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On the Optimal Presentation Duration for
Subjective Video Quality Assessment

Felix Mercer Moss, Ke Wang, Fan Zhang, Member, IEEE, Roland Baddeley, and David R. Bull, Fellow, IEEE

Abstract— Subjective quality assessment is an essential
component of modern image and video processing for both the
validation of objective metrics and the comparison of coding
methods. However, the standard procedures used to collect data
can be prohibitively time consuming. One way of increasing the
efficiency of data collection is to reduce the duration of test
sequences from a 10-s length currently used in most subjective
video quality assessment (VQA) experiments. Here, we explore
the impact of reducing sequence length upon perceptual accuracy
when identifying compression artifacts. A group of four reference
sequences, together with five levels of distortion, are used to com-
pare the subjective ratings of viewers watching videos between
1.5 and 10 s long. We identify a smooth function indicating
that accuracy increases linearly as the length of the sequences
increases from 1.5 to 7 s. The accuracy of observers viewing 1.5-s
sequences was significantly inferior to those viewing sequences
of 5, 7, and 10 s. We argue that sequences between 5 and 10 s
produce satisfactory levels of accuracy but the practical benefits
of acquiring more data lead us to recommend the use of 5-s
sequences for future VQA studies that use the double stimulus
continuous quality scale methodology.

Index Terms— DSCQS, HEVC, mean opinion scores, methodol-
ogy, quality assessment, subjective testing, video databases, video
presentation.

I. INTRODUCTION

AS VISUAL display devices continue to pervade more
of our lives, the need to provide their screens with

optimized content is becoming no less critical. To ensure the
qualitative experience of viewing digital video on these devices
meets the increasing expectations of consumers, perceptual
quality metrics are employed to evaluate how a sequence of
images appears to the human visual system.

Automatic video quality assessment (VQA) is not a trivial
challenge. The development of objective video quality metrics
has accelerated in recent years, but despite the multitude of
different algorithmic solutions available, few produce satisfac-
tory correlations with ground truth data collected from human
viewers [1]. To validate the performance of these objective
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measures, it is critical that researchers continue to provide
new and diverse databases of test content, paired with reliable
ground truth data obtained via subjective testing experiments.

Subjective testing is also important for the introduction of
new video processing algorithms, such as those in compression
or enhancement. For example, data from subjective quality
assessment provide a perceptual benchmark to ensure that a
new codec is providing significant performance gains over
existing standards [2].

Improving the efficiency of the subjective testing process
while preserving reliability is, therefore, a valuable area of
research. The International Telecommunications Union (ITU)
provide a set of canonical guidelines that aim to maintain a
level of consistency in the methodologies used when collecting
human data for such databases [3], [4]. While the ITU are to be
applauded for encouraging a standardization of these practices,
we believe the efficiency of one particular recommendation can
be improved, while preserving the reliability of data they help
collect.

The length of the test sequences used in a subjective exper-
iment has significant practical implications upon the output of
data. For example, for double stimulus (DS) methodologies,
halving them in length could provide the researcher with the
opportunity to collect the same amount of data in close to
half the time or, in the same time, close to double the volume,
dependent upon the length of voting time.1 The ITU recom-
mends using presentations of 10 s for moving pictures [3];
however, it is not clear how perceptual performance is affected
if shorter sequences are used.

In addition to the associated practical benefits, there are
both empirical and theoretical motivations for investigating
the use of shorter sequence lengths for subjective testing.
First, previous research indicates that observers become less
critical of video presentation when clips are significantly
longer than 10 s [5]. Second, shorter test sequences encourage
more consistency in observers’ viewing behavior [6], [7] and,
consequently, their rating behavior. Third, the average shot
length found in contemporary movies is significantly lower
than 10 s [8].

To explore the impact of test sequence duration on opin-
ion scores, four high-definition (HD) video sequences were

1Practically, most methodologies require additional voting time, reducing
the magnitude of these savings. Assuming sequences are originally
10-s long and there has to be 5 s of additional voting time, DS methodologies
could make 40% time savings (10 s + 10 s + 5 s = 25 s to 5 s + 5 s +
5 s = 15 s), while single stimulus (SS) methodologies could make 33% time
savings (10 s + 5 s = 15 s to 5 s + 5 s = 10 s).

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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chosen along with five levels of distortion generated by High
Efficiency Video Coding (HEVC) compression [9] and
Gaussian blurring. Twenty-four human participants viewed and
provided responses to five versions of each of these videos
after being divided into five different sequence lengths ranging
from 1.5 to 10 s. These data were used to address four specific
research questions.

1) Does reducing sequence length below the recommended
10 s significantly affect the detection of distortion arti-
facts when using the double stimulus (DS) continuous
quality scale (DSCQS) methodology?

2) Does significant variation in the level of distortion
influence the strength of a potential duration effect?

3) Does the content of temporally consistent video
sequences influence a potential duration effect?

