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ABSTRACT 

 

The work describes the mechanics of novel woven jute fibers reinforced polyester (JFRP) laminates under 

uniaxial and multi-axial static and fatigue loading cases. JFRP laminates with 25 % fibre volume fraction 

(FVF) have been manufactured using a hand-layup molding technique at a low pressure. Static uniaxial 

tests have shown that these novel bio-reinforced laminates have an ultimate tensile strength around 42 MPa 

under tensile loading and 7.5 N-m under torsional loading. The Multi-axial (tension/torsion) static tests 

yield an ultimate strength of 21.7 MPa and 5 N-m for tensile and torsion loading conditions, respectively. 

Fatigue tests have been carried out under displacement and angular control at three different loading levels 

with a frequency of 5Hz. The fatigue tests results are extensively analyzed using stiffness degradation 

behavior, hysteresis loops, energy dissipation and strain versus number of cycles (ɛ-N) diagrams. The 

fatigue endurance limit (over one million cycles) for JFRP is achieved at a stress level of 65% of ultimate 

displacement. The implication of this work is the use of these materials in areas such as car and aircraft 

interiors promises to significantly reduce weight, cost and carbon footprints without sacrificing 

performance. 

 

 

Keywords: Polymer-matrix composites (PMCs); Fatigue; Mechanical Testing; Lay-up (manual); Natural 

Fibers 
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1 INTRODUCTION 

 

Companies and researchers are driven by current environmental requirements to develop new materials 

that can replace synthetic fibers (e.g. glass fibers) with enhanced life cycle performance. Natural fibers as 

reinforcement in composite materials show some appealing characteristics like low cost, low density, 

relativly high specific strength and ease of availability where they are readily available in fibrous form [1]. 

The dependency on fossil fuel products and their environmental hazards would eventually be minimized by 

the use of such fibers to produce bio-composite materials and products. Engineers have already succeeded 

to implement natural fibers in the production of bio-composite materials that are suitable for secondary 

structural applications on an industrial scale [2]. Many researchers have performed the mechanical 

characterization of different types of natural fibers and their composites [3–6]. Some works in open 

literature show comparative studies to identify which natural fiber have superior mechanical properties [7]. 

Other studies provide expanded databases of experimental results related to particular types of natural 

fibers [8–12]. Some research groups have also attempted to find how different factors affect the 

performance of existing natural fibers composites [13–17]. Jute fibers are typical examples of natural 

fibrous reinforcement extracted from the stem of Jute plants, and are one of the most affordable natural 

fibers available in the market, second only to cotton in terms of amount produced and varieties of 

applications (baskets, carpets, shoes, cloths and ropes). Several research groups have carried extensive 

studies on the mechanical properties of jute fibers and its derived plastic composites [18–25].	Katogi et al 

[21] tested unidirectional jute spun yarn reinforced biodegradable resin under static and fatigue tensile 

loading. They reported an ultimate tensile strength of 60.9 MPa and an endurance limit of 55% for their 

composite material. Gassan [22] has investigated the effect of fibers type, fibers treatment, fibers form, 

fiber content and matrix type on the material’s specific damping capacity under tension-tension fatigue 

loading tests. Regarding jute fabric reinforced polyester composites; he found treating the jute surface with 

silane will require higher loads for the onset of progressive damage. Gowda et al [23] have evaluated the 

mechanical properties of untreated jute fibers and fabrics, and jute fabric reinforced composites under static 

loading. Single jute fibers exhibited stiffer mechanical behavior than jute fabrics. Shah et al [24] have also 
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investigated the effect of fibers type, content, form and stress ratio on the tension-tension fatigue life of 

natural fibers composites, comparing unidirectional jute yarns reinforced polyesters to hemp and flax yarns 

reinforced polyesters. The jute fibers composites showed one of the highest tensile static and fatigue 

strength compared with other natural composites, second only to flax composites. The jute composite 

material did also survive million of cycles under fatigue loading at a stress ratio of 45%. Shah and co-

workers also found that higher jute fiber contents would increase the static and fatigue strength of the 

overall composites. The increased fibers content did also influence the mechanism associated to the 

specimen failure, ranging from stable transverse cracks in the matrix to the presence of jagged, delaminated 

and longitudinal splitting cracks. De Rosa et al [25] have looked at the production of recycled secondary 

structural composites made from paper waste, jute fabric and epoxy matrix, and performed extensive static 

and acoustic emissions (AE) tests under flexural bending on these samples. The tests showed that the use of 

waste paper increased significantly the flexural modulus of the natural reinforced composites, while the 

AE analysis gave some significant insight on the role of the stacking sequence and phase materials used. 

