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Guessing Numbers of Odd Cycles

Ross Atkins, Puck Rombach and Fiona Skerman

Abstract. For a given number of colours, s, the guessing number of a graph is the base s logarithm
of the size of the largest family of colourings of the vertex set of the graph such that the colour
of each vertex can be determined from the colours of the vertices in its neighbourhood. An upper
bound for the guessing number of the n-vertex cycle graph Cn is n/2. It is known that the guessing
number equals n/2 whenever n is even or s is a perfect square [7]. We show that, for any given
integer s ≥ 2, if a is the largest factor of s less than or equal to

√
s, for sufficiently large odd n,

the guessing number of Cn with s colours is (n− 1)/2+ log
s
(a). This answers a question posed by

Christofides and Markström in 2011 [7]. We also present an explicit protocol which achieves this
bound for every n.
Linking this to index coding with side information, we deduce that the information defect of Cn

with s colours is (n+1)/2− log
s
(a) for sufficiently large odd n. Our results are a generalisation of

the s = 2 case which was proven in [3].

Keywords: guessing number, cycle graph, information defect, index codes, unicast, entropy

1. Introduction

Computing the guessing number (Definition 1.2) of a graph G, can be equivalent to determining
whether the multiple unicast coding problem [9] is solvable on a network related to G. The guessing
number of a graph, G, is also studied for its relation to the information defect of G and index coding
with side information [1, 11]. Exact guessing numbers are known only for a small number specific classes
of graphs, such as perfect graphs, or small cases of non-perfect graphs [2, 5, 6, 15]. In particular, the
guessing number of odd cycles, which is the focus of this paper, was not known, except for small cases
[7, 3]. Here we compute the guessing number of the cycle graph, Cn, by analysing optimal protocols
for the “guessing game”.

The guessing game was introduced by Riis in 2007 [14]. It is a cooperative n-player information game
played on a graph with n vertices with s colours. The guessing game on the complete graph Kn

with s = 2 colours is played as follows. Each of the n players are given a hat that is red or blue
uniformly and independently at random. Each player can see everyone else’s hat, but not their own.
The players collaboratively aim to maximise the probability that all players guess the colour of their
hats correctly. Much of the popularity of this puzzle is owed to the striking difference between the
success probability achieved by uncoordinated random guessing and an optimal protocol, which are
1/2n and 1/2 respectively.

The general guessing game considered here differs from many other variants of multiplayer information
games (for example: the “hat guessing game” [4], “Ebert’s game” [10] and the “hats-on-a-line game”
[12]) in the following critical ways:

• The colours are assigned to each player independently and uniformly.
• Every player must guess (no passing or remaining silent).

http://arxiv.org/abs/1602.03586v1
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• Each player does not necessarily see every other player’s colours; two players can see each other
if and only if they are joined by an edge in a given graph G.

• The players guess simultaneously so no communication is possible once the colours are assigned.
• The guessing game is won only if all the players guess correctly. An incorrect guess by any single
player would mean that the whole team of n players collectively lose the guessing game (unlike
[4], for example which seeks to optimise the number of players who guess correctly).

It is known that the greatest probability of winning the guessing game can be achieved by a deter-
ministic protocol [5]. Let G = (V,E) be a graph where V = {v1, v2, . . . , vn} is the set of vertices and

E ⊆
(

V
2

)

is the edge set. We restrict our attention to undirected graphs, but the problem is generalizes
to directed graphs in an obvious way.

Definition 1.1 (Protocol, colouring). For any positive integer s, we let Zs, the group of all
residues modulo s, denote the colour set. A colouring of G with s colours is an n-tuple
c = (c1, c2, . . . , cn) such that ci ∈ Zs. The set of all colourings of G with s colours is
denoted Z

n
s . A protocol on G with s colours is any n-tuple P = (f1, f2, f3, . . . , fn) where

for each i, the [deterministic] function fi : Z
n
s → Zs is such that fi(c) is dependent only

on cj for all j such that vivj ∈ E, i.e. for any i and any two colourings c = (c1, c2, . . . , cn)
and c′ = (c′1, c

′
2, . . . , c

′
n), if c

′
j = cj for all j such that vivj ∈ E then fi(c) = fi(c

′). The
fixed set of P , Fix(P), is the set of all invariant colourings:

Fix(P) =
{

c ∈ Z
n
s | ci = fi(c) ∀i

}

.

