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Abstract—Mining frequent patterns is a crucial task in
data mining. Most of the existing frequent pattern mining
methods find the complete set of frequent patterns from a
given dataset. However, in real-life scenarios we often need
to predict the future frequent patterns for different tasks
such as business policy making, web page recommendation,
stock-market behavior and road traffic analysis. Predicting
future frequent patterns from the currently available set of
frequent patterns is challenging due to dataset shift where
data distributions may change from one dataset to another.
In this paper, we propose a new approach called reframing
in frequent pattern mining to solve this task. Moreover, we
experimentally show the existence of dataset shift in two real-
life transactional datasets and the capability of our approach
to handle these unknown shifts.

Keywords-Data Mining, Frequent Pattern Mining, Dataset
Shift, Machine Learning, Adaptation.

I. INTRODUCTION

Data mining techniques can discover hidden and poten-
tially useful knowledge from databases. Frequent pattern
mining [1], [2] plays an important role in data mining tasks
such as association rule mining, classification, clustering,
time-series mining, graph and web mining. By mining the
frequent patterns, several important business area decisions
like maximizing revenue, minimizing marketing and/or in-
ventory costs can be made; and knowledge about the inter-
esting customers/itemsets can be discovered. In addition to
market basket data analysis, frequent pattern mining can also
be useful in several real-life domains including web click
streams, biological gene databases, social network databases,
stock-market databases, road traffic data analysis, data feeds
from sensor networks, telecommunication call records, and
so on.

Most of the existing frequent pattern mining methods
extract frequent patterns when the full dataset is available. It
is a challenging task to predict the future frequent patterns
based on the currently available set of frequent patterns
since the future set of frequent patterns may vary due to
dataset shift [3]. Dataset shift is a natural event in real-life
datasets where data distributions and/or decision functions
may change from one dataset to another [3]. None of the
existing frequent pattern mining methods is applicable to

predict the future frequent patterns based on the currently
available set of frequent patterns under the presence of
dataset shift. However, it is a very necessary task in data
mining and machine learning as we often do not have enough
data in several situations to discover the complete set of
frequent patterns.

Consider a real-life scenario, where we have the trans-
actions of a retail store in City-1 for the month of June
and we move to City-2 in the beginning of July where we
have very few transactions. According to the normal cases,
some frequent patterns may be common between these two
cities and some are not. For example, City-1 may have
{bread}, {meat}, {milk}, and {bread, meat} as frequent
patterns while City-2 may have {rice}, {meat}, {milk},
and {rice, meat} as frequent patterns. Therefore, it would
always be a challenging problem in the domain of frequent
pattern mining as mentioned earlier. In this situation, the
existing methods would wait until the end of July for all the
transactions of City-2 to arrive and then they mine the exact
frequent patterns. But, we have some knowledge here such
as the set of frequent patterns of another city of the previous
month and a few transactions of this city for this month. If
we could predict a good approximation in the beginning
of the month with this available knowledge, it would be
great beneficial for the businessmen of City-2 to make
their business decisions/policies for that month. This real-
life scenario motivates us to propose a new approach called
reframing in frequent pattern mining. The main objective
of reframing is to reuse the existing model/knowledge in
several deployment contexts and handle dataset shift even
though a small amount of knowledge is given at each
deployment. To the best of our knowledge, our proposed
approach is the first solution to predict future frequent
patterns based on the currently available set of frequent
patterns with the capability of handling dataset shift.

The main contributions of our approach are as follows
• We develop a new idea of reframing in frequent pat-

tern mining, and design an efficient algorithm, called
Reframing Frequent Patterns (RfmFP), to perform the
task. The proposed RfmFP algorithm can discover a
very good set of approximate frequent patterns even



though only a few transactions are available in the
deployment with the presence of dataset shift.

• The efficiency and effectiveness of the proposed ap-
proach have been shown experimentally. We present the
existence of dataset shift in two real-life transactional
datasets [4], [5] and capability of our algorithm to
approximate these unknown real-life shifts accurately.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. In Section 3, we describe our
proposed reframing approach for frequent pattern mining.
In Section 4, our experimental results are presented and
analyzed. Finally, in Section 5, conclusions are drawn.

