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Abstract 

 

The Raipur Group of the Chattisgarh Basin preserves two major Late Mesoproterozoic 

carbonate platforms. The lower platform is about 490-m thick, separated from the upper 

platform (~670 m thick) by a 500-m thick calcareous shale. Carbonate strata cover almost 

40% of the Chattisgarh Basin outcrop and represent two major platform types: a) a non-

stromatolitic ramp (the Charmuria/Sarangarh Limestone); and b) a platform developed 

chiefly in the intertidal to shallow subtidal environment with prolific growth of stromatolites 

(the Chandi/Saradih Limestone). The first platform consists primarily of the black Timarlaga 

limestone that is locally replaced by early diagenetic dolomite. This carbonate platform 

experienced strong storm waves and was subsequently drowned by a major transgression, 

during which extensive black limestone-marl rhythmite was deposited, followed by 

deposition of the Gunderdehi Shale. The carbonate factory was later re-established with 

development of an extensive stromatolite-dominated Charmuria/Sarangarh platform that 

ranged from restricted embayment to open-marine conditions. Sea-level change played a 

major role in controlling the broad facies pattern and platform evolution. The δ13C signatures 

of the Chattisgarh limestones, falling within a relatively narrow range (0 to +4 ‰) are typical 

for Upper Mesoproterozoic carbonate rocks. δ18O values, however, have a greater range (-5.7 

to -13.3 ‰) indicating significant diagenetic alteration of some samples. Likely dysoxic or 

anoxic conditions prevailed during deposition of the black Timarlaga limestone and well-
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oxygenated conditions during deposition of the Gunderdehi Shale and Saradih/Chandi 

stromatolite.  The lack of 17β,21α (moretanes) and high Tmax values suggest mature organic 

matter in the non-stromatolitic ramp. A paucity of diagnostic eukaryotic steroids indicates 

that algae were rare in the Chattisgarh Basin. A high content of hopanes supports a generally 

bacterially-dominated Proterozoic ocean in which various stromatolites flourished. 

 

Keywords: redox, Mesoproterozoic, biomarkers, Chattisgarh Basin, India 

 

1. Introduction 

During the Great Oxidation Event (2500-2200 Ma) sustained oxygenation of Earth’s 

surface environments began and although the shallow oceans became mildly oxygenated, the 

deep oceans continued to be anoxic at least until 1850 Ma (Holland, 2006).  The following 

Mesoproterozoic (1600-1000 Ma) has been regarded as a relatively quiet time in Earth 

history (Buick et al., 1995; Isley and Abbott, 1999; Holland, 2006; Bekker et al., 2010).  

However, even though distal shelf and basinal settings of the Mesoproterozoic appear to have 

been anoxic and euxinic (Shen et al., 2002, 2003; Poulton et al., 2004) or ferruginous 

(Poulton et al., 2010; Planavsky et al., 2011; Scott et al., 2012), there is a moderate increase 

in biospheric oxygen variability in the late Mesoproterozoic evidenced from increased carbon 

isotopic variability (Frank et al., 1997, 2003; Kah et al., 1999), an increase in marine sulphate 

concentration (Kah et al., 2004) from low sulphate concentrations in early Mesoproterozoic 

(Luo et al., 2015), the widespread appearance of marine gypsum (Kah et al., 2001, 2012), and 

increased oxidative sulphur cycling in marine and terrestrial environments (Johnston et al., 

2005; Parnell et al., 2010). From a sedimentological point of view, the Mesoproterozoic was 

a time of extensive epeiric and epicratonic seas and a relative highstand of sea level, wherein 

thick successions of shallow-water carbonate strata were deposited in broad intracratonic 

basins, as in China (Guo et al., 2013; Mei and Tucker, 2013), Siberia (Bartley et al., 2001), 

West Africa (Kah et al., 2012; Gilleaudeau and Kah, 2013a,b; 2015), and the Canadian Arctic 

(Kah et al., 2001).  Biologically, cyanobacteria were well established in the Mesoproterozoic 

but heterogeneity of redox conditions in the shallow oceans may have had fundamental 

implications for the evolution of unicellular and multicellular eukaryotes, which were 

evolving at a modest rate towards the end of the Mesoproterozoic – early Ediacaran 

(Butterfield, 2001; Knoll et al., 2006; Javaux, 2007; Pafrey et al., 2011).  Moreover, despite 

evidence that early eukaryotes were abundant in some nearshore settings (Butterfield, 2000; 

Javaux et al., 2001; Knoll et al., 2006), similar environments from other basins but with 
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euxinic conditions record a distinct absence of eukaryotic biomarkers (Brocks et al., 2005; 

Blumenberg et al., 2012).  This could have limited the zone of habitability for early 

eukaryotes, providing an explanation for the fragmentary nature of their early evolution and 

diversification.  Anbar and Knoll (2002) have suggested that oxygenation of the mid-

Proterozoic surface environment may have resulted in increased delivery of essential 

nutrients to the marine system thereby fostering eukaryotic diversification in nearshore 

settings. It also seems that spatial heterogeneity of redox-sensitive trace metals in the 

Mesoproterozoic ocean resulted in offshore micronutrient limitation which would have 

prevented eukaryotes from being widespread (Gilleaudeau and Kah, 2013b, Stüeken, 2013).  

In this project, we explore two carbonate platforms of the Raipur Group, central India, 

with the aim of evaluating the controls on the development of two distinctly different 

platforms through time, one dominated by stromatolites, the other not.  Thick carbonate 

successions are reported from all the Proterozoic cratonic basins of the Indian subcontinent 

(Das et al., 1992, Jiang et al., 2002, Mukhopadhyay et al., 1996, Patranabis-Deb 2001, 

Chakraborty et al., 2002, Saha and Patranabis-Deb, 2014). Combined sedimentological, 

isotope and organic geochemical data are used to assess the source and character of preserved 

organic matter. Redox conditions within the Chattisgarh Basin are evaluated in the context of 

the palaeogeographical position of the basin and its contribution to the understanding of 

redox heterogeneity in Mesoproterozoic oceans. 

 

2. Regional geological setting 

The Chattisgarh Basin developed within the Bastar craton, an Archean crystalline 

block. The Baster craton is bounded by the Godavari and Mahanadi rifts to the southwest and 

northeast respectively, and bordered by the Central Indian Tectonic Zone (CITZ) to the 

northwest and the Eastern Ghats Mobile Belt to the southeast (Fig. 1). The Chattisgarh Basin 

covers an area of ~33,000 km2, which unconformably overlies the Archean crystalline 

basement, the Neoarchean to Paleoproterozoic Sonakhan granite-greenstone belt and 

Dongargarh-Kotri volcanics (Fig. 1). Detailed geological mapping suggests that the 

Chattisgarh succession, which exceeds 2300 m in thickness, represents two unconformity-

bound sequences. The lower unit is designated the Chandarpur-Raipur Sequence (CR 

sequence) and the upper unit is the Kharsiya Sequence (Patranabis-Deb and Chaudhuri, 2008) 

(Fig. 2).  Radiometric dating indicates a Mesoproterozoic age for the Chandarpur Raipur 

Group, with the upper Kharsiya Group representing deposition in the early Neoproterozoic. 
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The CR sequence, the focus of this study, is characterized by a lower thick wedge of 

an immature assemblage of conglomerate, coarse feldspathic sandstone and shale, deposited 

in a fan delta-prodelta setting (Patranabis-Deb and Chaudhuri, 2007; Chakraborty et al., 

2009), and a more stable upper assemblage of quartzose sandstone deposited in a shallow-

marine shelf bar to intertidal location (Patranabis-Deb, 2005; Chakraborty and Paul, 2008). 