Definition 1.2 (Fixed number, fixed set). The fixed number of P is the size of its fixed set;
fix(P) = |Fix(P)|. A protocol P is called non-trivial if Fix(P) 6= ∅. A protocol is called
optimal if it has maximal fixed number.

Definition 1.3 (Guessing number). The guessing number of G with s colours is defined as

gn(G, s) = logs max
P

[fix(P)] .

We assign the n-tuple of colours c ∈ Z
n
s uniformly at random to the set of players, who are each

identified with a vertex of G. The guesses of the players are given by P(c), so the players win if and
only if c = P(c). Hence, the probability that an optimal protocol P wins is

P
(

c = P(c)
)

=
fix(P)

|Zn
s |

= sgn(G,s)−n.

Christofides and Markström [7] showed that, for a perfect graph G and any s, gn(G, s) = n−α where
α is the size of the largest independent set in G. For example, the complete graph Kn is a perfect
graph with α = 1, so an optimal protocol on Kn, wins with probability 1/s. The 3-cycle and the
even-cycle C2k (for any positive integer k) are both perfect graphs with α(C3) = 1 and α(C2k) = k so

gn(C3, s) = 2 and gn(C2k, s) = k ∀ k. (1.1)

Henceforth, we shall consider only the cycle graphs Cn for odd n ≥ 5. In [7], it is shown that

gn(C5, 2) = 5,

and the analysis in [3] shows that

gn(Cn, 2) =
n− 1

2
, for odd n ≥ 7.

For general s, Christofides and Markström define protocols called “the clique strategy” and “the
fractional-clique strategy” [7]. The fractional clique strategy is only defined when the number of
colours s is a perfect power, and it is shown to be optimal on the odd cycle whenever s is a perfect
square, i.e.

gn(Cn,m
2) =

n

2
∀ n,m. (1.2)
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In Definition 3.2, a protocol Pfcp is defined on odd cycles for any number of colours s. The protocol
Pfcp is equivalent to the clique-strategy when s is prime, and to the fractional-clique-strategy when
s is a perfect square. The protocol Pfcp is called the fractional-clique-partition protocol to emphasise
that it is very closely related to Christofides and and Markström’s fractional-clique strategy. Our main
result in Theorem 5.6 states that, for any given s, this fractional-clique-partition protocol is optimal
on any large enough odd cycle.
The rest of this paper is organised as follows. In Section 2, we summarise a few of the known results
on guessing numbers, and introduce the concepts of entropy and mutual information, which we will
use heavily in our proofs. In Section 3, we define the fractional-clique-partition protocol, which is a
refinement of the protocol introduced in [7] and we prove that for odd n, as the number of colours
grows, this protocol achieves a fix(P) lies between sn/2 and sn/2(1 − O(n/

√
s)) (Theorem 3.5). In

Section 4, we lay the technical groundwork which is needed for Section 5. Then, in Section 5, we focus
on the case of large n compared to s, and we prove that the fractional-clique-partition protocol is in
fact optimal on large enough odd cycles (Theorem 5.6). In Section 6, we link this to index coding with
side information and compute the size of an optimal index code for Cn with s colours when n is odd
and sufficiently large.

2. Backround Material and Notation

Many of our proofs will use the concept of the entropy of a random variable. Entropy is defined
in Definition 2.2 and we list three crucial properties in Proposition 2.3. In this paper we take most
logarithms base s, including inside the definitions of entropy. In the rest of this section, we present a
few known results on the guessing number, define some useful random variables on the cycle graph
and a notion of entropy, all of which will be used extensively in our proofs. When possible, we are
consistent with the definitions and notations given in [5, 6, 7, 2, 13, 14]. We start with a small, useful
result that shows, intuitively, that we are allowed to “forget” some colours.