 Multi-axial testing has attracted many researchers [26] by several reasons. For example, many 

component in service are actually under  combind loadings which is represnted better by the multi-axial 

loading tests. It is a huge study field that still lack testing standards and databases.  M. Quaresimin et al 

[27] reviewed the work done on multi-axial fatigue testing of composite materials and highlighted a 

significant effect of the shear stress on the fatigue life of a component. Also, they point out the scarce data 

of a rectangular sample under multi-axial loading due to the fact of the non-uniform stress distribution on 

the cross section of the sample. Amijima et al [28] represented the data of multi-axial tension-torsion 

fatigue tests as the ratio between each loading type results by its pure application results, then combined the 

different ratios to represent the results of multi-axial loading. They deducted that the fatigue life depends on 

the loading ratio between the two loading types used in the multi-axial tests. Ogasawara et al [29] 

performed another type of multi-axial testing where they applied a fixed tensile loading and cycled the 

torsional loading at the same time. They eliminated the need to represent the results as variable of both 

tensile and torsional loadings. The study shows that the tensile load level has a positive impact on the 

torsional rigidity of any sample.  



5	
	

The current study is focused on the mechanics of untreated woven jute fabric used to reinforce 

polyester matrix systems under tensile, torsional and multi-axial static and fatigue loading conditions. 

Fatigue tests are carried out under variable amplitude tensile (tension-tension) and multi-axial (tension-

tension - unidirectional torsion) loading conditions. Stiffness degradation is monitored during fatigue tests 

and ɛ-N curves are constructed to reflect the fatigue damage inflicted on the specimens. Hysteresis loops 

are also constructed and the energy dissipation is calculated to determine the amount of damage that was 

accumulated at various load levels. To the best of the Author’s knowledge, this is the first study in which 

multi-axial fatigue tests are performed on jute/polyester composites. 

 

2 MATERIAL PREPARATION, TEST SETUP AND DATA REPRESENTATION 

 

The jute fabric used in this study was bought from a local supplier and used as received. The polyester 

used to fabricate the composites has a 32 MPa in tensile strength, 2.7 % in elongation, 1.12 GPa in tensile 

modulus, and a density of 1410 kg/m3. The jute fibers reinforced polyester (JFRP) laminates were 

manufactured at low pressure using a hand-layup composites fabrication technique inside a glass mold with 

glass shims to control laminate thickness at room temperature. The laminates were made by cutting the jute 

fabric into three plies, and then adding polyester resin to each one of them. Afterwards, the plies were 

carefully stacked on top of each other inside the mold. The plates were allowed to cure for 24 hours at room 

temperature inside the mold. The plates were kept in open air for 15 days to obtain a complete 

polymerization of the resin,. The specimens were then cut from the plates using a diamond saw, following 

the recommendations of the ASTM Standard D 3039 M-08. The dimensions of the manufactured plates are 

320 x 380 x 5 mm, while each single composite specimen has dimensions of 250 x 25 x 5 mm. It is worth 

to notice that, although these dimensions are standard for tensile tests, similar specimen sizes were used in 

a previous work by H.T.Sumsion et al [30]	to perform torsional loading experiments. 

The mechanical tests were carried out using a MTS 809 Axial Torsional Testing System with a load 

cell capacity of 100 (± 0.1) kN in tension and 1100 (± 1.1) N-m for torsion. Tensile static tests were 

performed at a constant rate of 5 mm/min, while torsional static tests were carried out at 30 degree/min. 

The multi-axial static tests were performed at a combined rate of 2 mm/min and 83 degree/min; 
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corresponding to the time required to fail a specimen under either tensile or torsion loads. The resulted 

biaxiality ratio is 1.27, which is defined as the ratio of torsional property to tensile property; the property is 

defined as ratio of ultimate multi-axial strength to ultimate uniaxial strength[31]. Tensile and multi-axial 

fatigue tests were performed under displacement and angular control with a sinusoidal waveform of 5 Hz. 

All fatigue tests were carried out at a mean strain level corresponding to 50 % of the ultimate tensile or 

torsional strains. The straining level (r) was defined as a percentage from the average failure strain 

identified from the respective static tests. The straining levels used in these tests were at 65%, 70% and 

75%. These values were chosen based on some preliminary tests results. The fatigue test has been repeated 

at least twice for each value of (r). The tests were performed at room temperature (around 23°C) and 

average humidity of 50 %.  

