intrinsically different from that with robots that are
not manually manipulated by humans. The proximity
to the user and the fact that it is in what we may
call the tool space makes it more closely related to
studies on human factors. In the literature of human
computer interaction, there are examples of studies of
how people point or reach certain spatial locations.
When discussing reaching, Fitts’s law is a well known
model for estimating the time to reach an area of known
distance and size [2], [3] . It was originally formulated
for 2D tasks and since been extended to 3D [4], [5].

Liang and Green[6] introduced a 5 degree of freedom
(5-DoF) selection tool “laser gun” that is part of the



family of ray casting techniques. The user holds a 6-
DoF input device and a ray is cast from the current
pose of the user’s hand in the direction they want.
They can select object by moving their hand so the ray
intersects with it. They found a 5x speed increase in
CAD modelling time using this input method.

The ray casting technique has been extended to the
“spotlight” method where the ray is expanded to a conic
section to make it easier to select small objects. Another
variation uses a cylinder instead of a cone, but both of
these extensions still only use 5-DoF to select objects. A
survey of 3D and 5D pointing techniques can be found
in [7].

Zhai and Milgram [8] evaluated the performance of
four manipulation schemes to match a 6-DoF pose in a
virtual environment with eight subjects. They explored
proportional and non-proportional velocity and position
control and found that proportional position control was
the best method for matching pose.

Ranasinghe et al [9] use haptic feedback to guide users
in low visibility environments. The authors performed
an experiment where a participant would guide a user
along a path by pulling on a rigid link that they both
held. Experimental systems identification was used to
determine that the guider used a 3rd order autoregres-
sive predictive control policy while the follower used
a 2nd order reactive control policy. A controller was
designed to match the human guider’s control policy and
implemented on a robot that guided users via the same
rigid link. The control policy was designed to modulate
the pulling force in response to the level of trust the user
placed in the guidance of the robot.

Erden and Billard [10] studied the difference in end-
point impedance between novice and expert users in
a welding task. A welding torch was attached to a
KUKA LWR robot and an admittance controller was
used to counteract the mass of the tool so that it
behaved as a free floating body. The users performed
welding while the robot simulated random disturbances
of the tool. Expert users provided more resistance to
the disturbances than novice users. Erden and Billard
suggests that measuring the impedance values that user
provides could be used to estimate their skill in the task.
The estimate of user ability could in turn be potentially
factored into the level of guidance a handheld robot
provides during a task.

The above examples are mostly constrained to a
reduced operational space. One of the few examples of
guiding users spatially around real objects is the work of
Echtler et al [11] who designed and tested an intelligent
welding gun for constructing experimental vehicles. The
device aims to guide users to the weld locations by
displaying visual instructions on a screen attached to
the gun. They compared the accuracy and physical
characteristics of several feedback methods including
projector based augmented reality, head-mounted dis-

plays, and finally chose a tool-mounted 2D screen as
most suitable for the task. Working within an optical
tracking system with retro reflective markers, workers
quadrupled the speed in which they completed the task
using the augmented welding gun compared with the
control group. In this paper, we explore cases where
the tool has more degrees of freedom and can be more
proactive in helping the user with the task. This calls for
an investigation of the best ways to guide people under
these different conditions.

III. Spatial Reaching Task

Several of the applications we consider suitable
for handheld robots are tasks related to mainte-
nance; inspection, cleaning and construction: e.g, non-
destructive-testing, spot welding, bolting and drilling.
These tasks have generic requirements such as having
to place a probe or drill bit in the right location, spray
a substance on the right spot or apply some pressure or
friction in the right place. These tasks are all rotationally
invariant along one axis and so only require 5-DoF
positioning.

Fig. 2: The two devices used to reach 5D points on a
table: A handheld wand on the left and a handheld 6-
DoF robot.

We are thus exploring a generic 5-DoF reaching task
where the user has to reach a series of target points
around an object as quickly as possible while maintain-
ing a specified desired accuracy.

In our study we use our 6 degree of freedom (6-DoF)
cable-driven handheld robot with one redundant joint.
Due to the redundant joint, the end effector has 5-
DoF positioning capability so can perform tasks that are
rotationally invariant. The robot is 1.19m long including
the 0.3m 6-DoF actuator and weighs 3.5kg. This robot
is offered as an open platform and further details are
available at [12], [13].