4) Do observers feel more confident evaluating the video
quality of certain sequence lengths over others?

This paper is structured as follows. Section II outlines
some of the most influential subjective video databases and
highlights some of the factors that can affect the results
of human VQA experiments. The methodology of the main
subjective experiment is outlined in Section III. The results are
reported and discussed in Section IV, while the implications
and future directions for this area of research are discussed
in Section V.

II. BACKGROUND

This section is divided into three subsections, the first of
which introduces some of the most popular currently available
subjective databases and how they are used. Section II-B
explains some of the factors that can be responsible for both
desired and undesired variation in opinion scores. Section II-C
discusses previous research focused on test sequence length
in subjective VQA experiments and how it might affect rating
behavior.

A. Subjective Databases

Typically, subjective video databases include a set of
original reference videos together with a group of variably dis-
torted versions of each. All, or a smaller subset of these videos,
are associated with a quality rating obtained by displaying the
videos to human observers and recording their mean opinion
scores (MOSs). Subjective video databases aim to provide
researchers with a set of resources allowing them to assess
the impact upon perception of variable spatial and temporal
video quality. More specifically, they are primarily used for
the validation of objective quality metrics or the performance
comparison of different video coding methods.

One of the earliest subjective video quality databases was
made available in 2000 when the Video Quality Experts
Group (VQEG) finalized the first phase of their FR-TV
project [10]. This publicly available database contains 20 stan-
dard definition reference videos, each with 16 distortion levels
encoded using either MPEG-2 or H.263. In total, the scores
of 287 human participants were recorded using the DSCQS
methodology. Subsequent databases have provided new con-
tent with higher resolutions, updated compression codecs,

TABLE I

SUMMARY OF A SELECTION OF CURRENTLY AVAILABLE SUBJECTIVE

DATABASES WITH THEIR RESOLUTION AND TEST SEQUENCE

DURATION STATISTICS. THE MAJORITY ADOPT THE ITU

RECOMMENDATION OF 10 s VIDEO CLIPS

and different methodologies. For example, the LIVE video
database [11], [12] provides 10 reference videos at a resolution
of 786 × 432 with 15 different distortions including
MPEG-2 and H.264. The more recent IVC [13], [14], IVP [15]
databases, and especially the VQEG-HD database [16] provide
a large volume of annotated HD interlaced and progressive
scan videos. Other video databases of note such as the
EPFL [17], [18] and MMSP-SVD [19], [20] are specialized
for testing specific spatiotemporal resolutions or network
conditions. While many of these databases greatly vary in
the resolution and distortions of their sequences, Table I
shows how there is very little variation in the lengths of
the test sequences they use. The majority of databases use
10-s test sequences, following the recommendation proposed
by the ITU, while only one database uses sequences out
of the 8–12-s range. For a more detailed account of the
most influential subjective VQA databases, comprehensive and
insightful accounts can be found in [21] and [22].

As the fidelity of visual display units continues to accelerate,
new video coding methods are developed to ensure presenta-
tion quality is optimized. The data collected from subjective
testing provide essential ground truth with which the perfor-
mance of these new codecs can be evaluated and compared
with that of previous benchmarks. The length of test sequences
in subjective databases used to compare new compression for-
mats is not standardized. For example, [2] and [23] (referred to
as HEVC-CMP1 and HEVC-CMP2 in Table I) comparing the
performance of HEVC with previous methods, employed test
sequences of 5 s and 10 s, respectively. Choosing the length
of test sequences in such studies is rarely theoretically or
empirically motivated, but instead based upon the availability
of the desired sequences, which is often limited, especially for
ultra-HD content.

B. Variation in Subjective Scores

Fundamentally, the variation existing between subjective
video databases falls into two categories: 1) video content and
2) methodological setup. The former is encouraged while the
latter is not.

1) Video Content: Winkler [21] argues that the parame-
terization of video content will facilitate a greater level
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of variation in future subjective databases. By extracting
values that capture low-level features such as color,
spatial edges, and movement, statistics can be calculated that
measure content diversity across a selection of videos. This
conveniently addresses the problem of content redundancy—
a database with a high quantity of videos with similar parame-
ters may be seen as less useful in terms of generalization than
a significantly smaller set of videos with a more diverse set
of features. By providing such coverage statistics, researchers
can not only quantitatively compare subjective databases but
also try to maximize content variation when creating new ones.
A comprehensive and informative guide to sequence selection
for subjective video testing can be found in [24].

2) Methodological Setup: The ITU [3], [4], [25]–[27]
outlines several approaches to collecting subjective VQA data.
Unfortunately, inconsistencies in these methodologies can lead
to undesired variation in opinion scores. Specific attention
should be paid to two factors in particular: 1) the stimulus
presentation and 2) the rating scale.