Proposition 2.1. Let G be a graph, let s and s′ be positive integers with s′ ≤ s, and let P be any
protocol on G with s colours. There exists a protocol P ′ on G with s′ colours such that

{

c ∈ Fix(P)
∣

∣ 0 ≤ ci < s′ ∀i
}

⊆ Fix(P ′).

Proof. If P = (f1, f2, . . . fn) then define P ′ = (f ′
1, f

′
2, . . . , f

′
n) in the following way.

• If 0 ≤ cj < s′ for all j such that vivj ∈ E, and 0 ≤ fi(c) < s′ then f ′
i(c) = fi(c).

• If s′ ≤ cj < s for any j such that vivj ∈ E, or s′ ≤ fi(c) < s then f ′
i(c) = 0.

For any colouring c ∈ Fix(P), if 0 ≤ ci < s′ for all i, then P ′(c) = P(c) = c so c ∈ Fix(P ′). �

Definition 2.2 (Entropy, mutual information). Let A1, . . . , Ak be random variables which take
values in a finite set A. The entropy of A1, . . . , Ak is denoted H(A1, . . . , Ak) and is given
by:

H(A1, . . . , Ak) = −
∑

a1,...,ak∈Ak

P(A1 = a1, . . . , Ak = ak) logs P(A1 = a1, . . . , Ak = ak).

The mutual information of A1 and A2 is denoted I(A1;A2) and is given by:

I(A1;A2) = H(A1) +H(A2)−H(A1, A2).

Let B be another random variable taking values in A. The conditional mutual information
of I(A1;A2|B) is given by

I(A1;A2|B) = H(A1, B) +H(A2, B)−H(A1, A2, B)−H(B). (2.1)

Proposition 2.3. Let A1, A2 be random variables which take values in a finite sets A.

1. H(A1) ≤ log |A| with equality if and only if A1 is uniformly distributed.
2. I(A1;A2) ≥ 0 with equality if and only if A1 and A2 are independent.
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3. I(A1;A2|B) ≥ 0 with equality if and only if A1 and A2 are independent conditional on B.

For a proof of the results in Proposition 2.3 we refer the reader to [8].

Definition 2.4. For a non-empty set S, we use the notation A ∈u S to mean A is a random
variable distributed uniformly over all elements in S.

Definition 2.5 (Notation for Cn). The cycle graph, Cn, has n vertices V = {v1, v2, . . . , vn}. The
edge set of Cn is

E = {vivi+1 | i = 1, 2, 3, . . . , n}
(indices are always taken modulo n). In a slight abuse of notation, for any protocol P =
(f1, f2, f3, . . . , fn) on Cn with s colours, we say fi : Z

2
s → Zs where

fi(c) = fi(ci−1, ci+1).

Recall that a protocol P is non-trivial if Fix(P) 6= ∅. For a given non-trivial protocol P
on Cn, define X = (X1, X2, . . . , Xn) to be a colouring chosen uniformly at random from
Fix(P). i.e.

X ∈u Fix(P).

Note that the random colouring X = (X1, X2, . . . , Xn) is only defined for non-trivial
protocols P . To simplify notation we will sometimes denote the entropy of a tuple of Xis
by

h(i1, i2, i3, . . .) = H(Xi1 , Xi2 , Xi3 , . . .).

Since Xi is determined by (Xi−1, Xi+1) we must haveH(Xi−1, Xi, Xi+1) = H(Xi−1, Xi+1)
so h(i − 1, i, i+ 1) = h(i− 1, i+ 1). In general we can freely remove the argument i from
h(. . . , i− 1, i, i+ 1, . . .) as long as we don’t remove the arguments i− 1 and i+ 1.

h(. . . , i− 1, i, i+ 1, . . .) = h(. . . , i− 1, i+ 1, . . .) (2.2)

To simplify notation even further, for integers j < k, let Hk
j denote the quantity

Hk
j = h(j, j + 1, j + 2, . . . , k − 1) + h(j + 1, j + 2, j + 3, . . . , k).

Proposition 2.6. For any three integers i, j, k such that 1 ≤ i < j and j + 1 < k ≤ n.