Intense storms and tides played an important role in sculpturing the sediments in the wide 

open shelf of the Chandarpur Group. A mixed carbonate-siliciclastic (limestone-shale) 

assemblage deposited in a cyclic fashion constitutes the overlying Raipur Group (Dutt, 1964, 

Murti, 1987, 1996; Moitra, 1995; Patranabis-Deb, 2004, 2008), with its two carbonate 

platforms. The basin-filling succession is characterised by remarkable facies variation in 

space and time, and a regionally variable lithostratigraphy resulting from uneven rates of 

subsidence and creation of accommodation space in different parts of the basin. 

 

3. Age of the Chattisgarh Basin 

Radiometric dates (EPMA) from monazite from a tuff horizon near the base of the 

Chattisgarh succession yielded an age c. 1500 Ma (Das et al., 2009).  Bickford et al. (2011a) 

obtained a U-Pb zircon SHRIMP age of c. 1400 Ma for a welded tuff from the same horizon. 

These data suggest that Chattisgarh sedimentation was initiated during the early-to-mid 

Mesoproterozoic. Patranabis-Deb et al. (2007) published a U–Pb zircon SHRIMP age of c. 

1000 Ma for the Sukhda welded tuffs from the uppermost part of the CR sequence from the 

eastern part of the basin. Bickford et al. (2011b) described the Dhamda tuff beds as water-

lain, intrabasinal tuffs whose SHRIMP U-Pb zircon ages yielded 993±8 Ma.  Thus, currently 

available geochronological data clearly establish that sedimentation in the Chattisgarh Basin 

occurred mostly in the later Mesoproterozoic with an extension into Neoproterozoic time. 

 

4. Raipur Group stratigraphic framework  

The Raipur Group has been divided into five formations, comprising three 

successions of shale alternating with two carbonate platforms (Fig. 2). The lower carbonate 

succession, the Charmuria/Sarangarh Limestone, developed on a homoclinal non-

stromatolitic ramp (Read, 1985) and is capped by an extensive unit of black limestone. The 

upper carbonate succession, the Chandi/Saradih Limestone, is noteworthy for the abundant 

presence of stromatolites on a ramp with barrier-bank complexes.  
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4.1. Charmuria-Sarangarh Limestone 

The Charmuria Limestone, with a maximum preserved thickness of about 490 m 

overlies shelf sandstone of the Kansapathar Formation with a sharp contact. The Sarangarh 

Limestone (~200 m), the lateral equivalent of the Charmuria in the eastern part of the basin, 

overlies the Kansapathar Sandstone with a thin unit of shale between, the Bijepur Shale (Fig. 

2).  The Sarangarh Limestone contains colour-defined stratigraphic units, i.e., brown, grey, 

black and mauve in ascending order. The lower brown and grey units, designated as the 

Gadhabhata Member, contain abundant intercalations of sandstone (Fig. 3a,b). In the eastern 

part of the basin there is a large-scale (several km across) lenticular conglomeratic unit 

cutting down into the Gadhabhata Member and several sheet sandstone bodies near the top of 

the Gadhabhata Member. Black limestone (the Timarlaga Member) overlies the Gadhabhata 

Member with a sharp contact; it is characterized by laterally persistent, limestone-marl 

rhythmites (Fig. 3c).  The black limestone grades upward into a mauve limestone, and then 

into the brown shale of the Gunderdehi Formation. 

 

4.2. Gunderdehi Shale 

The Gunderdehi Formation is ~450 m thick and consists of brown splintery 

calcareous shale-siltstone with subordinate (<10%) green shale, dolomite and fine sandstone. 

The shale is characterized by 2-10 cm thick beds with millimetre-thick plane parallel laminae.  

Beds are plane-parallel and they make sets which are laterally persistent for many 10s of 

metres across the outcrop (Fig. 4a). Several 10-25 cm thick muddy-siltstone units contain 

mud-intraclasts, commonly with a normal grading and scoured base. Barite nodules have 

formed locally within calcareous shale (Das et al., 1992; Mukherjee et al., 2014) and 

millimetre thick laminae pass through and around the nodules indicating a diagenetic origin 

(Fig. 4b). Fine-grained dolomitic grainstone occurs as shoaling-up bars which coalesce to 

form a sheet-like body. The lows of the bars are filled with thin planar beds of dolomite and 

shale as an interbar facies, forming packages up to 5 m thick.  

Stromatolites first appear as isolated bioherms enclosed within brown calcareous 

shale in the upper part of the Gunderdehi Formation, described in section 6.2 (Fig. 4c,d).  The 

occurrence of the bioherms distinguishes the Gunderdehi Shale from two other brown shale-

dominated beds within the Raipur Group. 

 

4.3. Chandi-Saradih Limestone 
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The Chandi Limestone overlies the Gunderdehi Shale with a gradational contact and 

in turn this grades up into the Tarenga Shale. This limestone attains a maximum thickness of 

about 670 m in the central and western part of the Chattisgarh Basin and becomes relatively 

thin (~150 m) in the eastern part, where it is known as the Saradih Limestone (Das et al., 

1992; Patranabis-Deb and Chaudhuri, 2008). The Chandi Formation mainly consists of 

brown and steel-grey limestone where stromatolites are common (Moitra, 1999); minor shale 

and a few intercalated tidal sandstone bodies (Deodongar Member) occur in the western and 

central part. By contrast, the Saradih section, exhibits rapid variations between major facies 

which include micritic dolomite, limestone-marl rhythmite, lime-clast conglomerate units, 

and a small number of stromatolite bioherms. The dolomite unit occurs mostly in the lower 

part of the succession, interbedded with red shale, whereas the upper part is dominated by 

alternating grey limestone-marl rhythmite. 

 

4.4. Tarenga Shale 

The Chandi Limestone grades upward into the Tarenga Shale, which is about 200 m 

thick, and comprises a heterogeneous succession of green shale, volcaniclastic sandstone, 

thick ignimbrite horizons, and small isolated bodies of dolomite and fractured chert (Fig. 5).  

The formation is laterally correlatable with the Churtela Shale, exposed in the eastern 

Chattisgarh Basin (Patranabis-Deb et al., 2007; Patranabis-Deb and Chaudhuri, 2008; 

Bickford et al., 2011b).  

 

5. Methodology  

The Raipur Group succession has been mapped and logged at many locations across 

the eastern Chattisgarh basin (Patranabis-Deb, 2001, 2004; Patranabis-Deb and Chaudhuri, 

2008).  Facies types and geometries have been determined and many thin-sections examined 

for their microfacies and diagenesis (Tables 1, 2). Twelve samples, eight from the black 

Timarlaga limestone (Sarangarh/Charmuria Formation), one sample from the Gunderdehi 

Shale (calcareous red shale), and two from brown stromatolitic limestone and one from grey 

stromatolitic limestone (Saradih/Chandi Formation) were collected for TOC analysis (Table 

3). Forty-five samples covering different stratigraphic levels were analysed for bulk carbon 

and oxygen isotope analysis (Table 4). To assess the character of organic matter, black 

limestone and red shale samples were analysed by Rock-Eval pyrolysis, and the biomarker 

distributions and elemental compositions were determined (Table 5).   
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5.1 Carbon and oxygen stable isotopes 

The bulk carbon and oxygen isotopic analyses of limestones and calcareous shales 

were performed using the following procedure: 100-200 µg of powdered carbonate were 

placed into 4 ml glass vials, and then sealed by a lid and pierceable septum. The vials were 

placed in a heated sample rack (90oC) where the vial headspace was replaced by pure helium 

via an automated needle system as part of an Isoprime Multiflow preparation system. 