II. RELATED WORK

The support/frequency of a pattern is the number of trans-
actions containing the pattern in the transactional database.
The problem of frequent pattern mining is to find the
complete set of patterns satisfying a minimum support in
the transactional database. The Apriori [1] algorithm is the
initial solution of frequent pattern mining problem and very
useful in association rule mining [1], [5]. However, it is
based on the level-wise candidate generation-and-test mech-
anism which may create the problems of several database
scans and huge candidate pattern generation. Han et al. [2]
solved these problems by introducing a prefix tree (FP-tree)-
based algorithm without candidate set generation and testing.
This algorithm is called the frequent-pattern growth or FP-
growth algorithm and needs only two database scans.

Some methods have been proposed to extend FP-tree
to capture all the information with one database scan for
incremental databases [6] and data streams [7]. These meth-
ods wait for the new parts/batches of transactions to be
arrived completely before mining. Accordingly, they can
mine frequent patterns in the new time periods when all
the new transactions are available. Stated in other words,
they are unable to predict the future frequent patterns based
on the currently available frequent patterns. In order to
generate a limited number of frequent patterns when the
total number of frequent patterns becomes very high, several
methods have been proposed which can approximate the ac-
tual frequent patterns. For example, closed [8] and maximal
frequent patterns [9] to generate only the longest supersets of
frequent patterns, Top-K frequent patterns [10] to generate
the top-most K frequent patterns according to frequency,
K-summarized patterns [11] to generate K representative
frequent patterns, and approximate frequent patterns [12] in
the presence of noise (i.e., absence/presence of an item in
a transaction is altered by noise). However, these methods
also need all the transactions to find the frequent patterns
and are not applicable to predict the future frequent patterns
based on some available knowledge. Moreover, they cannot
handle dataset shift.

On the other hand, research areas such as transfer learning
[13] and domain adaptation [14] proposed solutions to per-

form classification and regression tasks where training and
test data follow different distributions. A score-based method
[15] has been proposed to handle classification problem in
different deployment scenarios. It is also possible to adapt
regression outputs when the cost function changes. A tuning
method has been proposed to adjust the average mispre-
diction cost of a cost-sensitive regression model [16]. This
method adds/subtracts a constant shift to all the predicted
values of the original regression model. Research has also
been done to tackle different kinds of dataset shift [3] such
as covariate shift, prior probability shift and concept shift.
An input transformation based approach, called GP-RFD,
has been proposed recently to handle general dataset shift
[17].

However, the existing dataset shift adapting approaches
are not applicable for mining frequent patterns. And, none
of the existing frequent pattern mining methods can predict
the future frequent patterns based on the given knowledge
under dataset shift. Therefore, in this paper, we propose a
new approach called reframing in frequent pattern mining
in order to solve this important and challenging task.

III. OUR PROPOSED APPROACH

In this section, we present our proposed approach for
reframing in frequent pattern mining. Consider a real-life
scenario, where we have the transactions of a retail store
in City-1 and City-2 for June and July, respectively. Fig. 1
(a)-(b) represents this example with the frequent patterns for
these two cities for a minimum support threshold of 33% (3
out of 9 transactions). Note that dataset shift exists between
these two datasets such as patterns b and ab are frequent in
City-1, but infrequent in City-2. On the other hand, patterns
c and ac are frequent in City-2, but infrequent in City-1.
Now consider that we are in the beginning of July and
want to predict the complete set of frequent patterns for
City-2. Let us assume that we have one-third transactions
(3 for this example) of the full dataset and obviously the
complete set of frequent patterns of June from City-1.
Before explaining our proposed reframing solution, we also
propose two preliminary solutions called base and retraining.
Here we report precision, recall and F-measure to show the
performance of a method.

A. Base Model

Applying the base model means directly using the source
model to test the deployment data. Here, if we directly
predict frequent patterns of City-1 to be the frequent patterns
of City-2, it can be stated that we are using the base model.
Applying the base model does not require any knowledge
from the deployment. In this example, the results of the base
model is shown in Fig. 1 (c). Note that the true positives
(TP), false positives (FP) and false negatives (FN) represent
the frequent patterns common in two cities, frequent in City-
1 but not in City-2 and frequent in City-2 but not in City-1,



Figure 1. Example transactional databases with resultant frequent patterns for a minimum support threshold of 33% (a) City-1 (June) (b) City-2 (July) (c)
Performance of the base model of City-1 (June) over City-2 (July). (d)-(f) Performance of retraining when only one-third data of City-2 (July) is available.
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Figure 2. The proposed framework for reframing in frequent pattern
mining.

respectively. Therefore, the base model indicates the level
of dataset shift between source and deployment.