Hk
i ≤ Hj

i +Hk
j+1.

Proof. We add up the following inequalities:

h(i, i+ 1, . . . , k − 1) = h(i, . . . , j − 1, j + 1, . . . , k − 1)

≤ h(i, . . . , j − 1) + h(j + 1 . . . , k − 1),

and h(i+ 1, i+ 2, . . . , k) = h(i + 1, . . . , j, j + 2, . . . , k)

≤ h(i + 1, . . . , j) + h(j + 2, . . . , k).

�

Lemma 2.7. If P is a non-trivial protocol on Cn with s ≥ 2 colours and X ∈u fix(P), then, for all i,

logs fix(P) = H(X), h(i) ≤ 1.

Proof. The entropy of any random variable over a finite domain is maximised when the variable is
uniformly distributed. Therefore, h(i) = H(Xi) ≤ H(U) where U is a random variable uniformly
distributed over Zs. Hence,

h(i) ≤ H(U) = −
∑ 1

s
logs

1

s
= 1.

The variable X is uniformly distributed over Fix(P). Therefore,

H(X) = −
∑ 1

fix(P)
logs

1

fix(P)
= logs fix(P).

�
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Lemma 2.8. If P is a non-trivial protocol on Cn with s ≥ 2 colours and X ∈u fix(P), then

Hk
j ≤

k
∑

i=j

H(Xi),

for any j ≤ 1 and j + 3 ≤ k ≤ n.

Proof. We prove this by induction on (k − j). Recall that h(i1, i2, i3, . . .) = H(Xi1 , Xi2 , Xi3 , . . .).

• Base case: k = j + 3. Since Xj+1 = fj+1(Xj , Xj+2) and Xj+2 = fj+2(Xj+1, Xj+3) we have

h(j, j + 1, j + 2) = h(j, j + 2) ≤ h(j) + h(j + 2)

and h(j + 1, j + 2, j + 3) = h(j + 1, j + 3) ≤ h(j + 1) + h(j + 3),

respectively. Adding these together yields:

Hj+3
j = h(j, j + 1, j + 2) + h(j + 1, j + 2, j + 3) ≤ h(j) + h(j + 1) + h(j + 2) + h(j + 3).

• Inductive step: k ≥ j + 4. Since Xk−1 = fk−1(Xk−2, Xk) we have

h(j + 1, j + 2, . . . , k) = h(j + 1, j + 2, . . . , k − 2, k)

≤ h(j + 1, j + 2, . . . , k − 2) + h(k).

By Proposition 2.3, I(Xj ;Xk−1|Xj+1, Xj+2, . . . , Xk−2) ≥ 0. Adding these together yields

Hk
j ≤ Hk−1

j + h(k).

This completes the proof.

�

Lemma 2.9. Let P be a non-trivial protocol on Cn with s ≥ 2 colours and let X ∈u fix(P). Suppose
1 = d(1), d(2), d(3), . . . , d(k) = n is a sequence of positive integers with k ≥ 2. If d(i + 1) ≥ d(i) + 2
for all i, then

2 logs fix(P) = H
d(2)
d(1) +H

d(3)
d(2)+1 + · · ·+H

d(k)
d(k−1)+1.

Proof. We proceed by induction on k.

• Base case: k = 2. Since X1 = f1(Xn, X2) and Xn = fn(Xn−1, X1), we have

H(X) = h(2, 3, 4, . . . , n) and H(X) = h(1, 2, 3, . . . , n− 1),

respectively. Adding these together gives Hn
1 = 2H(X) = 2fix(P).

• Inductive step. By Proposition 2.6, for any d(k − 1) + 2 ≤ d(k) ≤ n− 2, we have

Hn
d(k−1)+1 = H

d(k)
d(k−1)+1 +Hn

d(k)+1.

�

3. The Fractional-Clique-Partition Protocol

In this section, we define the fractional-clique-partition protocol, Pfcp, on odd cycles Cn with s ≥ 2
colours. Theorem 3.4 appears in [7] and serves as a good upper bound for any n ≥ 4 and all numbers
of colours.