The results of the multi-axial fatigue testing are represented by combining both the data from 

the two types of loading (tensile and torsional). The stiffness degradation is found by averaging the 

normalized stiffness loss from both loading types. The hysteresis loops represent the averaged 

normalized loading from both types of loop data. Finally, the dissipated energy is represented be the 

total energy lost by the longitudinal and lateral movements of the sample. The resulted data from this 

method is compared to the results from the static-to-fatigue ratio method proposed by Amijima et al [28]. 

 

3 RESULTS AND DISCUSSIONS 

 

3.1 Static Results 

 

3.1.1 Tensile static test 

 

Fig.1 shows the stress and strain curves of three tested JFRP specimens, while Table 1 illustrates the 

values of stresses and strains corresponding to failure and their averaged values. All specimens show a 

similar mechanical behavior, with the stiffness slightly decreasing beyond 0.1% elongation and a complete 

failure occurring around 1.1% elongation. Multiple fluctuations were observed before the complete failure 

of the specimens, which indicate partial fibers failure and can be caused by the presence of random voids 
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into the matrix. The uncovered areas of the specimens along the length of the fibers form stress 

concentration points, which develop very fast crack propagation when the fibers fail. It has also been 

noticed that the weave-fabricated fibers are not uniform in term of distribution of fibers threads diameters 

and spaces between them. An example of the topology of the fabrics can be observed in Fig.2, which shows 

that the crack in the composite followed a straight line through the material with some fibers being pulled 

out from the matrix, although the weave topology of the fabric helped to reduce the number of pullouts. 

 

3.1.2 Torsional static tests 

 

Fig.3 shows torque versus the angular displacement in JFRP specimens. Table.2 shows the ultimate 

torque strengths and angular displacements at failure values. Cracks started appearing on the specimens at 

around 55 degrees but the specimens continued carrying the load until a complete failure occurred between 

70 and 80 degrees. Due to the geometry of the specimens, the angular displacement at failure must be 

considered significant, demonstrating that these composites offer a significant compliance in terms of 

torsional deformation. One reason of this specimen high torsional compliance is the use of a thermoset 

matrix system that has a relatively high elongation percentage. The failure surface of a JFRP specimen 

under static torsional load can be observed in Fig. 4. The cracks start from the two edges of the specimens 

forming a Z-shaped cut. The morphology of the cut indicates that high shearing stresses are present 

between the composites layers undergoing delamination. These shear stresses make the fibers at the edge to 

carry alone the tensile loading and therefore fail first. After that initial failure the load is transferred from 

one layer to the other, creating the unique shape of the cut.  

 

3.1.3 Multi-axial static tests 

 

Figs. 5 (a) and (b) show the behavior of the composite material corresponding to the multi-axial load 

configuration used. Figure 5(a) shows the stress vs. strain relation due to tensile load, while Figure 5(b) 

illustrates the torque vs. the angle. The tensile and torque loading were applied simultaneously as observed 

from the curves, which show the same overall mechanical behavior consisting in a progressive decrease of 
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stiffness and the occurrence of partial fibers breaking until reaching a complete failure. Fig.6 shows the 

shape of the fracture section of a JFRP specimen under the static multi-axial loading. The Z-shape cut 

produced from applying the torsional load observed earlier provides a less evident shear band because of 

the application of the simultaneous tensile load. Table.3 shows the failure values of stresses for the multi-

axial loading. It is apparent that the application of a simultaneous tension and torsional load specimens with 

the chosen loading rates reduced its ultimate tensile strength by 49% and its ultimate torque strength by 

35%, simultaneously. It is hard to compare this finding with other literature due to differences in the 

geometry of the samples, biaxiality ratio and the fibers direction and weaving properties of the composites 

laminates. For example, D. Qi and G. Cheng [31] reported higher reduction in the properties for a biaxiality 

ratio of 1 (52%,  for tensile strength and 49% for torque strength). They used tubular samples with different 

filament winding degrees that effect greatly the reduction of the different properties. 