We explored seven different modes of operation for a
5-DoF reaching task. In each task, a series of 10 random
5D targets on an Ikea side table (model LACK), were
chosen and the user was instructed to reach those points
as quickly as possible using either a handheld robot or a
handheld wand used as a baseline alternative (figure 2).
In each task, the user has to move the tip of the device
(wand/robot) to within 5mm and 5◦ of the desired pose
and hold it there for at least 200ms. This aims to emulate
some of the required specifications for an inspection task.

We tested three screen-based feedback methods for
both the robot and the wand. The information displayed



on the screen is a wire-frame schematic view of the table
and the target point that needs to be reached on the
table. Only the gesturing feedback mode does not use a
screen to display the target information, but instead the
robot points the end effector towards the target. This is
a list of all the seven conditions considered:

1) The robot gestures by pointing towards the target
point (figure 3).

2) A 7” screen is mounted on the robot which shows
the wire-frame model of the table and where the
target is (figure 4b).

3) The user holds the 7” screen in one hand and the
wand in the other (figure 4c).

4) The user wears a see-through augmented reality
display and uses the handheld robot (figure 5b).

5) The user wears a see-through augmented reality
display and holds the wand in their hand (figure
5c).

6) The user wears the stereo virtual reality (VR)
headset and uses the robot arm (figure 6b).

7) The user wears the stereo VR headset and holds
the wand in their hand (figure 6c).

We use an eight camera, infra-red, optical tracking
system (Optitrack Flex 3) with retro-reflective markers
to give 6-DoF pose information for all of the objects
in the task. The tracked objects are the robot arm,
handheld wand, table, augmented reality headset, stereo
VR, and 7” screen.

IV. Design of Feedback Methods

A. Hardware Gesturing

Gestures, such as pointing, are a natural interaction
method widely used to communicate. During daily living
tasks, gestures during cooperative tasks such as park-
ing or moving large furniture in confined spaces are
common. We wanted to explore this natural method
of communication and see if it could be applied to the
robot so that users would intuitively understand robots
instructions without special training.

Robot gesturing is an attractive option as it does not
require any extra hardware for feedback, thus reducing
both the potential cost and complexity of the system.
When the robot wants to indicate a new area of interest,
the arm points toward the right location to indicate to
the user where to move the robot’s base.

1) Gesturing Algorithm: The robot indicates a target
pose by pointing towards the position of the target. Once
the end effector is in range of the target, it moves to
match its 5-DoF pose. If there is no clear line of sight
between the current pose of the robot and the desired
pose (e.g. in the presence of obstacles), a path through
free space must be found first.

The pose of the robot in world space has 6-DoF and
the joint angles of the robot have another 6-DoF. To find
a collision free path from the current 12-DoF pose to a

valid 12-DoF target pose is currently too computation-
ally expensive to solve dynamically in real time using
standard methods. For high dimensional path planning
tasks, the execution time is in the order of minutes [14],
instead of the required sub-second times for interactive
responses. Instead, we use the high-dimensional path-
planning ability of the human operator to reduce the
path-planning problem to 3-DoF. A human holding a
tool is able to negotiate complex obstacles intuitively
and so can aid the robot in a task which is otherwise an
open problem.

Rapidly exploring random trees (RRT) are a family
of sample based probabilistic path planners that are
widely used in robotics [15]. Karaman et al [16] exploited
their ability to find an initial solution quickly and then
improve on that solution incrementally given more com-
putation time.

We wrote a variant of informed RRT*[17] to solve
the path-planning problem.The primary objective is to
calculate the shortest route from the robot to the target
point and then move the end effector to point along that
path. For the type of task we are looking at, there are
generally two important frames of reference: the item of
interest and the robot’s frame. In most inspection cases
the item of interest will be stationary, while the user
moves the robot around in free space. When building
an RRT, the root of the tree is the current state of
the problem, and the branches extend towards desired
states. Given that the robot is held by the user the root
of the tree will become invalid as soon as the user moves
the robot. The item of interest will stay stationary most
of the time so we choose to put the root of the tree there.