Samples were then manually injected with approximately 200 µl of phosphoric acid and left 

to react for at least 1.5 hrs before the headspace gas was sampled by automated needle and 

introduced into a continuous-flow Isoprime mass-spectrometer. Duplicate samples were 

extracted from each vial, and a mean value obtained for both δ13C and δ18O. Samples were 

calibrated using IAEA standards NBS-18 and NBS-19, and reported as ‰ on the VPDB 

scale. Reproducibility within runs was 0.09 ‰ δ18O and 0.05 δ13C. 

 

5.2 Rock-Eval pyrolysis 

The measurements for the Rock-Eval II pyrolysis were conducted following the 

workflow described by Espitalié et al. (1985). The Rock-Eval analysis provides information 

about the amount, quality, type, and maturity of organic carbon in a sample. Measured 

parameters include free oil content (S1 in kg HC/tonne rock), source potential (S2 in kg 

HC/tonne rock), and thermal maturity (Tmax in oC). In addition, total sulphur (TS) analysis 

was carried out on a Carlo Erba NC2500 Elemental Analyser. The results of the Rock-Eval 

and sulphur analyses are summarized in Table 3.  

 

5.3 Biomarker analyses 

Six powdered (40-70 g) rock samples, two from the black limestone, two from the red 

calcareous shale and two from Chandi stromatolites were extracted using a Soxhlet apparatus 

with 200 ml dichloromethane:methanol (9:1, v/v) for 24 h; copper was added to the round-

bottom flask to remove elemental sulphur.  Aliquots of total lipid extract were separated into 

apolar, aromatic and polar fractions using a column with activated silica gel (230-400 mesh, 4 

cm bottom). Elution proceeded with 3 ml hexane (apolar fraction), hexane:dichloromethane 

(3:1, v/v; aromatic fraction), and 5 ml methanol (polar fraction). Among the lipids extracted 

from the analysed samples only aliphatic hydrocarbons were investigated because aromatic 

and polar compounds were not detected.  
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1 µl aliquots of each fraction were analysed by gas chromatography (GC) using a 

Hewlett Packard Series II 5890 instrument, fitted with an on-column injector and a capillary 

column with a CP Sil5-CB stationary phase (60 m x 0.32 mm, df = 0.10 µm). Detection was 

achieved with flame ionisation (FID) with helium as the carrier gas. The temperature program 

consisted of three stages: 70-130°C at 20°C per min; 130-300°C at 4°C per min; and 300°C at 

which the temperature was held for 10 min. Gas chromatography-mass spectrometry (GC-

MS) analyses were performed using a Thermo Quest Finnigan Trace GC-MS fitted with an 

on-column injector and using the same column and temperature program as for GC analyses. 

The detection was based on electron ionization (source at 70 eV and scanning range 50-580 

Daltons), and compounds were identified by comparison of retention times and mass spectra 

to the literature. 

 

6. Facies associations of the Raipur carbonate platforms 

6.1 Charmuria – Sarangarh Limestone Platform (Table 4) 

The lower carbonate platform of the Raipur Group (Charmuria-Sarangarh Limestone, 

Fig. 2) comprises a thick succession of micritic limestone with the local presence of storm-

deposited sands as thin streaks or beds. Unlike many other reported Proterozoic platforms the 

limestone unit is marked by a conspicuous absence of stromatolites and any coarse carbonate 

grains. The limestone can be divided into three assemblages with distinctly different modes 

of deposition in terms of platform evolution. 

Assemblage I, the Gadhabhata Member, is ~200 m thick and comprises brown and 

grey limestone in ascending order with some intercalation in places. The coarser constituents 

are represented by siliciclastic sands which occur as stringers, thin layers, beds and lenticular 

bodies at different stratigraphic levels, and by intraformational limestone clasts in small 

lenses or thin sheet conglomerate. The sandstone beds, with sharp bases, are dominated by 

planar stratification, cross-stratification, hummocky cross-stratification and combined-flow 

ripples. High-energy storm-generated combined-flows episodically transported sands from 

the coastal area to the storm-tide dominated, carbonate-depositing shelf. The high-intensity 

storm surges also eroded semi-lithified carbonate beds, entrained rip-up clasts and re-

deposited them with sands and micrite in mixed graded beds and as edge-wise conglomerates. 

The Gadhabhata Member developed as an aggradational-progradational succession within an 

overall moderate depth (FWWB-SWB) platform. 

Assemblage II comprises a succession filling a submarine channel incised within the 

grey limestone of Assemblage I. It comprises slump sheets with intensely folded and 
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contorted clasts of thin-bedded grey limestone, and debris-flow conglomerate with 

autochthonous lime-clasts floating within a matrix of micrite and coarse sands. There are a 

few boulder-sized clasts of black chert within a coarse-grained sandy matrix. The facies 

points to a lowering of relative sea level (FSST, falling stage systems tract, Catuneanu et al., 

2011), the cutting of an incised channel into a gentle slope generated by the earlier aggrading-

prograding platform, and transport of coarse sands during a sea-level lowstand (LST).  

Assemblages I and II are overlain along a sharp contact by an extensive black 

limestone, reaching 40 m in thickness, the Timarlaga Limestone Member of the Sarangarh 

Limestone (i.e. Assemblage III). The limestone bed thickness occurs in two distinct clusters, 

one mostly 2 to 5 cm and the other 6 to 15 cm and they alternate with 0.5 to 2 cm thick marl 

layers to form limestone-marl rhythmites (Fig. 3c).  This Timarlaga Member is marked by a 

remarkable facies consistency and conspicuous absence of sand-sized grains or clasts in black 

and mauve limestone.  Pyrite occurs profusely in this unit as clusters and small cubes, 

generally less than 10 µm in size (Fig. 3d).  Larger pyrite cubes are present in particular 

layers (Fig. 3e).  With their scattered distribution through the limestone, the small pyrite is 

interpreted as early diagenetic in origin, whereas the larger cubes may well be a burial 

precipitate. 

The basal surface of the black limestone marks a progressive unconformity; the black 

limestone successively oversteps grey and brown limestone (Gadhabhata Member), and 

finally onlaps medium- to coarse-grained tidal-bar sandstones of the Kansapathar Formation 

towards the western part of the Chattisgarh Basin. Development of the black limestone points 

to a major drowning event through a relatively rapid sea-level rise. The black limestone 

formed as a relatively deep-water (below normal wave base to below storm wave base and 

with dysoxic or anoxic facies – as deduced from the biomarkers, later section – within a 

transgressive systems tract (TST)).  Although actual water depth is notoriously difficult to 

deduce (Immenhauser, 2009), storm wave-base within an intracratonic basin is likely to have 

been at a depth of tens of m to 100 m, depending on the size of the storm and fetch.  The 

uppermost part of the black limestone and the overlying mauve limestone represent the TST 

and HST of a sequence. The brown shale of the Gunderdehi Shale overlying the mauve 

limestone with the first appearance of stromatolite mounds in its upper part, indicates a sea-

level fall (FSST-LST) to intertidal conditions. 