The two principal approaches to stimulus presentation in
subjective VQA studies differ in the number of videos that are
displayed before each recorded response. DS methodologies
present videos in pairs, one of which may be a reference
or both may be distorted. SS methodologies, on the other
hand, present only a single video with no reference to the
observer before a response is made. For experiments that use
longer clip lengths, SS designs are more suitable as working
memory constraints reduce the effectiveness of a DS design.
Despite this, researchers often employ SS methodologies for
experiments using shorter clips (e.g., the SS continuous quality
scale (SSCQS) used for LIVE [11]) due to the significant
time savings made compared with collecting data with DS
approaches. While the SS methodology is simpler and more
efficient than the DS approach, it is also more sensitive to
context effects [28].

Context effects occur when previously viewed content
influences opinion scores of subsequently viewed footage.
In most DS designs, these effects are minimized as relative
difference opinion scores are recorded between the
two presented sequences, as opposed to a single absolute
opinion score in SS experiments. It should be noted, however,
that even DS presentations can be sensitive to context effects
in the form of the ordering of the test and the reference
video. For example, there is some evidence that observers are
more sensitive to degradation in video quality than they are
to a similar positive differential in video quality [29]. The
impact of such context effects can be reduced, however, by
randomly counterbalancing the order of the two sequences.
The DSCQS employs such random counterbalancing and has
been shown to produce significantly weaker context effects
than the DS impairment scale (DSIS) that keeps presentation
order fixed [30].

Paired comparison (PC) is a DS presentation methodology
that displays two or more videos in parallel or sequentially.
In general, each sequence is compared with every other
sequence, leading to longer experiment time than most other
DS methodologies. Experiments employing the PC method-
ology facilitate an immediate comparison between multiple

sequences. This eliminates concerns over working memory
capacity when using longer sequences and results have been
reported that claim to show the superiority of PC over
SSCQS [20]. However, SSCQS still requires fewer trials than
PC as usually all pairs of videos need evaluation in PC,
whereas SSCQS multiple test trials can be compared with a
single reference trial. Despite this, procedures exist to reduce
the number of PC comparisons [31].

Subjective assessment methodology for video
quality (SAMVIQ) [26] is a testing methodology that
differs from those previously described here in the level
of control and freedom afforded the observer. Viewers are
presented with a series of scenes, providing viewers with an
interface with a single video window and playback controls
allowing the observer to view an explicit reference sequence
and several different distorted versions as many times as
they choose before providing an onscreen response to each.
A study comparing an SS methodology [absolute category
rating (ACR)] and SAMVIQ indicated that SAMVIQ provides
a greater level of accuracy than ACR if data are collected with
the same number of observers [32]. The benefits of increased
accuracy using the SAMVIQ methodology are tempered by
the additional time costs associated with the open-ended
interactivity of the paradigm, over single and DS approaches
and the artificial nature of the viewing experience [33].

Different rating scales that collect opinion scores in VQA
studies may also be a source of undesired variability. Scales
can vary with respect to being continuous or discrete, in the
number of rating points and in the labels that accompany them.
Continuous scales (such as those used in DSCQS and SSCQS)
ask observers to use an onscreen slider or line bisection to
record their response, whereas discrete scales (such as the
DSIS or ACR) require participants to choose one of a finite
number of ordinal quality levels. Continuous scales have the
advantage of providing a more accurate evaluation response
but may also be more sensitive to spatial biases as discrete
scales have been reported to provide more stable data [34].

Invariably, both discrete and continuous scales are accom-
panied with descriptive words that can potentially introduce
confusion and unwanted variation in opinion scores. For
example, the DSCQS asks observers to rate videos on a scale
of 0–100 where 0 is bad and 100 is excellent, while DSIS asks
observers to rate distortions on a five-level scale that range
from very annoying to imperceptible. The nonlinear mapping
between discrete and continuous scores is a further reason that
makes a comparison of the two scales problematic. In discrete
scales, the five standard ITU labels in English are: 1) excellent;
2) good; 3) fair; 4) poor; and 5) bad. It may be assumed
that when placed upon a continuous scale, these words are
positioned with equal intervals. This assumption has been
questioned, however, by studies that indicate that the semantic
intervals between the ITU labels vary dependingly on the
language they are expressed in [35] and [36]. This means that
discrete scores cannot be easily converted and compared with
scores from continuous-scale experiments. While different
scales may be necessary in specific contexts, they make com-
parisons between databases difficult, and furthermore, varying
the language of the labels may introduce additional noise.
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Fig. 1. Individual frames taken from each of the four reference sequences used in this paper.

Despite these theoretical reservations, it should also be
noted that recent research comparing the effects of four
different scales found strong correlations between continu-
ous and discrete variants, specifically in the context of the
SS methodology [37].