B. Retraining

When we have few transactions in a deployment, another
straightforward way is to predict the whole set of frequent
patterns based on that knowledge. For example, here we
have one-third transactions of City-2 for the month of July
and we might predict the complete set of frequent patterns
of July based on those available transactions. We refer this
process as retraining in frequent pattern mining.

Note that retraining does not care about the knowledge

from other sources. Accordingly, it goes for the mining
operation with the small amount of transactions available
with the given threshold. Moreover, it does not try to
learn anything for the missing transactions. Performance of
retraining for this example is shown in Fig. 1 (d)-(f). It is
obvious in retraining method that too many frequent patterns
are generated for the same minimum support threshold as
the total number of transactions is limited here. The outcome
of this example reveals that retraining predicts most of the
patterns occurring in that small part as frequent. Hence, it
misses a frequent pattern that does not appear in that part
or has a very low frequency value. By doing so, it naturally
achieves a reasonable recall value. On the other hand, its
precision becomes very poor as it generates too many false
positives. For this reason, its F-measure is also not good in
most of the cases. In this example, even though retraining
achieves the same recall (71.43%) of the base model, its
precision is very poor (27.78%) as well as the F-measure
(40%).

In real-life datasets, frequent patterns may occur regularly
or irregularly. For example, frequent pattern {milk, bread}
may appear regularly throughout the year, but frequent
pattern {trousers, T-shirt} may appear in some particular
time slots. In our example of Fig. 1 (a)-(b), patterns a, b and
ab are regular in City-1 and patterns a, c and ac are regular in
City-2 (their occurrences and frequencies are almost regular
in all the three parts of a month). On the other hand, patterns
f and af are frequent in both City-1 and City-2, but they are
not regular. In City-1, observe that they appear only once in
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available deployment transactions (each transaction is considered three times) of City-2 (July) (c) Prefix-tree of item d (d) Conditional-tree of item d (e)
Mining performance.

part-1 (one-third transactions), and twice and thrice in part-
2 and part-3, respectively. In City-2, this type of behavior
continues for these patterns. They (f and af) do not occur in
part-1, once in part-2 and twice in part-3. Retraining cannot
detect these frequent patterns in City-2 as they did not appear
in part-1. This indicates the inability of retraining to discover
irregular frequent patterns even though it generates too many
false positives.

C. Reframing

In most of the real-life scenarios we have some source
of knowledge to build a model and several deployment
scenarios where we might have little knowledge. If we rely
only on the source knowledge and do not care about the little
knowledge given in a deployment, we will not be able to
detect a possible dataset shift in that deployment. This is the
case of the base model described above. On the other hand,
if we only consider the small knowledge of that deployment,
we might overestimate some patterns and miss some general
behavior of the complete data which can easily be guided
from the rich knowledge of the neighbours/other similar
places. The outcome of retraining described above illustrates
this phenomenon. In order to combine the both, we define
reframing to reuse the source model at each deployment with
a possible adaptation for any dataset shift using the small
given knowledge in each deployment.

The framework of our approach is presented in Fig. 2.
Note that the original source model M A is reused in several
deployment contexts after upgrading with the few available
deployment data for that context. In the running example of
this paper, we can build a frequent pattern mining model for
City-1 and upgrade it with the few available transactions in
City-2. In this way, we can reuse the rich knowledge (learnt
over the full June month in another city) of City-1 as well
as incorporate the small knowledge given in City-2 (or in
other cities) for tackling a possible dataset shift.

Our proposed algorithm for reframing in frequent pattern
mining is called Reframing Frequent Patterns (RfmFP). We
have used a prefix-tree structure [2], [6], [7] for capturing the

transactions of a dataset in order to mine frequent patterns.
At first, the tree structure is created from the source dataset
of City-1 (shown in Fig. 3 (a)). Adjacent links are maintained
like FP-tree here but not shown in the figure for simplicity.
We have sorted the transactions in lexicographic order before
inserting them into the prefix-tree in order to facilitate the
incremental insertion of transactions. For the convenience
of the presentation, we have presented our datasets (Fig. 1
(a)-(b)) here in lexicographic order.

When we get some deployment data (one-third transac-
tions of City-2 for this example), we can insert these new
transactions in the source tree easily. It is a research issue
that how much importance should be given to the new
transactions. In this example, we present the upgraded tree
by giving equal importance to both source and deployment
transactions. Note that City-1 has 9 transactions and we have
3 transactions of City-2 up to the current time. If we consider
each available transactions in City-2 three times, then it will
be equivalent to consider total 9 transactions in City-2. Now,
if we insert these 9 transactions (actually we insert each
available 3 transactions with a frequency value of 3) into
the tree, it will contain total 18 transactions considering 9
transactions from each city. Here a pattern has to occur 6
times to be frequent for a 33% minimum support threshold.