Definition 3.1 (Factorization bijection). It is easy to see that for any factorization ab = s, there
exists a bijection between Zs and Za ×Zb. Let φ(z)×ψ(z) be such a bijection. For ease of
notation, a and b are assumed to be given in context. Let π be the inverse of this bijection,
so that π(φ(z), ψ(z)) = z for all z ∈ Zs.
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ψ(c7)φ(c7)

ψ(c1)

φ(c1)

ψ(c2)

φ(c2)

ψ(c6)

φ(c6)

Figure 1. The protocol Pfcp on C7 with s = ab colours, where a < b. Each vertex vi
is subdivided into two nodes representing the first and second components (φ(ci) and
ψ(ci), respectively). The red edges ( ) represent pairs of first-components that are
copying each other. The blue edges ( ) represent pairs of second-components that
are copying each other. The black edge ( ) joins a first-component (φ(cn)) and a
second-component (ψ(c1)) which are copying each other as much as possible. For a
colouring c ∈ Fix(Pfcp) on C7, there are a different choices for each red edge, b dif-
ferent choices for each blue edge and a different choices for the black edge. Therefore,
fix(Pfcp) = a4b3 = as3 for n = 7.

Definition 3.2 (Fractional-clique-partition protocol). Let n ≥ 3 be an odd integer, let s be a
positive integer, let a be the greatest factor of s less than or equal to

√
s and let b = s/a.

For any colouring c = (c1, c2, . . . , cn) ∈ Z
n
s , let φ(ci) and ψ(ci) be referred to as the first

and second coordinates respectively of vertex vi. The fractional-clique-partition protocol is
the protocol Pfcp = (f1, f2, . . . , fn) on Cn defined by:

fi(ci−1, ci+1) = π
(

φ(ci−1), ψ(ci+1)
)

for i = 2, 4, 6, . . . , n− 1

fi(ci−1, ci+1) = π
(

φ(ci+1), ψ(ci−1)
)

for i = 3, 5, 7, . . . , n− 2

f1(cn, c2) = π
(

φ(c2), φ(cn)
)

and

fn(cn−1, c1) = π
(

ψ(c1)(mod a), ψ(cn−1)
)

.

Informally, vertices v2k−1 and v2k are copying each others first coordinate and vertices v2k and v2k+1

are copying each others second coordinate (for k = 1, 2, 3, . . . , (n − 1)/2). Additionally, the second
coordinate of vertex v1 and the first coordinate of vertex vn copy each other as much as possible -
whenever the second coordinate of vertex v1 is less than a. An example of Pfcp on C7 is illustrated in
Figure 1.

Proposition 3.3. For a given integer s ≥ 2 and odd integer n ≥ 3, if a is the greatest factor of s less
than or equal to

√
s, then we have fix(Pfcp) = as(n−1)/2.

Proof. Let n = 2k + 1. We count the number of colourings of Cn for which the protocol Pfcp guesses
correctly. For any colouring c ∈ Fix(Pfcp), there are k pairs of vertices copying each other’s first
coordinates and there are a different choices for φ for each pair. Similarly, for each of the k pairs of
vertices copying each other’s second coordinates, there are b different choices for ψ. This yields akbk
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possibilities. Additionally, the first coordinate of vertex vn must equal the second coordinate of vertex
v1, for which there are a possible colours. Multiplying these together yields

fix(Pfcp) = ak+1bk = as(n−1)/2.

�

Theorem 3.4. [7] For any integer n ≥ 4, we have gn(Cn, s) ≤ n
2 , with equality only if for any optimal

protocol, P the following is satisfied. If X ∈u Fix(P) then H(Xi) = 1 for all i.

Proof. Let P be an optimal protocol on Cn with s colours. By Lemmas 2.7, 2.8 and 2.9, we have

gn(Cn, s) = logs fix(P) = H(X) = 1
2H

n
1 ≤ 1

2

n
∑

i=1

h(i) ≤ n

2
.