C. Previous Research on Clip Duration in VQA

Surprisingly, the majority of previous research on test
sequence lengths in subjective VQA has explored the impact
of varying durations above 10 s rather than below it.
Reference [5] has suggested that longer sequence lengths
reduce human sensitivity to compression artifacts [5]. An SS
design was used to compare the opinion scores of a group of
three shorter length sequences (10, 15, and 30 s) with those
of a group of three longer length sequences (60, 120, and
240 s) and reported significantly higher MOSs for the group of
longer sequences but found no significant differences within
each of the groups. The researchers suggest when watching
longer video sequences, observers focus more upon the content
of the sequences, and in doing so, become less critical of
the presentation. This interpretation is supported by the effect
being strongest in the highest quality (lowest compression)
content. As no significant effects were found between the
groups of 10, 15, and 30 s, the researchers supported the
current ITU recommendation of 10 s; however, it is not
clear whether observers continue to become more critical if
durations are reduced below 10 s.

One reason to believe that they might do is that recency
effects have been found indicating observers converge upon a
quality assessment after viewing around 6 s of a video clip.
Pinson and Wolf [28] correlated opinion scores collected at
the end of a viewing with continuous scores collected during
a viewing. They found that the correlation coefficient values
moved above 0.9 after 6 s of viewing the video. Aldridge
et al. [38] found that while viewing 30-s clips, observers
weighted their evaluation of the final 10 s 10% more than
footage seen in the first 10 s [38].

Shorter sequence durations are also more likely to produce
consistent ratings between observers than longer ones. This
is because there is a greater level of consistency in where
people look immediately after the onset of a scene, with a rapid
increase in variation after 2–3 s [6], [7]. If there is variance
in where people are attending, there is likely to be associated
variance in their opinion scores.

It has been argued elsewhere [5] that sequence lengths
in subjective VQA studies should be longer than 10 s as
the natural conditions under which people watch videos are,

invariably, much longer. A counterargument to this point
is that it is not the length of the natural viewing period
that needs to be emulated in test conditions, but instead
the length of individual shots. While there remain notable
types of video content that consistently use longer shot
lengths (e.g., video conferencing or sporting event coverage),
modern cinema typically employs shot lengths significantly
shorter than 10 s. Reference [8], that examined the average
shot length of Hollywood movies over the last 75 years,
discovered a strong trend that saw average shot lengths
fall from 10 s in the 1930s to below 4 s in the 2000s.
Therefore, for subjective VQA studies to emulate the
experience of contemporary cinema goers, shorter sequence
lengths should be considered.

III. METHODOLOGY

This section contains a detailed specification of a subjective
experiment, designed to explore the impact of reducing video
presentation times below 10 s, upon the criticality of observer
rating behavior.

A. Participants

Twenty-four postgraduate students (11 women and 13 men)
at the University of Bristol were paid to participate. The
average age of participants was 23.7 years and all reported
having normal or corrected-to-normal visual acuity. All also
had normal color vision, which was verified by the use of
Ishihara charts.

B. Reference Sequences

Four HD, uncompressed reference sequences were selected
from the VQEG HD database [16]. Each of the chosen videos
was originally 1920 × 1080 pixels, transformed to YUV 4:2:0
format, progressive scan and played at 25 frames/s. All original
reference sequences were 10-s long and contained no shot
transitions or audio components. Sequences were chosen that
maintained a high level of temporal consistency throughout
the entire 10 s to ensure that content did not significantly vary
when trimmed to shorter lengths. A description of the visual
characteristics of the source videos is provided below and
example frames taken from each can be observed in Fig. 1. The
types of movement featured in each sequence are described
in Table II.

1) Abbey: Sequence shot from an aerial perspective slowly
moving toward a large house surrounded by grass and
trees.
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TABLE II

DESCRIPTION OF TYPES OF MOVEMENT FEATURED

IN THE FOUR REFERENCE SEQUENCES

Fig. 2. Plots of the average feature values of the four reference sequences
over the full 10 s.

2) Bottles: Camera zooms out slowly then maintains a static
shot of an arrangement of Bottles and cans.

3) Feathers: A static camera views a revolving metallic
cage decorated with colorful feathers.

4) Waves: Sequence shot from a static camera depicting
rippling water beside a glistening rockface.

Four low-level feature descriptors were also
computed [21], [39] for each reference video to quantify the
content of the database. These features are described in detail
in the Appendix. Mean spatial information (SImean) is an
estimation of edge density [21]. Mean temporal information
(TImean) is calculated as the absolute difference in intensity of
every frame in a sequence. The texture parameter (TP) [39]
and dynamic TP (DTP) [39] describe static and dynamic
texture properties, respectively. The average coverage of the
features calculated using the current four sequences can be
seen in Fig. 2, while the time-variant plots are displayed
in Fig. 4.

C. Test Sequences

For the test material, five versions of each reference
sequence were generated, their durations 10, 7, 5, 3, and 1.5 s,
respectively. Shorter sequences were created by trimming the
necessary amount of time from the end of the 10-s sequence,
unless the video featured a significant shift in camera
dynamics. In this case, the shorter sequences were produced
by symmetrically trimming either side of the event. One such
event was identified in the Bottles video whereby the camera
switched from a zoom-out to static. Fig. 4 plots the time-
varying feature values for the four reference sequences with
an indication of which frames were included in the truncated
versions.