The reframed tree structure is shown in Fig. 3 (b). We can
now perform pattern growth mining operation [2] from this
tree. We have to create prefix and conditional trees for each
frequent item. For illustration, prefix and condition trees of
item d are shown in Fig. 3(c) and Fig. 3(d), respectively. To
create the prefix-tree of item d, all branches prefixing d are
taken with its frequency value. Subsequently, a conditional-
tree of d is created from the prefix-tree by eliminating the
nodes containing infrequent items with d. Here items a, b
and c appear in the prefix-tree, but items b and c have
frequency value less than min-sup (6). So, items b and c
are eliminated in the conditional-tree of d. We get frequent
patterns ad and d from here. As this conditional tree has
only one item, it will not be divided recursively into any
further prefix and conditional trees. Other frequent patterns



can also be found by creating the prefix and conditional
trees from the other frequent items in the same way. The
resultant frequent patterns of RfmFP are shown in Fig. 3(e)
with mining performance. It is noticeable that RfmFP can
discover all actual frequent patterns for this example. It
detects dataset shift in City-2 and discover patterns c and
ac by weighting the deployment transactions (missed by the
base model). It also discovers frequent patterns f and af by
taking the knowledge from City-1 (missed by the retraining).
As patterns f and af are highly frequent (have frequency
value of 6) in City-1, they appear in the final result even
though they are totally absent in the 3 given transactions
in City-2. On the other hand, RfmFP successfully removes
false positive patterns related to item b (generated by the
base model) and others (generated by retraining) as they
have low frequency values in the reframed tree. As a result,
RfmFP achieves a complete balance performance to achieve
a very good precision and recall at the same time. So, its
F-measure is also very good.

In the described reframing example shown in Fig. 3, half
of the transactions (9 out of 18) originate from training and
another half from deployment, achieved by making multiple
copies of each transaction in deployment. We denote by
SR the split ratio between deployment and training, this
is the ratio of the numbers of transactions in deployment
and training. We also denote the number of copies of each
transaction for deployment by MF (multiplicative factor).
In this example, SR=1/3 and MF=3. We denote the weight
value of deployment transactions by W, which is actually
the proportion of transactions used from deployment in the
combined dataset of source and deployment data. In order to
achieve more expressivity, we represent W within the range
from 0 to 1. Hence, the proportion for training data is 1-
W. Accordingly, W=0 is equivalent to the base model, W=1
is equivalent to retraining and W=0.5 is equivalent for the
given example in Fig. 3.

However, it is possible to consider other proportions (W
values) of deployment and training data. The question is,
what should be the value of MF to get the desired W? Our
desired ratio between deployment and training is W/(1-W)
and the original ratio is SR. Therefore,, we have to multiply
SR by MF to make it equal to the desired ratio. Equation
1 represents the value of MF in terms of W and SR. Note
that in our experiments we use such values of W for which
MF can be integer as the number of transactions should be
an integer value. Equation 2 can be derived from Equation
1 and it will calculate the value of W between 0 to 1. For a
given SR, the more we increase MF, W will be more closer
to 1. We assume W=1 when MF is infinity.

MF =
W

SR× (1−W )
(1)

W =
MF × SR

1 + (MF × SR)
(2)

IV. EXPERIMENTAL RESULTS

We have performed several experiments on two real-life
datasets to show the efficiency and effectiveness of our
approach. As mentioned earlier, none of the existing frequent
pattern mining methods investigate the dataset shift problem.
Therefore, it is also an important task to show the existence
of dataset shift in real-life datasets. Accordingly, we report
the existence of dataset shift in these two real-life datasets
at first. Subsequently, we show the performance analysis of
the RfmFP algorithm with respect to the base model and
retraining.

A. Occurrences of Dataset Shift in Real-Life Transactional
Datasets

We present the occurrences of dataset shift in the follow-
ing two real-life transactional datasets.

• BMS-WebView-1: The BMS-WebView-1 dataset con-
tains several months worth of click stream data from
one e-commerce web site. Each transaction in this
dataset is a web session consisting of all the product
detail pages viewed in that session. That is, each
product detail view is an item. The goal of this dataset is
to find associations among products viewed by visitors
in a single visit to the website. It contains 59,602 trans-
actions with 497 distinct items. The average transaction
size is 2.5. The dataset [5] is available in SPMF [18]:
an open source data mining library1.