When choosing where to point, the robot solves a 3D
path planning problem to find the shortest route from
the robot’s current position to the target position. The
robot then searches for the furthest point along this 3D
trajectory that has a 5-DoF inverse kinematics solution.
This means that the robot end effector moves to a point
on the trajectory linking the robot to the target position
while pointing in the same direction as the trajectory at
that point.

A disadvantage of reducing the problem to 3-DoF is
that the robot will only attempt to minimise the 3D
trajectory. In some cases this will return paths that are
not optimal given the 12-DoF state space of the robot.
However, users quickly notice when this is the case and
are able to correctly move the robot to the optimal place.

Figure 3 shows the behaviour of the gesturing feed-
back. When the user moves the robot around it com-
pensates and keeps the end effector pointing towards
the target. It is not necessary to make these movements
however as the user can move the robot directly along
the line defined by the end effector’s pose.

Note that the gesturing algorithm is used in all eval-
uations where the robot is used, regardless of the screen
based feedback method. It ensures that the robot’s



joints are configured in a way that allows the user to
easily access the desired points because the robot will
attempt to minimise the distance to the target while
simultaneously avoiding obstacles in real time.

(a) (b) (c)

Fig. 3: Right to left: The robot points toward the same
location while the user moves the robot around.

B. Graphical Feedback

The three visual feedback methods we investigated
were 3D rendered graphics showing the current state and
the desired state in a virtual world. An advantage of this
approach is flexibility in the types of information one can
transmit.

The desired end effector pose is shown as a white
arrow on the display and the current position of the end
effector is shown as a yellow arrow. These 3D objects are
rotationally invariant about their axis so unambiguously
describe the 5-DoF pose as shown in figure 7. Other
information is shown in white with a black background
so that it is visible on the see-through head-mounted
display. The back background does not show up at all,
and only the bright pixels can be seen.

We explore three different types of screen for giv-
ing feedback: a monocular optical see-through head-
mounted display, a 7” LCD monitor, and a stereo virtual
reality headset. The graphical information displayed on
each device is the same regardless of the device but the
inherent properties of the device and their proximity to
the user are different.

1) Hand Held Display: Figure 4a shows the handheld
display (HHD), a Liliput 7” LCD screen with a 16:9
aspect ratio and 854x480 pixels. The viewpoint rendered
on the screen is not an augmented reality view in that
the screen does not act like a virtual window the user can
look though. This is due to the position of the display
relative to the user, the field of view visible through
the “window” would be very small and not be able to
display enough relevant information. Instead, a virtual
viewpoint is rendered with a field of view of 67.5◦. Figure
4b shows a first person view of a user holding the robot
with the display attached. Figure 4c shows the user
holding the wand and display in one hand each.

(a) Liliput 7”
display with
tracking markers
on the outer edge

(b) Robot with hand-
held display

(c) Wand and hand-
held display

Fig. 4: The 7” LCD Handheld display (HHD)

2) See-through Augmented Reality: The augmented
reality head-mounted display (AR HMD) is a Trivsio
800x600 pixel LCD screen projected onto a half mirror
that the user looks through (figure 5a). The user can
see the real world through the half mirror, but sees
computer generated images superimposed onto it. Both
the AR HMD and HHD we used are non-stereoscopic
display devices. For the user to estimate the pose and
depth of objects they have to use parallax and shading
information. Figures 5(b,c) show the user using the
robot and wand with the AR HMD.

(a) Trivsio
see-through
HMD

(b) Robot with see-
through HMD

(c) Wand and see-
through HMD

Fig. 5: See-through augmented reality display (AR
HMD)

In order to display an image that correctly overlays
virtual objects onto their real world counterparts we
need to calculate the position of the user’s eye relative
to the display. To display an overlaid image a virtual
camera is set to the position and field of view of the
user’s eye. When the image from this virtual camera is
displayed on the half mirrored lens, virtual objects will
appear to overlay the real ones.

As the position of the user’s eye will change slightly
every time they put the AR HMD on, we need an effi-
cient calibration procedure to calculate the parameters
for the virtual camera. The calibration procedure we
used is similar to SPAAM [18] in that a single known
3D location is used as a reference point and the users
move their head during calibration.