Fig. 3. Boxplot illustrating the distribution of PSNR values calculated from
the group of twenty 10-s test sequences. The red line represents the median,
the vertical edges of the box are the first and third quartiles, and the whiskers
are the range.

Each video sequence was also distorted using HEVC
compression (codec version HM 14.0) with four different
quantization parameters (QPs) of 27, 32, 37, and 42. Maximum
coding units were set to 64 × 64 pixels, maximum partition
depth set to 4, and the group of pictures size was 1. One
additional distortion was generated using a Gaussian blurring
filter of 7×7 pixels with a standard deviation of 4 pixels. The
distribution of peak signal to noise ratio (PSNR) values for
the twenty 10 s test sequences can be seen in Fig. 3. The final
data set consisted of 20 reference videos and 100 test videos.

D. Environmental Setup

All videos were displayed at 25 frames/s on a Panasonic
TH-50BT300ER HD plasma screen, screen with a
native resolution of 1920 × 1080 pixels and measuring
1105 × 622 mm and a 5 000 000:1 contrast ratio. The screen
was connected to a Windows PC running MATLAB and
Psychtoolbox 3.0. Participants sat in a chair 186.6 cm from
the screen (three times the height of the screen) in a darkened
room.

E. Assessment

Participants provided three responses after viewing each
video pair using a physical questionnaire sheet and a pencil.
First, participants indicated which of the two videos was of
inferior quality. Then, second and third, participants provided
a quality score for the first and second videos. Scores were
expressed by line bisection of a quality scale labeled at equal
intervals with excellent, good, fair, poor, and bad.

F. Procedure

The DSCQS procedure was used to collect the data. Each
trial consisted of the participant viewing Video A followed by
a gray screen for 3000 ms then viewing Video B. Video B was
followed by a gray screen depicting a 3000-ms countdown.
Participants were then asked to produce a subjective quality
evaluation of both Videos A and B using the assessment
method described in the above section. Participants were given
unlimited time to make their choice before beginning the next
trial.

For each pair of videos, one was a reference, while the
other was a distorted version of the reference. The order of the
reference and test sequences was randomly counter balanced.
Trials were grouped according to sequence length, producing
five blocks of trials. Within each of these, participants viewed
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Fig. 4. Time-varying feature plots for each of the four reference sequences used in this paper. The colored bars at the base of plots indicate the frames used
in truncated sequences: red (10 s), green (7 s), blue (5 s), black (3 s), and magenta (1.5 s). Care was taken to ensure consistency of feature content across
different duration sequences.

sequences of only a single sequence duration. The order of the
blocks and the order of trials within each block were randomly
permutated for each participant to prevent ordering effects.

In total, each participant viewed five blocks, containing
20 trials each with a complete session lasting no more than
30 min.

Prior to testing, each participant was given instructions and
took part in a brief training session providing opinion scores
for two video pairs, each of 10 s duration. The videos used
in the training session were not used in the subsequent test
session.

After completing the five blocks of trials, observers were
asked the question: "In which of the five blocks did you feel
comfortable making quality assessments?.

G. Analysis

Difference scores were calculated for each trial and each
participant by subtracting the quality score (measured in
centimeters and scaled up to a value between 0 and 100) of
the test sequence from that of the paired reference sequence.
Difference MOSs (DMOSs) were calculated for every partic-
ipant by taking their average difference score for trials within
each duration block (collapsing over different distortions and
sequences).

Participant data were checked for outliers according to
the protocol outlined by the ITU [3]. Here, values that fall
two standard deviations above or below the mean value are
considered outliers. A participant from a normally distributed
population (defined as distribution with a Kurtosis value
between 2 and 4) is rejected if two conditions are met. The
first condition is met if over 5% of a participant’s scores are

outliers. The second condition is met if the ratio of the absolute
difference between the number of high and low outliers to the
total number of outliers of a participant falls below 30%.
This analysis indicated that one participant should be removed
from the data set (6% for criteria 1 and 0% for criteria 2).

IV. RESULTS AND DISCUSSION

This section is divided into four parts, each of which
addresses a separate research question posed in Section I.
Three main analysis techniques are employed: 1) analysis
of variance (ANOVA); 2) pairwise comparisons, adjusted for
multiple comparisons using Tukey’s least significant differ-
ence; and 3) Pearson’s correlation coefficient [40]. For a
comprehensive guide to statistical analysis of subjective testing
data, the reader is referred to ITU-T Study Group 12 [27].
Section IV-A uses a one-way ANOVA to address the main
question of whether variance in DMOS exists between dif-
ferent sequence lengths. To identify whether compression
level or reference video had a significant influence upon
a potential duration effect, a two-way ANOVA is used
in Sections IV-B and IV-C, respectively. The significance level
of the interaction effect in a two-way ANOVA provides an
indication of whether the main effect of the first factor is
significantly different under distinct conditions introduced by
the second factor. If an ANOVA is significant overall, pairwise
comparisons are used to identify which pairs of durations yield
significantly different DMOSs. The significance of a Pearson’s
correlation coefficient is used to identify whether there is a
linear relationship between sequence duration and DMOS.