If gn(Cn, s) = n/2, then we must have equality throughout, which means that h(i) = 1 for all i. �

Theorem 3.4 appears in [7]. This same paper also shows that the limit of gn(Cn, s) → n/2 as s→ ∞.
We give a bound on the rate convergence to this limit in Theorem 3.5.

Theorem 3.5. If n is odd and s = m2 − t for integers m and t ≥ 0 then there exists a protocol P on
Cn with s colours such that

fix(P) ≥ sn/2
(

1− tn

s

)

.

Proof. Consider the protocol P ′ = Pfcp on Cn with s′ = m2 colours and let X ′ ∈u Fix(P ′). By
Theorem 3.4, we must have H(X ′

i) = 1 and therefore X ′
i is uniformly distributed over Zs′ for all i. By

the union bound,

P (X ′
i < s ∀ i) ≥ 1−

n
∑

i=1

P(X ′
i ≥ s) = 1−

n
∑

i=1

t

m2
= 1− tn

m2
.

Now, let P be a protocol on Cn with s colours such that c ∈ Fix(P) for all colourings c ∈ Fix(P ′)
such that ci < s for all i (such a protocol must exist by Proposition 2.1). For this protocol,

fix(P) ≥ fix(P ′) P (X ′
i < s ∀ i)

≥ fix(P ′)

(

1− tn

m2

)

= (s+ t)n/2
(

1− tn(s+ t)−1
)

≥ sn/2
(

1− tn

s

)

.

�

Corollary 3.6. If n ≥ 4 then gn(Cn, s) =
n
2 −O

(

n√
s log

e
s

)

as s→ ∞.

Proof. For even n we have gn(Cn, s) =
n
2 . For odd n, let m be the smallest positive integer such that

m2 ≥ s. This gives t = m2 − s = O(
√
s). If P is the protocol constructed in Theorem 3.5, then

gn(Cn, s) ≥ logs fix(P) ≥ n

2
+ logs

(

1− tn

s

)

=
n

2
−O

(

n√
s loge s

)

.

�
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Prop 4.3 Lem 4.4 Lem 4.6

Lem 4.7

Lem 4.8

Lem 4.9

Thm 5.6

Lem 5.5Lem 5.4

Lem 5.3Prop 5.2

Figure 2. The structure of Sections 4 and 5. An arrow A → B indicates that A is
used in the proof of B.

4. Entropy Results

The bounds in Theorem 3.5 are only useful when n is small relative to s. In contrast, the purpose of
the results in this section is to establish Lemma 4.9, which in turn will be used to prove Theorem 5.6
which only applies when n is large relative to s. To help orientate the reader through this section (and
the next), Figure 2 shows which results are used to prove other results.

Definition 4.1 (Flat function, semi-perfect function). For any z ∈ Zs and for any function
f : Z2

s → Zs let f−1(z) = {(x, y) | f(x, y) = z}. The function f is called flat if and only
if |f−1(z)| = s for all z. Let U = (U1, U2) ∈u Z

2
s. A semi-perfect function, f , is any flat

function such that the U1 and U2 are conditionally independent given f(U) (Definition 2.2),
i.e.

I(U1;U2 | f(U)) = 0.

Definition 4.2 ((k, ǫ)-uniform). For any positive integer k and any ǫ > 0, a random variable Y
is called (k, ǫ)-uniform if Y takes values in a finite set Y with |Y| = k and, for any y ∈ Y,

∣

∣

∣

∣

P(Y = y)− 1

k

∣

∣

∣

∣

≤ ǫ.

Proposition 4.3. For any integer k ≥ 2, any integer s ≥ 2 and any ǫ > 0, there exists δ > 0 such that,
for any random variable Y which takes k distinct values, if H(Y ) is the entropy of Y (base s), then

H(Y ) ≥ logs k − δ =⇒ Y is (k, ǫ)-uniform.