3) Stereoscopic VR Display (VR HMD): The vir-
tual reality head-mounted display is an Oculus Rift
development kit 1 with a resolution of 1280x800 pixels
(640x800 per eye). This provides 3D stereo information
to communicate the target’s 5D pose information. Figure
6 shows a user completing the task while wearing the
VR headset. Unlike augmented reality their eyes are
completely covered by the VR HMD so they are not able



to see any objects in the world. In this task the floor,
walls, table, robot and wand are rendered so users don’t
accidentally collide with anything in the real world.

(a) Oculus Rift vir-
tual reality headset

(b) Robot and Rift (c) Wand and Rift

Fig. 6: Oculus Rift stereoscopic display (VR HMD)

TABLE I: Summary of feedback methods

Method Effective FOV Resolution Stereo Set up time

Robot Gesturing ≈ 170◦ N/A yes 0s
Handheld Screen 67.5◦ 854x480 no 0s
See-through AR ≈ 23◦ 800x600 no ≈ 120s

Stereo VR 110◦ 1280x800 yes ≈ 10s

4) Further information and display summary: Each
display has a finite field of view so they need to have a
mechanism for indicating that the region of interest is
outside the screen’s display frustum. We use an approach
found in flight simulators where arrow indicators track
points of interest when they are out of the field of view of
the cockpit. The 3D target position is projected into 2D
screen coordinates. If the screen coordinates lie outside
the target’s viewable area, a chevron is drawn at the edge
of the screen as close as possible to the target, as shown
in figure 7. Table I shows a summary of the technical
specifications of all four feedback methods.

Fig. 7: An example of a 5 DoF target (white 3D arrow),
including a chevron to indicate the target is outside the
field of view of the display (represented by the white
rectangle).

V. Experimental Method

We used a within subjects two-way repeated measures
ANOVA experimental design. The independent variable
was the method of feedback and the dependent variables
were completion time, and NASA TLX scores.

We involved 21 Participants (8 female, 13 male) aged
21-56 in the experiment, with each participant taking
on average one hour to complete all seven modes. One
participant dropped out due to nausea problems from
the Oculus Rift so their data was discarded. 10 out of 21
participants had corrected vision via glasses or contact
lenses during the experiment and did not remove them
while wearing the augmented reality or VR displays.

The experimental procedure is applied to each of the
seven feedback methods in III.

A. Experimental Procedure

1) A random feedback method is chosen (robot ges-
ture, robot handheld display, wand handheld dis-
play, robot augmented reality, wand augmented
reality, robot VR, wand VR)

2) User is shown how the task works for that method:

a) The user holds the device (robot/wand) in a
neutral position.

b) The word “next” is shown on the display.
c) The user clicks a button to indicate they are

ready to move to the next target point.
d) A random point on the table is randomly

selected and a timer is started.
e) The user moves the robot/wand to match the

target pose.
f) The timer stops when the target pose is

held for at least 200ms with 5mm positional
accuracy and 5◦angular error.

3) The user practices reaching ten target points per
feedback method.

4) The user is recorded reaching another ten points.
5) The user is asked if she/he wants to rest.
6) The user is told they can make notes of their expe-

rience for each mode directly after each attempt,
but they should only fill out the TLX survey once
they have completed all the modes.

7) Another random feedback mode is chosen until all
seven modes have been completed.

8) User fills out NASA TLX survey anonymously.

VI. Results

A within subjects repeated measures two-way
ANOVA experimental design with the Greenhouse-
Geisser correction was used. The independent variables
were the inspection device and method of feedback. The
dependent variables were completion time, and NASA
TLX scores.

The device has a significant effect on the completion
time (F (1, 20) = 168.8, p < 3.3.4×10−11, η2 = 0.89) and
TLX scores (F (1, 20) = 58.7, p < 4.4× 10−7, η2 = 0.73).