In Section IV-A, analyses were performed upon
DMOSs from all videos and all compression levels.
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Fig. 5. (a) When averaging DMOS values over all four reference sequences
and five compression strengths, a smooth function emerges, indicating longer
sequences produce higher levels of accuracy. The error bars represent the
standard error of the mean. (b) Histogram of the observer votes for the shortest
duration sequence they felt confident assessing. The error bars represent the
standard error of the mean.

In Sections IV-B and IV-C, analyses were performed after
separating DMOS values according to compression level and
reference video, respectively.

A. Sequence Duration Affects DMOSs

The average DMOS over all conditions and participants
was 24, indicating that scores were not uniformly distributed
over the 100-point scale. Fig. 5(a) combines DMOS from
every sequence and all distortion types and illustrates how
the accuracy of human observers steadily increased when
viewing sequences from the 1.5-s block to sequences from
the 7-s block, before decreasing slightly during the 10-s block.
However, it must also be noted that the differences are very
small. A one-way repeated measures ANOVA performed upon
participant DMOS produced a significant model, F(488) =
2.78 and p = .032, indicating that significant variation existed
between the groups. After adjusting for multiple comparisons,
significant differences were found between the block of 1.5-s
sequences and those of 5-s (p = .036), 7-s (p = .024), and
10-s sequences (p = .036). Pairwise comparisons between
DMOS values in the 5-, 7-, and 10-s blocks were not
significant (all p > .48). Correlational analysis confirmed that
an overall linear relationship between duration and DMOS was
not significant (r(21) = 0.16 and p = .088). These results
indicate that longer durations do increase observers’ accuracy
when identifying compression artifacts; however, the effect is
a small one and 10 s did not produce the best performance.

B. Influence of Compression Strength

The principle point to highlight about the plot in Fig. 6(a)
is that as expected, different compression levels produced
different strengths of DMOS values. Higher compression
levels increase the amount of distortion between the reference
and test videos and this is reflected in the DMOS values.
A two-way repeated measures ANOVA (factor 1: sequence
duration and factor 2: video compression) confirmed this by
identifying compression as a significant factor affecting the
variance of DMOS, F(2.23, 49.21) = 140.35, and p < .001
(degrees of freedom adjusted using the Greenhouse–Geisser

Fig. 6. (a) Separating DMOS with respect to compression strength highlights
a distinction between trials using the two most aggressively compressed
sequences and the remaining three. The error bars represent the standard
error of the mean. (b) Separating DMOS with respect to reference sequence
highlights how the main effect of an increase between 1.5-s sequences and
7-s sequences remains consistent for all four videos in the database. The error
bars represent the standard error of the mean.

TABLE III

ANOVA AND CORRELATION STATISTICS SEPARATED BY

COMPRESSION LEVEL. STATISTICS SIGNIFICANT TO

THE p < .05 LEVEL IN BOLD WITH ASTERISK

correction due to violation of sphericity assumption). The
model yielded a marginally significant interaction between
compression and duration, F(16 352) = 1.62, and p = .06,
suggesting that the duration effect identified in the previous
section varied as a function of compression level. Inspection of
Fig. 6(a) indicates that the three least aggressive compression
levels (QP27, QP32, and QP37) produced the most consistent
trend. This observation was confirmed by independent analysis
of the DMOS at each QP value (the results are shown
in Table III). Videos compressed at QP32 and QP37 produced
significant overall ANOVA models and significant correlations
between sequence duration and DMOS. Furthermore, signifi-
cant or marginally significant pairwise comparisons appeared
only in the QP27 model (1.5 versus 7 s and p = .04), the
QP32 model (1.5 versus 5 s and p = .064, 1.5 versus 7 s and
p = .019, 1.5 versus 10 s and p = .018) and the QP37 model
(1.5 versus 7 s and p = .02, 1.5 versus 10 s and p = .05).
Data from trials using videos with the two most aggressive
compressions (QP42 and Blur) produced no significant effects
with respect to duration.

Both the level of compression and the length of the test
sequence affect the amount of information available to the
observer when completing the task. The results here indicate
that the benefits gained by longer durations are tempered if the
artifact detection task is either too easy or too hard. In the case
of the task being too easy (the two highest levels of distortion),
there is already enough information provided in each of the
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TABLE IV

ANOVA AND CORRELATION STATISTICS SEPARATED AT REFERENCE

SEQUENCE LEVEL. STATISTICS SIGNIFICANT TO THE p < .05 LEVEL

IN BOLD WITH ASTERISK. † DEGREES OF FREEDOM ADJUSTED TO

F(2.81, 61.73) USING THE GREENHOUSE–GEISSER CORRECTION

DUE TO VIOLATION OF SPHERICITY ASSUMPTION

sequence lengths to make an accurate decision. By contrast,
in the case of the task being too difficult (the lowest level of
distortion), the scarcity of signal separating the reference from
the test sequence reduces the impact of a longer viewing time.