 

6.2. Chandi-Saradih Limestone Platform (Table 5) 
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The Chandi platform is ~670 m thick and laterally correlative with the Saradih 

Limestone (~100 m) of the eastern Chattisgarh Basin. The studied sequence is composed of 

several distinct facies assemblages depicting an upward transition from shallow intertidal, 

back-reef assemblages to subtidal assemblages. The platform development can be classified 

into three distinct stages according to the external morphologies and internal structures of the 

stromatolites, and input of siliciclastic sand to the system.  

Assemblage I consists of laterally discontinuous stromatolite mounds, the bioherms, 

which occur as isolated bodies at the transition between the Gunderdehi Shale and Chandi 

Limestone. The bioherms range in size from 15 to 50 cm, and the shape varies from sub-

rounded to elliptical in planar section and mushroom shaped in cross section. The elongation 

directions of the mounds are towards the N-NE, which is subnormal to the palaeocoast-line, 

interpreted from the paralic succession of the Chandarpur Group. Within a few metres up the 

section, the stromatolite bioherms change from discontinuous mounds to laterally continuous 

planar tabular bodies, up to 2 m thick, with prominent surfaces developed on the top of the 

stromatolite biostromes (Fig. 6a).  These could be discontinuity surfaces, representing a break 

or pause in deposition of the microbialites, perhaps when a mud parting or thin muddy bed 

was deposited across the bioherms. The mud layers were then compacted and affected by 

pressure dissolution on burial. Stromatolites within the bioherms are 5-15 cm high, 

characterized by parallel or divergent branching or non-branching columns (Fig. 6b). The 

columns are sub-parallel to an inverted cone shape, with convex-up crinkled internal laminae, 

commonly showing truncations. Small narrow pockets of edge-wise conglomerate, 20-30 cm 

wide, with intraformational platy clasts, 0.5 to 2 cm long, in a clastic sand matrix occur 

between stromatolite mounds.  

The gradational contact between the Gunderdehi Shale and Chandi limestone points 

to gradual changes in sediment input/production, where clastic input diminished and the 

carbonate factory took over. This siliciclastic depositional change to carbonate signals a long-

term shift in palaeo-oceanographic conditions within the basin. The initiation of carbonate 

deposition points to trapping of fine detrital material during initial transgression, which might 

have cleared the water to allow the growth of stromatolites, as isolated patches and finally as 

extensive biostromes.  The elongation of mounds, erosion of stromatolite walls, and 

accumulation of fragments as edgewise conglomerates, point to storms and tides in a shallow 

epeiric sea. Sea-level fluctuations, and other associated environmental factors, controlled the 

changes in shape of the stromatolite bodies. 



11 
 

Assemblage II: The Chandi limestone unit conformably grades up to a sand-

dominated unit, the Deodongar Member, whose maximum thickness is 60 m and lateral 

extent reaches 300 km to the east. The two major facies are: well-sorted, medium-grained, 

subarkosic to quartzose, glauconitic sandstone forming small lenticular shoaling-up bodies, 

and poorly-sorted fine-grained sandstone and siltstone occurring in the lows between the 

lenticular bodies. The sandstone beds preserve profusely developed symmetric to slightly 

asymmetric, sinuous to straight crested 3D dunes on a metre-scale (cf. Ashley, 1990). 

Stringers of well-rounded, very coarse sand and granules mantle the bedding-plane surfaces 

in places. The inferred palaeocurrents point to a strong bipolar, bimodal current with 

dominant northerly flow and subdued southerly flow.  

High-energy tidal currents effectively transported the sands from the southern coast 

and deposited them as laterally discontinuous lenticular sand-bodies in the lower part of the 

Chandi succession in the western Chattisgarh. The input of sands within the carbonate 

depositing environment stopped production of carbonate. However, in the eastern and central 

parts of the basin, carbonate platform development continued. This was in response to a 

progressive change in environmental conditions mostly related to the changes in water depth 

during platform evolution. 

Assemblage III: Thick sequences (~400 m) of large stromatolite mounds, elliptical in 

cross-section with a long axis about 1-2 m coalesce to form a major barrier-reef complex. 

Stumpy, branched stromatolites with numerous successive laminae, stacked on top of each 

other, form the columnar structures (Fig. 6c). Partly-linked columnar stromatolites within 

ridges also form part of the barrier-reef complex, along with stromatolite mounds.  They are 

10-15 cm wide and 10-35 cm high with up to 5 cm of synoptic relief.  Column height 

increases stratigraphically up the section; the shape of the stromatolites in plan also changes 

from a circular to elongate form (Fig. 6d). These features suggest a direct relationship of 

change in morphology as a function of facies and are probably mostly related to changes in 

water depth during platform evolution. Laterally continuous beds probably formed in water 

depths shallower than the stromatolite mounds. Bioherms of partly linked columns probably 

formed in water depths comparable to the stromatolite mounds. In general, sediment 

production, sediment transport, tectonic subsidence, antecedent topography, and relative sea-

level oscillation interacted to shape the Chandi platform. 

 

7. Geochemical record of the Sarangarh Limestone 

7.1. Carbon and oxygen stable isotopes 
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Stable isotopes of carbon and oxygen can be useful for understanding the deposition 

and diagenesis of carbonate sediments. They can also be used for chemostratigraphic 

correlation between sections and this can lead to insight into changes in the ocean-

atmosphere system. For this project, δ13C and δ18O isotope analyses were measured on 45 

samples from the Sarangarh and Chandi limestones (data shown in Table 4 and as a cross-

plot in Fig. 7a).   

The δ13C values are in a relatively narrow range of 0 to +4.3‰. Separating the 

analyses into black, brown and stromatolitic limestones, they all show similar averages for 

δ13C: 2.98 (n = 12), 2.86 (n = 8) and 2.98 (n = 4) respectively. The oxygen data as a whole 

show more variability, with values for limestones ranging from -5.7 to -13.3‰ (Fig. 7a). 

Within these data, grey limestone generally has much more negative δ18O values (average -

11.1‰) than the black limestone (average -8.5‰); stromatolitic limestone is quite similar to 

the black limestone with δ18O values averaging -7.9‰. Dolomite is a minor occurrence in the 

succession and only two samples were analysed; they do have the least negative δ18O values 

of -4.3‰ and -3.9‰, compared to the limestones, but the δ13C values (3.6 and 3.9‰) are 

within the same range as the limestones (Fig. 7a). 

When plotted stratigraphically, the scatter of both C and O is apparent,  although a 

general trend up-section towards more positive δ13C values, from ~2 ‰ to ~4 ‰, can be 

discerned through the black Timarlaga Limestone Member (40 m) (Fig. 7b). The oxygen 

isotope values are much more scattered and do not reveal any clear pattern through the 

section (Fig.7b). 

 The δ13C data of all the samples fall within the range of modern marine carbonates 

(Tucker and Wright, 1990) and within the range of Mesoproterozoic carbonates (Shields and 

Veizer, 2002; Kah et al., 2012; Gilleaudeau and Kah, 2013a).  Indeed, the low positive δ13C 

values of 0 to +4‰ recorded for the Sarangarh Limestone are typical of upper 

Mesoproterozoic carbonate strata (age 1200/1300 to 1000 Ma), and contrast with the earlier 

Mesoproterozoic where values are generally close to and below 0‰ (Bartley et al., 2001; Kah 

et al., 2001; Kah et al., 2012; Guo et al., 2013). Early Neoproterozoic carbonate strata tend to 

have variable δ13C and are followed by much higher values in the late Neoproterozoic, up to 

+5‰ (Kah et al., 2001). The quite stable and low to moderate positive δ13C values for the late 

Mesoproterozoic are taken to reflect long periods of sea-level highstand in extensive epeiric 

seas, with relatively high organic productivity leading to the preferential extraction of 12C, 

and enhanced burial of organic matter (Bartley and Kah, 2004; Kah et al., 2012).  By 

extension, in the Timarlaga Limestone the upward trend from +2 to +4‰ δ13C (Fig. 7b) could 
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reflect increasing organic matter production and burial within the Chattisgarh Basin. The 

longer timescale change from near 0 to +4 ‰ δ13C through the Mesoproterozoic as a whole, 

is likely related to increased organic productivity, and this could have been responsible for 

the postulated global-scale increasing ocean oxygenation at this time (Kah et al., 2001; Guo 

et al., 2013). 