TABLE II: Bonferroni corrected ANOVA pairwise comparisons of completion times between feedback modes

Robot Gesture Robot HHD Robot VR Robot AR Wand HHD Wand VR Wand AR

Robot Gesture X p<0.001 p<0.001 p<0.001 p<0.001 p>0.05 p<0.01
Robot HHD p<0.001 X p>0.05 p>0.05 p<0.001 p<0.001 p<0.001
Robot VR p<0.001 p>0.05 X p>0.05 p<0.001 p<0.001 p<0.001
Robot AR p<0.001 p>0.05 p>0.05 X p<0.001 p<0.001 p<0.001

Wand HHD p<0.001 p<0.001 p<0.001 p<0.001 X p<0.001 p>0.05
Wand VR p>0.05 p<0.001 p<0.001 p<0.001 p<0.001 X p<0.01
Wand AR p<0.01 p<0.001 p<0.001 p<0.001 p>0.05 p<0.01 X

TABLE III: Bonferroni corrected ANOVA pairwise comparisons of NASA TXL scores between feedback modes

Robot Gesture Robot HHD Robot VR Robot AR Wand HHD Wand VR Wand AR

Robot Gesture X p>0.05 p<0.01 p>0.05 p<0.01 p>0.05 p>0.05
Robot HHD p>0.05 X p>0.05 p>0.05 p<0.001 p>0.05 p<0.001
Robot VR p<0.01 p>0.05 X p>0.05 p<0.001 p<0.001 p<0.001
Robot AR p>0.05 p>0.05 p>0.05 X p<0.001 p>0.05 p<0.001

Wand HHD p<0.01 p<0.001 p<0.001 p<0.001 X p<0.01 p>0.05
Wand VR p>0.05 p>0.05 p<0.001 p>0.05 p<0.01 X p<0.05
Wand AR p>0.05 p<0.001 p<0.001 p<0.001 p>0.05 p<0.05 X
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The feedback mode has a significant effect on the
the completion time (F (1.64, 32.7) = 22.3, p < 3.0 ×
10−7, η2 = 0.53) and TLX scores (F (1.56, 31.4) =
11.5, p < 1.1 × 10−4, η2 = 0.37).

There is also a significant interaction between the
device and feedback method for completion time
(F (1.76, 35.3) = 28.8, p < 1.8 × 10−8, η2 = 0.59) and
TLX scores (F (1.46, 29.3) = p.14, p < 0.002, η2 = 0.31).

Table II shows the pairwise comparisons of the seven
test conditions results for task completion time. In
order to reduce type 1 errors from repeated pairwise
comparisons, the confidence intervals have been reduced
using the Bonferroni correction. The statistics package
reported the p values to three decimal places so the
reason many values are quoted as p < 0.001 is because
the value was too small to display. Pairwise comparisons
where there is no significant difference between the
means are highlighted in bold.

Table III shows pairwise comparisons of the ANOVA
of the combined NASA TLX results using the Bonfer-
roni correction. All of the insignificant results from the
completion times table are also insignificant for the TLX
results and the results that are insignificant for TLX but
not the completion times are underlined.

Figure 8 is a box and whisker plot of the completion
time for each of the seven modes and figure 9 is a box
and whisker plot of the combined NASA TLX results.

We recorded the age, gender and average number of
hours of video games that the participants played per
week. There was no statistically significant correlation
between any of these measures and the average per-
formance over the trials. There was also no correlation
between these measures and the combined TLX scores.

Figure 10 is a surface plot of the task completion
time vs reaching accuracy. The point on the far back
corner of each plot (5mm, 5◦) is the accuracy that
participants were asked to complete while the rest of
each graph is generated from their recorded movements.
That is, we simulate more relaxed accuracy requirements
as explained below. However, note that the results in the
rest of tables and figures relate to the strictest accuracy
case only (5mm, 5◦).

During the trial, a complete recording of the experi-
mental variables were recorded including desired target
information, 6-DoF wand and robot pose, robot joint
angles and user button presses. This information was
processed in real time during the trial to drive the robot
path planning logic, visualisations and to calculate if
the user had reached the desired pose with the required
accuracy. After the experiments had been completed the
resulting 147 recordings of the trials were re-analysed
with lowered difficulty settings. This method of analysis
works well because if the user was able to match the
most difficult conditions, they must be able to reach the
relaxed accuracy settings. Post-processing this informa-
tion should give very similar results to actually running
the trial with reduced difficulty settings because the user

behaviour up until the reaching of the point is identical.