This suggests that when identifying compression artifacts,
the benefits afforded to viewing longer sequence durations are
not as valuable if the task is very difficult or very easy.

C. Influence of Video Content

Interestingly, the DMOS for each of the four reference
videos displayed in Fig. 6(b) was significantly different. A
two-way repeated measures ANOVA (factor 1: sequence dura-
tion and factor 2: reference sequence) indicated source video
to be a highly significant factor contributing to variance in
DMOS, F(366) = 57.92, and p < .001. All four videos
produced similar increasing trends from the 1.5-s block to
sequences from the 7-s block after which, for the 10-s block,
the DMOS declined in all but the Bottles sequence, which
conversely, produced a steep increase. Despite the anomalous
increase observed for the Bottles sequence, the interaction
effect was not significant, indicating that, overall, the effect
did not change in different test sequences.

The results of independent analyses performed upon the
data from each video sequence are displayed in Table IV.
While data from the Bottles video produced highly significant
ANOVA and correlation models, all other videos produced no
significant effects. Examining the pairwise comparisons, one
saw this trend continuing with data from the Bottles sequence
displaying a highly significant increase between 1.5 and 10 s
(p = .003), whereas all other videos failed to yield any
significant differences. So, what was different about the Bottles
video compared with the others?

The current data set is not diverse enough to draw strong
conclusions about why DMOS for the Bottles video continued
to increase in the 10 s block, while this was not the case
for the other three videos. However, an examination of the
feature plots in Fig. 4 suggests the 10-s Bottles sequence
has specific properties that may explain its irregular results.
Critically, the point at which the TImean drops off to zero
corresponds to the point at which the 7 s sequence ends, while
the 10-s sequence continues for a further 3 s. Each of the other
three 10-s sequences features significant movement throughout
their durations. If observers are weighting their observations
favorably toward the end of the sequences (as suggested
in [28] and [38]), an interpretation of the present data is that
the static camera at the end of the Bottles video provided a

critical advantage to observers viewing the full 10-s Bottles
video. The presence of static text toward the end of the
10-s Bottles video further supports this interpretation. The
criticality task is likely to become easier for observers when
viewing static text as minor distortions to this kind of content
are more salient than those to less predictable or structured
stimuli. If our speculations here are true, the increase in DMOS
between the 7 and 10-s Bottles sequence was driven not by the
increase in duration but instead by the decrease in movement.

Three of the four test sequences produced the same pattern
seen in the overall duration effect, while the fourth sequence
was very similar. Therefore, the results here indicate that video
content has a minimal impact on the way duration affects
DMOS values.

D. Observer Assessment Confidence

After testing was complete, observers were asked in which
of the blocks they felt confident completing the task. Fig. 5(b)
shows how the majority of observers (12) identified 5 s
to be the shortest duration sequence that they felt confi-
dent assessing. Eight observers identified 3-s sequences,
two observers chose 7-s sequences and one observer selected
1.5-s sequences. Interestingly, not one of the participants chose
10-s sequences, recommended by the ITU and used by the
majority of current subjective VQA studies. A chi-squared
test of independence confirmed that these frequencies are
significantly different, χ2(4) = 23.3 and p < .001. Observers,
therefore, felt just as confident in their quality judgments while
watching shorter sequence lengths as longer ones, with
3- and 5-s sequences, accounting for 87% of the votes.

V. CONCLUSION

Here, we have reported the results of a subjective VQA
study that explored the impact on rating behavior of reducing
test sequence durations below the standard 10 s, recommended
by the ITU. Our four significant findings are the following.

1) There is a small but significant increase in accuracy if
sequences are increased from 1.5 to 5, 7, or 10 s.

2) This effect becomes stronger if the difference in distor-
tion between the reference and test video is reduced.

3) The main effect remains consistent between different but
temporally consistent source videos.

4) Observers feel just as confident assessing the quality of
videos that are 5 s as ones that are 10 s.

The practical implications of these findings are significant.
Our results indicate that critical observations of video quality
do not significantly change if 10-s sequences are exchanged for
7-, or indeed, 5-s sequences. However, our recommendation to
half the standard sequence length from 10 to 5 s is qualified
by the methodology used for data collection and the temporal
consistency of the content. The findings presented here specif-
ically relate to studies that use DS presentations and the con-
tinuous quality scale assessment technique. For experiments
that deviate from this particular design, our recommendations
are not necessarily applicable. A final qualifying note to the
reader is that the current results are based on the analysis of
a diverse set of content, but the number of sequences was



MERCER MOSS et al.: ON THE OPTIMAL PRESENTATION DURATION FOR SUBJECTIVE VQA 1985

constrained to ensure a manageable testing time. Three of the
four videos produced very similar results; however, the one
featuring the most spatiotemporal variation over time (Bottles)
slightly deviated from the common pattern. Our strongest
recommendation can, therefore, only be applied to temporally
consistent content. However, future research may focus on
whether the findings reported here do indeed translate to other
methodologies and more varied content.