Oxygen isotope data in carbonates are well known as being more likely to be altered 

post-deposition compared to carbon isotopes (Tucker and Wright, 1990). Hence in general 

there is much more scatter oxygen data from limestones/dolomites through time (Shields and 

Veizer, 2002). The oxygen isotopic composition of the Sarangarh Limestone is generally 

moderately negative (-6‰) to very negative (-13‰). Values as low as this would not be 

regarded as marine signatures in Phanerozoic carbonates; indeed here we suggest that they 

also reflect a combination of processes of cementation, recrystallization and neomorphism 

during burial (Tucker and Wright, 1990).  The more negative δ18O values of the grey versus 

the black Sarangarh limestone most likely indicate that the former experienced more 

extensive recrystallization during burial, perhaps related to the difference in organic carbon 

content. Negative δ18O values in the Sarangarh Limestone could indicate meteoric diagenesis, 

but there is no evidence for this from the facies or petrography, and the δ13C values do not 

indicate this either. Meteoric exposure and karstification in the early Neoproterozoic Beck 

Spring Dolomite, California (1000-800 Ma) and late Mesoproterozoic Mescal Limestone 

(New Mexico, ~1100 Ma) have altered δ13C to as low as -6‰ (Kenny and Knauth, 2001).  It 

has been suggested, however, that for mid-Mesoproterozoic (1400-1200 Ma) carbonates from 

China with good fabric preservation, δ18O values between -6 and -9‰ may well reflect little-

altered marine isotopic compositions (Kah, 2000; Kah et al., 2012; Guo et al., 2013), and that 

samples with less negative oxygen isotopic compositions may reflect moderately evaporitic 

depositional conditions. This might imply that the less negative values from the Sarangarh 

Limestone are original marine signatures, meaning that Mesoproterozoic seawater was rather 

depleted in 18O compared to modern seawater. However, it is pertinent to note here that in the 

Beck Spring Dolomite with its extremely well-preserved textures (Harwood and Sumner, 

2012), grains have δ18O values of -0.5 to -3.7‰, marine cements have values of -2 to -6‰, 

and burial cements have values of -6 to -13‰ (Tucker, 1982), so that whole rocks usually 

have a δ18O in the range -6 to -9‰. The δ18O signature for Lower Neoproterozoic marine 

carbonate rocks would thus appear to have been close to -2‰, which is not dissimilar from 

the modern value for Recent marine carbonate sediments. 
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7.2. Rock-Eval pyrolysis 

Total organic carbon (TOC) contents obtained from the black Timarlaga limestone 

and Gunderdehi red shale are 0.04-0.07 % and 0.06 % respectively, whereas the organic 

carbon content in the grey and brown stromatolites of the Chandri Limestone varies from 0 to 

0.1 % (Table 3). Rock-Eval S1 values of 0-0.1 mg HC/g rock and S2 values of 0.02-0.1 mg 

HC/g rock obtained from black limestone suggest no hydrocarbon generation potential. This 

is also confirmed by generally low hydrogen indices, ranging from 53-160 mg HC/g TOC, 

and very high oxygen index values (400-1290 mg CO2/g TOC) (Table 1). 

Most Tmax values from Rock-Eval analysis of the black limestone and red shale are 

between 437-450oC and 476-514oC, respectively (Table 1). The Tmax values in this range are 

equivalent to vitrinite reflectance of 0.7-0.9 % Ro and 1.4-2.3 % Ro, respectively, according 

to the formula published by Jarvie et al. (2001). Such values are consistent with the 

biomarker distributions, discussed below. 

7.4. Biomarker characterization 

Biomarkers become incorporated into sediments, either freely as bitumen or bound 

into macromolecular organic matter (kerogen), where they may be preserved for billions of 

years (Eglinton et al., 1964; Waldbauer et al., 2009).  Where these compounds occur intact 

and uncontaminated, they represent direct evidence for ancient organisms which left 

indefinable traces of themselves in the fossil record. Biomarkers were not detected in the 

Chandi stromatolites but were recovered from the black limestone and red shale. Of concern 

is whether those biomarkers reflect contamination from migrating petroleum (like in some 

Archean rocks, Rasmussen et al., 2008), human activity and even low-level contamination 

(Sherman et al., 2007; Rasmussen et al., 2008), or are indigenous overmature hydrocarbons 

(French et al., 2015), and therefore, they are unsuitable for further analysis.  As no petroleum 

staining or migration was observed in the black limestone and red shale samples collected 

from the outcrops, the extracted biomarkers appear to be indigenous.  Nonetheless, we note 

that our findings should be treated cautiously until independently verified.  

The aliphatic hydrocarbons are mainly composed of n-alkanes and subordinately of 

alkylbenzenes and hopanes. Acyclic isoprenoid alkanes, namely pristane and phytane, 

hopanes and very low amount of steranes were also detected. The n-alkanes show a unimodal 

distribution, dominated by either n-C20 or n-C21 in both the black limestone and red shale 

facies. The relative abundance of acyclic isoprenoids is low, with carbon numbers ranging 
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from C18 to C20. The ratio of n-C17 to pristane (Pr) in the black limestone is 0.18-0.63 and in 

the red shale it is 1.35, whereas the n-C18 to phytane (Ph) ratio is 0.19-0.5 and 0.71, 

respectively (Table 5). Pr/Ph ratios in the black limestone range from 0.3 to 0.8, whereas in 

the red shale they are around 0.5, respectively (Table 5). 

Pristane and phytane are typically ascribed an origin from the diagenesis of the phytol 

side-chain of chlorophylls (Brooks et al., 1969; but note alternative origins shown by ten 

Haven et al., 1988). A Pr/Ph value <1 is typically interpreted as indicative of deposition 

under typically marine anoxic conditions and a value >3 is indicative of oxic deposition 

(Didyk et al., 1978; Brocks et al., 2003). Peters et al. (2005) also argued that Pr/Ph ratios <0.8 

can indicate saline to hypersaline conditions associated with evaporite and carbonate 

deposition.  However, Brooks et al. (1969), Didyk et al. (1978) and ten Haven et al. (1988) 

showed that the Pr/Ph ratio can also be affected by additional inputs of precursors of either 

pristane or phytane.  Crucially, they also showed that the ratio has a tendency to increase with 

increasing thermal maturity.  Given the rather high thermal maturity of these samples, it is 

possible that the low Pr/Ph values observed here suggest a marine environment with reducing 

conditions during organic matter deposition. 

7.4.3. Hopanes and steranes 

The hopanes identified in the samples include the C27 to C31 17α,21(β)-hopanes; 

higher molecular weight components were not detected (Fig. 8). The 17β,21α(H)-moretanes 

were not detected, consistent with a high thermal maturity, although this could also reflect 

post-depositional diagenetic changes and/or an oxic depositional environment (Peters et al., 

2005). The ratios of C27 17α-trisnorhopane (Tm) and C27 18α-trisnorhopane (Ts) expressed as 

the Ts/(Ts+Tm) ratio are also consistent with a mature character of organic matter, although 

that parameter is also governed by lithology and depositional environment (Peters et al., 

2005).  