 

3.2 Fatigue Results 

 

3.2.1 STIFFNESS DEGRADATION 

 

 The identification of material’s stiffness degradation is one of most used methods to evaluate the 

accumulated fatigue damage [11]. It is identified through tracking the change in the load experienced by a 

specimen under constant strain, which indicates the amount of material’s stiffness degradation by each 

loading cycle. Fig.7 shows a typical load degradation behavior of JFRP composite with the number of 

cycles for both the tensile and the multi-axial fatigue tests. The curve of tensile fatigue stiffness degradation 

has been normalized by dividing the load (F) by maximum load recorded during the first cycle (F0). The 

multi-axial fatigue stiffness degradation’s curve has been constructed by combining the normalized 

stiffness degradation resulted from both tensile and torsional loads. The normalized number of cycles has 

been calculated by dividing the number of cycles (N) by the number of failure cycle (Nf). The JFRP 

specimen appears to follow the classic behavior in fatigue testing, which is made of three stages (rapid 

stiffness loss, followed by slow decrease in stiffness and finally, a complete failure at the end [32]). The 

matrix undergoes deformation and cracks start to propagate until the load is completely transferred to the 
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fibers (stage 1).  The fibers begin to strain slowly making the cracks grow slower than before and gradually 

the matrix debonds from the fibers (stage 2). Finally, the fibers start to fail making fast cracks propagations 

that cause sudden global failure of the specimen (stage 3). It can be observed that the first stage lasted 

longer under normalized cycles for the case of the specimen undergoing multi-axial fatigue loading. This is 

believed to be originated from the combined crack propagation mechanism caused when applying tensile 

and torsional loads at the same time. Overall, the stiffness degradation appears to be more significant 

during the multi-axial loading case. On the other hand, the results of the multi-axial loading represented by 

the method suggested in this work shows almost identical values to Amijima et al [28] method that they use 

to represent the data of a similar loading case. The comparison of the two methods is shown in fig.8. 

Fig.9 shows the tensile stiffness degradation (F/F0) according to the number of cycles for different 

straining levels (r) using semi-logarithmic scale. The tensile fatigue life appears to depend upon the 

straining level (r). At r = 75%, the specimen failed after 16,000 cycles, but at smaller (r) values crack 

propagations are activated with a slow velocity and the fatigue life is remarkably longer. The total failure 

for the JFRP at straining level r = 70% happened after 80,000 cycles. However, at (r) = 65 % there is no 

global failure of the specimens even after 106 cycles, which is considered as the endurance limit under pure 

tensile loading condition. The composite is found to be losing 54% of its strength. For all the loading ratios 

used; the JFRP specimens appear to have the same stiffness degradation under 70 loading cycles.  

Fig.10 shows the stiffness degradation resulting from the multi-axial fatigue tests. The same 

observations regarding the stiffness degradation behavior of the tensile fatigue tests can be also made for 

these curves, although the curves corresponding to 75% and 65% straining levels, results show a more 

gradual global failure compared to the one observed in the tensile loading case. The complete failure of the 

JFRP specimens under multi-axial loading happens after 90,000 cycles at (r) = 75%, and after 260,000 

cycles at 70% of straining level. Also in this case, the endurance limit for the JFRP under multi-axial loads 

can be observed at 65% straining level for which the composite material losses 50% of its stiffness 

strength. 

 

3.2.2 HYSTERESIS LOOPS AND DISSIPATED ENERGY DENSITY 
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The monitoring of the energy dissipation gives an indication about how fast the crack grows, and the 

idnetification of the hysteresis loops is the first step to perform this operation [12]. Hysteresis loops are 

shown in fig.11 for the first cycle at each different straining level for both tensile and multi-axial fatigue 

tests. To facilitate the comparison the loops have been normalized by dividing the cyclic load with the 

maximum load in each cycle. The hysteresis loops for multi-axial fatigue tests have also been calculated 

from the average of the normalized tensile and torsional loads values. For a clearer representation of the 

loops, the displacements of the cycles have been shifted by 0.5 mm each. The JFRP specimens contain 

some random voids with different sizes in the matrix that create onsets of crack propagation. As expected, a 

higher straining level will make the specimen to be subjected to broader spectrum of load amplitudes. The 

specimen deforms further, with a subsequent faster crack growth rate. The area inside the loop indicates 

how much energy is dissipated during the cycle, and it is proportional to the applied straining level 

[12].The energy density is larger during tensile fatigue tests, indicating that for each cycle the material 

tends to dissipate the majority of the energy under tensile deformation mechanisms (Figs. 12 and 13) . 