• Retail: The dataset Retail is provided by Tom Brijs,
and contains the retail market basket data from an
anonymous Belgian retail store [4]. It contains 88,162
transactions and 16,470 distinct items. Its mean trans-
action size is 10.3. The dataset is available in Frequent
Itemset Mining Dataset Repository2.

As the above real-life datasets are collected over time,
dataset shift might naturally occur if we split the datasets
sequentially. In order to check the assumption, we are going
to compare a sequential split to a random split (shuffled
transactions). We split the BMS-WebView-1 dataset into two
equal random partitions denoted by R-1 and R-2, where R-
1 is used as training and R-2 is used as test. We report the
average results of 10 runs for these random partitions using
different minimum support thresholds in Table I. Note that
the base model of R-1 can achieve a good performance in
R-2, for example, it achieves around 95% precision, recall
and F-measure with min-sup=0.5%.

Subsequently, we split the BMS-WebView-1 dataset into
two equal sequential partitions. The first (P-1) and second
(P-2) partitions are used as training and test, respectively. Ta-
ble II shows the performance of the base model of P-1 over
P-2 with the same minimum support thresholds used in the
random partitions. The performance presented here is quite

1http://www.philippe-fournier-viger.com/spmf/index.php
2http://fimi.ua.ac.be/data/



Table I
PERFORMANCE (AVERAGE OF 10 RUNS) OF THE BASE MODEL OF R-1 OVER R-2 IN THE BMS-WEBVIEW-1 DATASET WHERE THESE PARTITIONS

(EQUAL) HAVE BEEN CREATED RANDOMLY.

min-sup TP FP FN Precision Recall F-measure
(%) (%) (%) (%)

0.6 157.2 7.2 7.5 95.638 95.473 95.533
0.5 193.3 11.5 11.2 94.417 94.58 94.456
0.4 262.6 21.8 23.1 92.41 91.982 92.126

Table II
PRESENCE OF DATASET SHIFT IN THE BMS-WEBVIEW-1 DATASET. IT IS DIVIDED INTO TWO EQUAL PARTITIONS (SEQUENTIAL) AND PERFORMANCE

OF THE BASE MODEL OF P-1 OVER P-2 HAS BEEN SHOWN.

min-sup TP FP FN Precision Recall F-measure
(%) (%) (%) (%)

0.6 124 36 60 77.5 67.391 72.093
0.5 151 52 89 74.384 62.917 68.172
0.4 206 67 120 75.458 63.19 68.781

Table III
PERFORMANCE (AVERAGE OF 10 RUNS) OF THE BASE MODEL OF R-1 OVER R-2 IN THE RETAIL DATASET WHERE THESE PARTITIONS HAVE BEEN

CREATED RANDOMLY.

min-sup TP FP FN Precision Recall F-measure
(%) (%) (%) (%)

0.6 382 40.1 35.5 90.531 91.508 90.996
0.5 527.9 55.5 55 90.504 90.567 90.526
0.4 765.6 84.1 80.6 90.11 90.476 90.286

different than the performance of the random partitions. For
example, if we consider 0.5% min-sup, we get only 74.384%
precision, 62.917% recall and 68.172% F-measure. These
results clearly show the presence of remarkable dataset shift
between these two sequential partitions.

In the next experiment, we also divide the Retail dataset
randomly and sequentially. The results of random and se-
quential splits have been presented in Table III and Table IV,
respectively. Note that we take random partitions (shuffled
transactions) of the same size as the sequential partitions.
These results also indicate that remarkable dataset shift can
only be found in the sequential partitions.

The results presented in this subsection clearly show
that dataset shift exists in these two real-life transactional
datasets. Moreover, it is revealed that large dataset shift can
only be observed in these datasets according to sequential
partitions which indicates the natural change of customer
behavior over time.

B. Performance Analysis

We compare the performance of RfmFP algorithm with
the base model and retraining on the real-life BMS-
WebView-1 and Retail datasets. According to the results
of Section IV-A, we use sequential partitions of these

datasets. The first partition P-1 is used as source and other
remaining partitions are used as deployment. First, we show
the comparison results on the BMS-WebView-1 dataset in
Fig. 4 with different weight values and split ratios. We use
F-measure (Y-axis) to present this comparison in order to
show the combined effect of precision and recall. The X-axis
represents W values between 0 to 1. Several values of W
including 0.5 (equal weights to both source and deployment
data), 0.67 (2/3 weight to deployment data and 1/3 weight to
source data) and 0.33 (1/3 weight to deployment data and 2/3
weight to source data) have been reported. Three different
figures have been shown to present the results of three
different SR values. Note that performance of the base model
remains the same when we vary W or SR, as it does not use
any knowledge from the deployment. For a particular SR, the
performance of retraining remains the same when we vary W
as retraining does not use any knowledge from the source.
However, its performance increases when SR increases as
the availability of deployment data is also increasing.