C27, C28 and C29 steranes were also detected but due to their very low abundance 

identification is only tentative.  Steroids have been found in extremely low concentrations in 

Mesoproterozoic carbonate strata of the Barney Creek Formation (Brocks et al., 2005), but 

were not found in a Mesoproterozoic marine black shale of Mauritania (Blumenberg et al., 

2012), and were not reported from central Russia Mesoproterozoic Arlan calcareous shale 

(Sperling et al., 2014). 
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8. Discussion: palaeogeography and palaeoceanographic conditions 

The stratigraphic architecture of the Raipur Group indicates that a wide shelf and 

slope were generated during the expansion of the Chattisgarh Basin. Storms of different 

intensities, and tides, generally of macrotidal range, helped the development of an open-

marine circulation system on the wide, gently sloping shelves of the Chattisgarh Basin (Fig. 

9a,b). The significant lateral persistence of individual units, and strong palaeobathymetric 

fluctuations from close to mean sea level to fairly deep shelf, beyond the reach of coarse sand 

deposition, strongly support the notion of very wide shelves. Such extensive gently-sloping 

shelves with uniform marine circulation apparently were relatively common in 

Mesoproterozoic time when outer-shelf storms were perhaps more frequent than in younger 

basins (Chaudhuri and Howard, 1985; Eriksson et al., 1998). The expansion of the basin, 

creation of accommodation space and the basin-fill succession were generated through a 

number of alternating transgressions and progradations that operated on different scales. The 

mudstone-dominated sequences developed during transgressions when the input of 

terrigenous sand decreased substantially, or when the bulk of the coarser clastics were 

trapped in fluvial systems or in coastal areas (Catuneanu et al., 2011). Episodic development 

of shoaling-up sandstone bodies, on the other hand, was related to periods of sea-level 

stillstand or minor fall and shoreline progradation, as well as with uplift and emergence of the 

hinterland. The growth of the basin and its basin-fill succession was thus created by 

superposition of a number of discrete cycles of episodic character. 

The Charmuria-Sarangarh Limestone and Chandi-Saradih Limestone are quite 

different from each other, and also from many other carbonate platforms of the 

Mesoproterozoic. The first platform (Charmuria-Sarangarh), dominated by well-bedded, 

relatively fine-grained limestone, without stromatolites, but with evidence of storm-

influenced deposition, contrasts with the second platform (Chandi-Saradih) with its well-

developed and diverse arrangement of stromatolites, formed in an inter- to sub-tidal setting. 

The contrast could be related to the degree of restriction of the broad, intracratonic 

Chattisgarh Basin, with the first platform more open, deeper and affected by storm-tidal 

effects, and the second with more restricted access to the open ocean permitting the 

development of microbialites in the overall shallower-water setting during its first stage of 

platform development.  With time, these bioherms grew and formed a barrier whose seaward 

side was open.  In addition, by way of contrast, many other Mesoproterozoic carbonate 

platforms are dominated by cyclic peritidal microbialite facies with much evidence of 

periodic exposure and locally evaporite precipitation. Examples occur in China (notably the 
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Jixian Group, Guo et al., 2013), Mauritania (Gilleaudeau et al., 2013a), and Arctic Canada 

(Baffin Bay and Bylot Island, Kah et al., 1999).  

Another feature of the Chattisgarh carbonate rocks is that it is, for the most part, 

dominated by micritic calcite; many of the other Mesoproterozoic platform carbonate strata 

(in China, Mauritania and Canada, see above) are composed of dolomite, many with excellent 

fabric preservation from very early replacement of CaCO3 or even ‘primary’ dolomite (e.g. 

Guo et al., 2013).  The topic of Precambrian dolomites has been extensively discussed, 

especially for the Neoproterozoic (recently by Tewari and Tucker 2011; Hood et al., 2012), 

and changes in seawater Mg/Ca ratio have commonly been invoked, following Hardie (2003) 

and others, as well as the effects of microbial processes. There may well have been 

fluctuations in ocean Mg/Ca through the Proterozoic to explain changes in primary marine 

mineralogy and limestone versus dolomite formations, but precise dating of Proterozoic 

carbonate rocks is not yet possible. Alternatively, intracratonic basins with limited connection 

to the open ocean may have had a different Mg/Ca ratio, so that limestone could form locally, 

rather than dolomite which appears to be the dominant mineralogy of Proterozoic carbonate 

strata. 

 Our sedimentological and geochemical data indicate a low TOC setting with a lack of 

evidence for sulphidic (euxinic) conditions during formation of the black limestone, red 

shale, and the brown and grey stromatolite horizons.  Aryl isoprenoid and other isoreniertene 

derivatives derived from green sulphur bacteria (GSB) and indicative of euxinic conditions in 

the photic zone (Summons and Powell, 1986) were not detected. However, given the high 

thermal maturity and low biomarker contents, this is only tentative evidence for the absence 

of GSB from the Chattisgarh Basin.  In particular, euxinic conditions during the deposition of 

the Timarlaga Limestone, which is characterised by low (<1) Pr/Ph ratios, cannot be 

excluded.   

Kah and Bartley (2011) reviewed the cycling of sulphur through the Proterozoic and 

noted that although most Mesoproterozoic environments show evidence of euxinia, the nature 

and extent of these environments appear to have been quite variable.  In fact, they argued that 

heterogeneity could have been the overarching characteristic for the Mesoproterozoic oceans. 

Ocean redox chemistry can also be evaluated by Mo isotopes (Scott et al., 2008), and 

Gilleaudeau and Kah (2013b) showed that Mo isotopic and marine redox variability could 

represent a hallmark of the relatively high sea levels and extensive shallow-marine platforms 

of the Mesoproterozoic.  In addition, Lyons et al. (2012, 2014) stressed that euxinia definitely 
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was part of the Mesoporoterozoic oceans but that the environments of euxinia may have been 

limited to marginal marine settings.  Sperling et al. (2014) provided evidence for the presence 

of free oxygen in the Mesoproterozoic Arlan Member basinal calcareous shale in Russia, 

further supporting Proterozoic redox heterogeneity. 

The development of the conspicuous black Timarlaga limestone is related here to a 

major flooding event / sea-level rise, and in that sense is analogous to many ‘oceanic anoxic 

events’ (OAEs) of the Phanerozoic (Jenkyns, 2010), which are prominent in the Cretaceous, 

but also in the Lower Jurassic and Upper Devonian. OAEs are related to enhanced organic 

matter production and burial, leading to positive δ13C excursions; the Timarlaga Limestone 

also shows a positive δ13C shift.  However, the TOC contents of the Timarlaga Limestone are 

generally very low.  These low TOC contents (especially in combination with low Pr/Ph 

ratios and the presence of black shales during highstands) could be an artefact, arising from 

either degradation or high maturity, although we note that low grade metamorphism did not 

occur in the Chattisgarh Basin (Chakraborty et al., 2012).  It is also possible that organic 

carbon sequestration via anoxic deposition has occurred elsewhere in the deeper Chattisgarh 

Basin.   