Collecting ground truth data is essential for the comparison
of video coding methods and for validation of objective VQA
models, but it is expensive, in both time and labor. The results
presented here provide convincing evidence that by reducing
sequence lengths from 10 to 5 s, video processing times can be
halved and test time can be cut by 40% in DS methodologies
(assuming an additional 5 s for voting), without any significant
impact on the quality of the resulting data. If voting times
can be reduced, the potential savings increase. Furthermore,
the time to compress test sequences will also be reduced
proportionally. We believe that such a shift in procedure will
facilitate a significant boost in the generation of ground truth
data produced by the associated research community.

APPENDIX

FEATURE CALCULATIONS

Mean spatial information (SImean) is an estimation of edge
density. It is calculated for each frame by convolving the
luminance profile with Sobel filters [41]. Images filtered with
the horizontal, Ih(x, y), and vertical, Iv (x, y), Sobel kernels
are then combined to produce an image representing edge
magnitude at each pixel. The final SImean frame descriptor
is calculated as the root mean square of edge magnitude at
each pixel

SImean =
∑

x,y

√
Ih(x, y)2 + Iv (x, y)2

P
(1)

where P is the total number of pixels in the frame.2

Mean temporal information (TImean) is an estimation of
variation in luminance between neighboring frames of a
sequence. It is calculated as the root mean square difference in
luminance between the current frame It (x, y) and the previous
frame It−1(x, y)

TImean =
∑

x,y

√
(It (x, y) − It−1(x, y))2

P
. (2)

TP is an estimation of static texture and is calculated
under the assumption that texture resides in regions dominated
by high-spatial-frequency components. Each frame is decom-
posed into six high-frequency subbands, using the dual-tree
wavelet transformation [42]. Subband coefficients, B1:6(x, y)
are then summed to produce a single TP map

Mt p(x, y) =
6∑

i=1

Bi(x, y). (3)

2Unless otherwise stated, we employ capital letters to represent matrices,
for example, Ih is the matrix representing a single frame after convolution
with the horizontal Sobel kernel. The capital letters with coordinates represent
matrix elements, for example, Ih (x, y).

The final TP value for a single frame is obtained by calculating
the mean over all pixels

TP =
∑

x,y

Mtp(x, y)

P
. (4)

DTP is an estimation of complex and irregular motion
between the current and two reference frames [39]. DTP is
calculated as the product of two features, DTP1 and DTP2

DTP = DTP1 · DTP2. (5)

Motion estimation is applied between a current and reference
frame based on a translational model that uses sum of squared
differences as the distortion method, 8 × 8 blocks, and a full
search strategy (64 pixel range). The discrete approximation
for the second derivative [SD(x, y), calculated based on
two subvectors SDX(x, y) and SDY(x, y)] of a motion vector
MV(x, y), is formally expressed in (6) and (7). It is noted
here that (x, y) in these equations refer to block coordinates
as opposed to pixel coordinates, referenced in previous
equations3

SDX(x, y) = MV(x − 1, y) + MV(x + 1, y) − 2MV(x, y)

(6)

SDY(x, y) = MV(x, y − 1) + MV(x, y + 1) − 2MV(x, y)

(7)

where MV(x, y) = (MVh(x, y), MVv (x, y)) is the motion
vector of an 8 × 8 block. Here, motion vectors are calculated
between the current and two adjacent reference frames. For
each reference frame p, the SDX(x, y) and SDY(x, y) are
combined according to

SDp(x, y) = ||SDXp(x, y)||2 + ||SDYp(x, y)||2. (8)

The descriptors for each of the two reference frames are then
combined, weighted by their distance from the current frame

SD(x, y) =
∑

p=±1

1
|p| · SDp(x, y)

2
. (9)

The final DTP1 feature is then calculated by taking the mean
value over all blocks

DTP1 =
∑

x,y

SD(x, y)

N
(10)

where x and y are the block coordinates and N is the total
number of blocks in a single frame.

For DTP2, the mean squared error in luminance values
between the current frame Ic(x, y) and the motion-
compensated frame Ip(x, y) is calculated before averaging
over all pixels in the frame

MSEp =
∑

x,y

√
((Ic(x, y) − Ip(x, y))2

P
(11)

3We use bold capital letters to represent the matrices with vector elements,
for example, MV. We use bold capital letters with coordinates to represent
the elements of these matrices, for example, MV(x, y).
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where MSEp is the mean squared error in luminance between
the current frame and reference frame p. For the final DTP2
feature value, mean squared errors calculated from each refer-
ence frame are combined, weighted by the distance from the
current frame

DTP2 =
∑

p=±1

1
|p| · MSEp

2
. (12)
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