The dissipated energy density [12] (or energy dissipation per unit volume) was measured for the two 

loading cases. In the case of the pure tensile loading (Fig.12), at 75% straining level the values of the 

dissipated energy density almost tripled compared to the values observed at (r) = 65%. All the curves can 

be divided into two stages. The first stage corresponds to a marked decrease of the energy dissipated per 

unit volume from the first cycle until 100 cycles for (r) = 75%, and 1000 cycles at (r) = 70% and 65%. The 

second stage is defined by a lower decreasing rate of the dissipated energy density until complete failure 

occurs at (r) = 75% and 70%. The 65% straining level curves show an almost steady decrease in the 

dissipated energy without failure, even after 106 cycles. The same observations can also be made about the 

total dissipated energy density of the multi-axial fatigue tests (Fig 13), although more fluctuations of the 

energy values could be observed for the multi-axial loading case. Note that the values represented in fig.13 

are the sum of the dissipated energy density resulted from both tensile and torsional loadings. 

 

3.2.3 r-N CURVE 
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The fatigue damage limit of a material can be determined by projecting the number of cycles to failure 

at different straining levels. Fig.14 shows the number of the cycles at failure for each straining level used in 

this work. The results have been fitted by a logarithmic equation that can be described by the simple 

relation [12]: 

 

R = a - b × logNR    (1) 

 

 Straining level of 65% tests were stopped at different number of cycles exceeding the number of 

1.35x106, giving therefore the confidence that the endurance limit of the material was identified. 

Remarkably, this finding is true and the same for both pure tension and tension/torsion loading conditions. 

Note that the multi-axial fatigue loading case is incorporating approximately 36% of the material’s ultimate 

tensile strength, which is way beyond the material’s endurance limit for the tensile fatigue loading case. On 

other hand, although the test machine has a lower load sensitivity in the torsional channel (±1.1 N-m), the 

confidence in the projected multi-axial fatigue tests results is higher than the pure tensile fatigue tests 

results. It is thought as an indication of the complex failing mechanisms of the tension/torsion loading case 

that accumulate drastically at some point in the material’s fatigue life.  

 

4 CONCLUSIONS 

 

Jute fiber reinforced polyester composite laminates were manufactured using a hand-layup low 

pressure molding technique. Specimens cut from these laminates were tested under tensile, torsional and 

multi-axial static loading. Also, specimens were tested under pure tensile and multi-axial fatigue loading. 

Static results showed small scatter in tensile data but wide scatter in torsional data. The results of multi-

axial tests were affected by the fact that the specimen torsional strength was at the lower end of the 

machine capacity, which can go up to 1100 N-m. JFRP ultimate tensile strength was slightly lower than 

what have been found in earlier studies [23,24]. There is also a lack of tests’ standards for composite 

materials under torsional load and multi-axial loads.  Fatigue results were analyzed by monitoring the 

stiffness degradation, hysteresis loops and energy dissipation density (energy dissipation per unit volume). 
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The specimen stiffness degradation under constant amplitude fatigue loading was found to follow the 

common 3-stage fatigue life observed in many materials. The stages are rapid degradation stage, steady 

degradation stage and final failure stage. Hysteresis loops and energy dissipation for various load levels 

revealed a proportional behavior of number of cycles to straining level with the specimen achieving a 

fatigue strength level at about 65% (endurance limit). The latter level was higher than most recent study 

[24] and it was confirmed by both tensile and multi-axial fatigue loading tests results. The tests results 

shown in this paper are indicative of very interesting mechanical properties under multi-axial 

loading that these natural fibre reinforced composites possess. The overall mechanical performance 

of these composites may be improved by using more advanced composites fabrication techniques like 

resin transfer molding, which tends to minimize the formation of matrix voids and to increase the 

compactness of the fibers. In addition, other types of fibers, fabric weaving and their chemical 

treatments are all factors that need to be taken into account in future investigation to widen the 

database of the results originated from using this testing method. 
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Fig.1 Stress-strain curves of the tensile static tests  
 
  



16	
	

 
 

Fig.2 A JFRP sample post tensile static test 
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Fig.3 Torsional static torque versus angular displacement  
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Fig.4 Example of a JFRP sample post torsional static test  
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Fig.5 Multi-axial static test (a) stress vs strain (b) torque vs angle  
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Fig.6 Fracture of a JFRP specimen after the multi-axial static test  
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Fig.7 Normalized stiffness degradation 
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Fig.8 Multi-axial normalized stiffness degradation 
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Fig.9 Stiffness degradation of tensile fatigue tests. 
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Fig.10 Stiffness degradation of multi-axial fatigue tests.  
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Fig.11 Comparison between hysteresis loops at N = 1 for different straining levels. 
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Fig.12 Dissipated energy density of tensile fatigue tests 
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Fig.13 Total dissipated energy density of multi-axial fatigue tests 
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Fig.14 r-N curves for the tensile and multi-axial fatigue tests 
 