Despite these caveats, in the absence of evidence for elevated organic burial in the 

Chattisgarh Basin, we suggest that these high δ13C values likely reflect wider basin or even 

global processes rather than an active biological pump on the platform itself.  The very low 

organic carbon content in the Chattisgarh Basin, therefore, could be indicative of relatively 

low productivity and/or oxidising conditions in this particular setting.  For example, low 

nutrient supply (oligotrophic conditions) could have precluded high organic productivity 

within the basin, as also invoked by Sperling et al. (2014) for the Arlan shale. This could 

reflect macronutrient limitation, but it also could have been caused by limitation of trace 

metals, likely scavenged due to high seawater sulphide concentrations (Stüeken, 2013).  

Desmethyl steranes (C27-29) were detected in the black Timarlaga limestone, but in 

very low concentrations.  In Phanerozoic environments, C26 to C29 steranes are regarded as 

diagnostic markers for eukaryotes, particularly algae. The extremely low concentration of 

steranes in the studied rocks suggests that eukaryotic organisms were present in relatively 

insignificant abundances, at least relative to bacteria, in the Mesoproterozoic Chattisgarh 

Basin. The lack of extensive eukaryotes provides additional evidence for this being a low 

productivity setting, although the relatively more abundant hopanes could be evidence for 

bacterially dominated production. 

 



19 
 

9. Conclusions 

The Mesoproterozoic Raipur Group of the Chattisgarh Basin preserves two extensive 

carbonate platforms separated by calcareous shale. The lower platform is non-stromatolitic, 

with well-preserved lime-mud rhythmite facies pointing towards a passive-margin 

depositional setting. The upper platform developed in the intertidal to shallow subtidal 

environment with prolific growth of stromatolites forming a barrier. The platforms maintain 

the same trend in the disposition of the facies belt parallel to the palaeo-coast line. Distinct 

changes in morphologies of the stromatolites are probably related to changes in water depth 

during platform evolution. The basin history with repeated events of opening, sedimentation 

and closure continued for more than 400 my.  

Sedimentological and geochemical data indicate a low TOC setting with little 

evidence for euxinic conditions in the Mesoproterozoic Chattisgarh Basin. Low TOC values 

possibly result from degradation, high thermal maturity, poor preservation of organic matter 

and/or low productivity due to poor nutrient supply. Dysoxic or anoxic conditions could have 

existed below storm wave base during the deposition of the Timarlaga Limestone, whereas 

red shale, brown and grey stromatolite facies were deposited in more oxic seawaters, all 

consistent with previously proposed redox heterogeneity in the Proterozoic oceans.  
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Figure 1. Generalized geological map of part of the peninsular India showing mobile belts 

and major tectonic lineaments. Inset map shows distribution of cratons, mobile belts 

and the Proterozoic cratonic basins on the Indian craton, Chattisgarh (Ch); Khariar 

(Kh); Indravati (I); Pranhita-Godavari Basin (PGB); Cuddapah (C); Vindhyan (V); 

Kaladgi (K); Bhima (B), Aravalli Fold Belt (AFB); Central Indian Shear Zone (CIS); 

Godavari Graben (GG); Mahanadi Graben (MG); Son-Narmada North Fault (SNNF) 

and Son-Narmada South Fault (SNSF). Modified after Ramachandra et al. (2001) and 

Chakraborty and Paul (2008). 

 

Figure 2. Chattisgarh stratigraphy with existing interpreted tuff crystallization 

age constraints (modified after Saha and Patranabis-Deb, 2014). The red rectangle area marks 

the area of interest presented in Figure 7b. 

 

Figure 3. Representative photographs of the sedimentary structures showing the mixed 

siliciclastic-carbonate facies of the Gadhabhata Member, Sarangarh Limestone: (a) 

http://link.springer.com/bookseries/5775
http://link.springer.com/bookseries/5775
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Thin stringers and mm thin discrete layers of glauconitic sandstone within grey 

limestone. (b) Debris-flow conglomerate comprising clast of grey limestone floating 

in a matrix of micrite (lst) and very well rounded coarse grained sandstone (sst) within 

Gadhabhata Member. Note the slumped beds of limestone in the lower part of the 

photograph. Width of the photograph is 50 cm. (c) Limestone-marl rhythmites in thin-

bedded (2-8 cm) black lithographic limestone. Scale: length of pen is 12 cm (d) Black 

limestone bed (10 cm) with clusters of early diagenetic pyrites (note the arrow heads). 

(e) Pyrite cubes within black limestone. 

 

Figure 4. (a) Thin-bedded splintery brown shale, Gunderdehi Formation. Note the lateral 

persistency of the bed sets. Hammer length 28 cm. (b) Authigenic barite nodule 

within brown shale. Note the swerving of the laminae, round the nodule. (c) Isolated 

bodies of stromatolite bioherms, enclosed within the Gunderdehi shales. (d) Close-up 

view of the bioherms within shale with sharp basal contact. Inter area is filled up with 

lime mud. Hammer length 25 cm.   

 

Figure 5. Photomicrograph of the hydrofractured chert. Note the fracture-fill character of the 

chert pointing towards their secondary origin. 

 

Figure 6. Chandi Limestone: (a) Stromatolite biostromes with well-developed pause planes 

(arrow heads). The area marked with black rectangle is highlighted in figure b. (b) 

Section perpendicular to bedding plane view the inclined non-branching stromatolites 

showing the configuration of laminae. (c) Bifurcate or trifurcate branching of 

subparallel stromatolite columns on bedding perpendicular view. Column height 20-

35 cm, width 2-5 cm. (d) Plan view of stromatolites showing different shapes and 

rugged margins. 

 

Figure 7. (a) Carbon and oxygen isotopic data (δ13C vs δ18O) from the Chattisgarh limestones 

(black circles) and calcareous shales (red circles). (b) A close-up view of the marked 

area of Figure 2 showing carbon and oxygen isotopic data from the Chattisgarh 

limestones of different stratigraphic levels. 
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Figure 8. A partial GC-MS mass chromatogram of m/z 191 from a saturated hydrocarbon 

fraction, Chandri Formation, black limestone. Ts - C27 18α-trisnorhopane; Tm - C27 

17α-trisnorhopane. 

 

Figure 9. Palaeoenvironmental reconstruction of the (a) Charmuria/Sarangarh platform, and 

(b) Chandi/Saradih platform. 

 

Table 1. Major facies of the Sarangarh platform 

Lithofacies Lithology Sedimentary 

structures 

Depositional 

environment 

interpretation 

Shale-limestone 

heterolithic 

Interlayered brown 

calcareous shale and 

micritic limestone, 2-5 

cm thick beds 

Graded beds, planar 

parallel lamination, 

erosive base  

Outer ramp, distal 

turbidites 

Brown micritic 

limestone 

Brown micritic 

limestone, 10-20 cm 

thick beds, intermixed 

fine sands  

Planar tabular beds, 

massive graded or 

with mm thin planar 

lamination 

Outer ramp, below 

normal wave base, 

distal storms  

Mixed 

carbonate-

siliciclastic 

Micritic grey limestone 

and interstratified 1-2 cm 

streaks and single grain 

thick stringers of well 

sorted sandstone, 10-30 

cm thick beds  

Planar tabular beds, 

sharp bases, 

gradational top, 

normally graded, 

planar, parallel, 

stratified, or with 

HCS. 