The performance of RfmFP is affected by both W and
SR. When W=0, it acts like a base model as no importance
is given to the deployment data. On the other hand, RfmFP
acts like retraining when W=1 as this time no importance is
given to the source data. Fig 4 shows that the performance



Table IV
PRESENCE OF DATASET SHIFT IN THE RETAIL DATASET. IT IS DIVIDED INTO FOUR EQUAL PARTITIONS (SEQUENTIAL). PERFORMANCE OF THE BASE

MODEL OF P-1 OVER P-2, P-3 AND P-4 HAVE BEEN SHOWN.

min-sup Partitions TP FP FN Precision Recall F-measure
(%) (%) (%)

P-2 347 148 135 70.101 71.992 71.034
0.6 P-3 265 230 128 53.535 67.43 59.685

P-4 323 172 267 65.253 54.746 59.539

P-2 483 176 181 73.293 72.741 73.016
0.5 P-3 373 286 177 56.601 67.818 61.704

P-4 440 219 363 66.768 54.795 60.192

P-2 669 315 302 67.988 68.898 68.44
0.4 P-3 522 462 290 53.049 64.286 58.129

P-4 637 347 510 64.736 55.536 59.784
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Figure 4. Performance comparison (min-sup = 0.5%) on the BMS-WebView-1 dataset with different weights (W) and split ratios (SR).
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Figure 5. Performance comparison (min-sup = 0.5%) on the Retail dataset with different weights (W) and split ratios (SR).

of RfmFP starts with the base model (W=0) and increases
when W increases up to the point of maximum success. Then
it decreases down to the performance of retraining (W=1).
The same performance comparisons are done on the Retail
dataset as shown in Fig 5 with its three deployment partitions
P-2, P-3 and P-4. Here we plot only the RfmFP curves
for a particular partition with different SR values. Note
that we can also observe base and retraining curves from
a RfmFP curve as base and retraining curves can be drawn
with a straight line from W=0 and W=1 points, respectively.
However, these results also show the similar performance
behavior of the base, retraining and RfmFP algorithms.

These results indicate that the W value for obtaining
the highest performance of RfmFP is not fixed for all the
datasets/partitions. As we only have a few data in each
deployment, it is not possible to predict the accurate W.
However, we notice that the maximum value of F-measure
occurs nearby the middle of the X-axis (W=0.5) rather
than nearby the two sides (W=0 or W=1). Moreover, it
is interesting to observe that W=0.5 always gives better
performance than the base model and retraining in all the
cases in Fig. 4 and Fig. 5. Hence, we suggest to use W=0.5
(equal importance to both source and deployment data) when
a small part of deployment data is available.
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Figure 6. Performance comparison (SR = 10% and W = 0.5) on the BMS-WebView-1 and Retail datasets with different minimum support thresholds.

In order to observe the performance of W=0.5, we
now compare the base model, retraining and RfmFP on
these deployment partitions with different minimum support
thresholds using SR=10%. The results are shown in Fig. 6
which clearly indicates the supremacy of RfmFP in all the
cases.

V. CONCLUSIONS

In this paper, we propose a new approach of reframing
in frequent pattern mining and design an efficient algo-
rithm to perform the reframing task by discovering a very
good set of approximate frequent patterns even though
a few transactions are available in the deployment. Our
approach has the capability to tackle different changes in
data distributions and make the existing model workable
in different deployment environments with the presence of
dataset shift. We also define the base model and retraining
in frequent pattern mining and clearly indicate how they are
different from reframing. We exhibit the existence of dataset
shift in two real-life transactional datasets and explicitly
show when remarkable dataset shift can be found in these
datasets. We demonstrate the capability of our approach to
deal with these existing real-life dataset shifts accurately.
Moreover, we experimentally analyze how to choose a good
weight value for the few available deployment transactions
in order to achieve an approximately optimal performance
of the RfmFP algorithm. Finally, we show that the proposed
RfmFP algorithm can clearly outperform the base model
and retraining by using the chosen weight value for the few
available deployment transactions.
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