VII. Discussion

There is no significant difference in completion time
between any of the visual feedback methods using the
robot (table II), but there is a significant difference
between all of the visual robot feedback modes and
the robot gesture condition. The lack of effect of visual
feedback mode on completion time when using the robot
is an interesting result given that the visual feedback
methods were so different. The differences in field of
view and stereo information had no effect on task perfor-
mance, indicating that users ascertain the approximate
location of the target point from visual feedback but rely
on the robot for accurate matching. One can theorise
that the visual feedback could be of even worse quality,
as long as it is enough for the user to put the robot in the
general vicinity of the target. This result gives designers
of handheld robots flexibility when choosing a feedback
method.

The robot gesturing completion time was not sig-
nificantly different to the wand VR performance but
was significantly different to all the other modes, with
gesturing performing the same or better than all the
wand feedback methods.

When using the wand, there is no significant difference
in completion time between the handheld display and
augmented reality, but both perform significantly worse
than when the VR HMD is used. This is probably due to
the stereo information that gives a better representation
of the desired poses than the 2D projections. Users also
spent less time searching for the target when it was out
of their field of view compared to the other feedback
methods.

Figure 10 shows the robot performance is stable com-
pared to the wand across varying accuracy requirements.
The plots for the robot are relatively flat, and this is
constant across all four robot modes. Even with the
gesturing feedback where the mean time is significantly
higher than for the other robot visual feedback methods,
the overall surface still stays flat. This is in sharp
contrast to the shape of the plots for the wand reaching,
where the completion time increases quickly with greater
required angular accuracy and less so with positional
accuracy.

The trend of angular accuracy dominating the diffi-
culty of the wand task stays constant across all three
visual feedback modes. The overall difficulty is reduced
for the VR HMD due to the presence of stereo depth
information, but the richer visual feedback is not enough
to overcome the physical difficulty of matching the
required angle.

A curved difficulty response is an undesirable charac-
teristic when performing a task as it reduces the pre-
dictability of the overall performance. Even when using
the information-poor gesturing mode, the performance



is much more consistent than the best-wand reaching
mode using the VR HMD.

Figure 8 and 9 show that the TLX results broadly
match the completion times. The Pearson correlation
coefficient between actual performance and the TLX re-
sults is 0.69 (p < 0.0001) which implies there is a strong
correlation between them. However, the variance in user
perception was larger than the completion time and the
pairwise comparisons between TLX score showed fewer
statistically significant differences.

The wand HHD has significantly worse TLX scores
than all other modes except for the wand AR. The wand
AR has no significant difference to the robot gesturing
but is worse than all other methods. Both the HHD and
AR feedback methods were difficult to use with the wand
because of the lack of depth and the users found the task
frustrating.

There is no significant difference in perception be-
tween the robot gesturing, robot HHD, robot AR, and
wand VR. The stereo information in the wand VR
condition provided enough information to the users so
they found the task approximately as difficult as non-
stereo feedback with robotic assistance.

There is no significant difference in TLX score be-
tween any of the robot visual feedback methods. Some
users preferred the VR HMD because of the stereo
information, while others found it made them motion
sick. Similarly, some users found the HHD the most
intuitive to use while others found looking back and
forth between the HHD and task, frustrating.

In summary, handheld robots do not need sophisti-
cated visual feedback as the cooperation between user
and robot can be supported by minimal guidance and
even in the absence of any screen. Simple gesturing
still allows for consistent performance over a range of
accuracy requirements.

VIII. Conclusions

In this paper we investigated how best to provide feed-
back information to guide users of a handheld robotic
device when performing a spatial exploration task. Our
study compares four feedback methods for communi-
cating a five degree of freedom target pose to a user.
We investigated three visual feedback methods and one
that used mechanical gestures. Our robotic arm is held
by the user to reach a target pose in space as fast
and as accurately as possible. As a baseline, we also
evaluated robot assisted reaching performance against
a handheld wand. We compared the performance of
each of the methods using a repeated measures ANOVA
experimental design, as well as recording users’ opinions
via a NASA TLX. The robot-assisted reaching signifi-
cantly outperform manual reaching with the wand for
all three visual feedback methods. However there is no
significant difference between any of the three visual
feedback methods when benefiting from the cooperation
with the robot. We investigated how the performance of

the user changed when the difficulty of task was altered
in terms of spatial and orientational accuracy and show
that non-robot assisted performance dropped rapidly
with increasing task difficulty while the robot-assisted
task performance remained stable despite the different
feedback methods.
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