Mid ramp, within 

storm wave base, 

high-energy storm-

flows, episodic 

transportation sands  

Flat pebble, 

lime clast 

conglomerate 

Conglomerate with flat 

2-10 cm size 

intraformational 

limestone clast, medium 

to coarse grained 

siliciclastic sand and 

micrite matrix, 10-20 cm 

thick beds and 5-30 cm 

thick lenses  

Clast imbrication and 

locally coarse tail 

reverse grading in 

bedded type, fan 

shaped orientation in 

lenses with deep 

erosive scours  

Mid ramp storm 

deposit 

Rhythmite 

facies above 

storm wave base 

 

Alternation of 5-15 cm 

thick brown or black 

micritic limestone beds, 

with peloids, and 1-2 cm 

thick marl layers  

Limestone beds wavy 

planar, or tabular, 

laterally very 

persistent, internally 

plane parallel or wavy 

parallel laminated, 

commonly with HCS, 

rhythmicity 

maintained throughout 

the section, bed-set 

Outer ramp, with 

fluctuating sea level 

in cyclic pattern 

below and above 

storm wave base 
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pattern show 

thickening and 

thinning of beds  

Rhythmite 

facies below 

storm wave base 

 

Alternation of 15-25 cm 

thick black micritic 

limestone, beds and 1-2 

cm thick marl layers 

Limestone beds planar 

tabular, laterally very 

persistent, internally 

plane parallel or 

massive, rhythmicity 

maintained throughout 

the section, bed-set 

pattern show 

thickening and 

thinning of beds 

Outer ramp, below 

storm wave base 

 

Table 2. Major facies of the Chandi platform 

Lithofacies Lithology Sedimentary structures Depositional 

environment 

interpretation 

Brown 

calcareous 

shale with 

siltstone 

Interlayered brown 

calcareous shale and 

siltstone, intermixed 

fine sands, pockets of 

mudclast conglomerates  

2-10 cm thick, planar 

parallel lamination, 

graded beds, commonly 

with HCS, erosive base 

at places, low angle 

truncation between 

strata sets common, low 

amplitude ripples and 

soft sediment 

deformation common 

Outer shelf mud, 

with occasional 

storm generated 

turbidites 

Stromatolite 

mounds within 

brown 

calcareous 

shale  

Brown calcareous shale 

with stromatolite 

mounds  

Isolated small (10 cm to 

100 cm) wide 

stromatolite mounds, 

elliptical in cross-

section, stromatolites 

are small, columnar 

branching and non-

branching type, rounded 

or elongate in planar 

section, occur at the 

transition between shale 

and limestone 

Intertidal zone, 

shallow wide 

muddy shelf 

Microbial 

laminite 

5 cm to 1cm thick 

couplets of fine silt and 

carbonate mud; locally 

argillaceous 

Layering thins and fines 

up; passes up to crinkly 

layers; scours and 

erosion between strata 

sets common; locally 

mudcracks present 

Intertidal microbial 

mats 

Edgewise Grey or brown micritic 5-7 cm thick tabular Storm dominated 
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conglomerate limestone with 

intermixed siliciclastic 

sands 

beds, 0.5 to 2 cm long 

platy clasts, haphazardly 

oriented locally vertical 

clasts embedded within 

mixed siliciclastic-

carbonate matrix 

intertidal shelf 

Brown or grey 

micritic, 

peloidal 

stromatolitic 

limestone  

Brown micritic 

limestone, with 

biostromes (bedded 

stromatolite). 

Bedded biostrome, bed 

thickness 15-30 cm. 

Stromatolites with 

branching and non-

branching columns, 2-6 

branches either parallel 

or divergent. Column 

height 5-15 cm width 1-

3 cm,convex-up laminae 

with slight crinkling, 

narrow base and wide 

top  

Subtidal – Intertidal  

Mauve or grey 

stromatolitic 

bioherm 

Mauve to grey micritic 

limestone, with 

stromatolite bioherm 

5 to 2 m thick convex 

upward stromatolitic 

bioherms, coalesce to 

form continuous 

succession, more than 

100 m thick. 

Stromatolites with 

branching columns, 

branches are parallel or 

diverging, digitate. 

Column height from 5 

to 50 cm, convex up 

laminae, lamina sets 

truncated. 

 

 

Table 3. Bulk geochemical results of Rock-Eval/TOC of the samples studied. N.a. – not 

analysed. 

Formation Colour & 

Mineralogy 

TOC (wt.%)a Tmax (oC)b S1 (mg/g)c S2 (mg/g)d HIe OIf 

Charmuria/Sarangarh 

Formation 

 

Black 

limestone  

0.04 

0.12 

0.02 

0.02 

0.04 

0.03 

437 

437 

443 

433 

436 

450 

0.01 

0.01 

0 

0 

0 

0 

0.02 

0.13 

0.02 

0.03 

0.06 

0.04 

53 

111 

126 

134 

155 

158 

795 

395 

786 

861 

570 

1292 

Gunderdehi Formation 

 

Red 

calcareous 

shale 

0-0.1 n.a. n.a. n.a. n.a. n.a. 

Chandi Formation 

 

Brown 

stromatolitic 

limestone  

0-0.1 n.a. n.a. n.a. n.a. n.a. 

Chandi Formation 

 

Grey 

stromatolitic 

0-0.1 n.a. n.a. n.a. n.a. n.a. 
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limestone 

 

Table 4. Carbon and oxygen stable isotopic analyses of the carbonate samples studied. 

 δ13C δ18O 

Brown calcareous shale 

(above fair-weather wave base, 

but at the transition zone). 

4.2 -11.3 

Brown limestone 

(below fair-weather wave base 

but above storm wave base).

   

  

   

   

   

3.9 

3.9 

3.6 

0 

2.1 

2 

2.4 

2 

-11.4 

-10.4 

-12.3 

-12.3 

-12.2 

-10.9 

-8.1 

-10.9 

Grey-brown mixed  

(below fair-weather wave base 

but above storm wave). 

   

2.2 

1.8 

2.1 

-8.9 

-8.5 

-8.2 

Grey limestone  

(below fair-weather wave base 

but above storm wave). 

 

   

   

  

   

 

2.4 

0.3 

2.1 

2.5 

1.8 

2.4 

2 

2.1 

2.7 

-7.8 

-13.3 

-5.7 

-9.5 

-12 

-9 

-7.9 

-8 

-8.3 

Black limestone 

(just above the storm wave base 

to below storm wave base). 

   

  

   

   

   

   

   

  

 

2.4 

3.8 

1.8 

3.3 

3.4 

1.8 

2.7 

2.1 

3.3 

3.5 

3.8 

2.1 

3.9 

2.4 

-8.5 

-9.6 

-9.1 

-6.3 

-7.1 

-8.9 

-8 

-8.2 

-8.4 

-9.9 

-9.1 

-8.2 

-9.1 

-7.24 

Mauve limestone 

(below fair-weather wave base 

but above storm wave). 

3.2 

2.2 

-11.1 

-9.4 

Limestones & dolomites within 

shale. 

   

   

   

  

2.2 

3.9 

3.9 

3.6 

1.6 

2.23 

-9.4 

-11.1 

-4.7 

-3.9 

-11.9 

-9.74 

Brown stromatolitic limestone 

(above fairweather wave base). 

4 

2.99 

-10.8 

-8.71 
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4.32 -6.04 

 

Table 5. General biomarker characteristics of the studied samples. 

Formation Mineralogy Pr/Pha n-C17/Pr n-C18/Ph Ts/Tmb 

Charmuria/

Sarangarh  

Limestone 0.3-0.8 0.18-

0.63 

0.19-0.5 0.46 

Gunderdehi Calcareous 

shale 

0.5 1.35 0.71 0.47 

a Pr/Ph: pristane / phytane ratio 

b Ts/Tm: C27 17α-trisnorhopane (Tm) / C27 18α-trisnorhopane ratio expressed as Ts/(Ts+Tm) 

 