Proof. For each k, it suffices to show this for all small enough ǫ. Assume 7kǫ < 1. We prove the
contrapositive:
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• Suppose that P(Y = y) ≥ 1
k + ǫ for at least one value y. Entropy is greatest when Y is as

uniformly distributed as possible. Therefore,

H(Y ) = −
∑

i

P(Y = i) logs P(Y = i)

≤ −
(

1
k + ǫ

)

logs
(

1
k + ǫ

)

− (k − 1)
(

1
k − ǫ

k−1

)

logs

(

1
k − ǫ

k−1

)

= logs k −
(

1
k + ǫ

)

logs(1 + kǫ)−
(

k−1
k − ǫ

)

logs

(

1− kǫ
k−1

)

.

Since 0 < kǫ < 1
7 , we can use the identity, − logs(1− γ) ≤ (γ + 5

9γ
2) loge s (valid for |γ| ≤ 1/7),

to simplify this expression.

H(Y ) ≤ logs k −
kǫ2

9

(

4− 5kǫ+ 4
k−1 + 5kǫ

(k−1)2

)

loge s

≤ logs k −
kǫ2

3
loge s.

• Now suppose P(Y = y) ≤ 1
k − ǫ for at least one value y. The entropy would be greatest when Y

is as uniformly distributed as possible. Therefore,

H(Y ) = −
∑

i

P(Y = i) logs P(Y = i)

≤ −
(

1
k − ǫ

)

logs
(

1
k − ǫ

)

− (k − 1)
(

1
k + ǫ

k−1

)

logs

(

1
k − ǫ

k−1

)

= logs k −
(

1
k − ǫ

)

logs(1− kǫ)−
(

k−1
k + ǫ

)

logs

(

1 + kǫ
k−1

)

.

We can use the identity, − logs(1 − γ) ≤ (γ + 5
9γ

2) loge s, again to simplify this expression.

H(Y ) ≤ logs k − kǫ2

9

(

4− 5kǫ+ 4
k−1 − 5kǫ

(k−1)2

)

loge s

≤ logs k −
kǫ2

3
loge s.

In either case, H(Y ) < logs k − δ for any δ < kǫ2

3 loge s. �

Lemma 4.4. For any integer s ≥ 2, there exists positive constant ǫ = ǫ(s) that satisfies the following
property. For any non semi-perfect function f : Z2

s → Zs and for any three (s, ǫ)-uniform random
variables Y1, Y2, Y3 over Zs satisfying Y2 = f(Y1, Y3), if (Y1, Y3) is (s2, ǫ)-uniform, then

I(Y1;Y3|Y2) ≥ 1
2 min

{

I(U1;U2|f(U))
∣

∣ f is a flat but not semi-perfect
}

= δ1,

where U = (U1, U2) ∈u Z
2
s.

Proof. The value δ1 = δ1(s) =
1
2 min

{

I(U1;U2|f(U))
∣

∣ f is a flat but not semi-perfect
}

is well-defined

for any s ≥ 2, because there are only a finite number of functions f : Z2
s → Zs, and at least one of

them is flat and not semi-perfect hence we can take the minimum of these. For example, the function
f(x, y) = x+ y (mod s) is flat but not semi-perfect. First, let ǫ < 1

s2(s+2) , so that

1

s2
− (s− 1)ǫ >

1

s2
− (s+ 1)ǫ > ǫ.

We show that f is flat by contradiction. Since (Y1, Y3) is (s
2, ǫ)-uniform:

• If |f−1(z)| ≥ s+ 1 then

P(Y2 = z) = P((Y1, Y3) ∈ f−1(z)) ≥ (s+ 1)
(

1
s2 − ǫ

)

= 1
s +

(

1
s2 − (s+ 1)ǫ

)

> 1
s + ǫ.

• If |f−1(z)| ≤ s− 1 then

P(Y2 = z) = P((Y1, Y3) ∈ f−1(z)) ≤ (s− 1)
(

1
s2 + ǫ

)

= 1
s −

(

1
s2 − (s− 1)ǫ

)

< 1
s − ǫ.
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Both cases contradict the assumption that Y2 is (s, ǫ)-uniform. Therefore f is a flat function and so

I(U1;U2|f(U)) ≥ 2δ1.

Moreover, since (Y1, Y3) is (s2, ǫ)-uniform, then U and (Y1, Y3) differ in distribution by less than ǫ.
Since mutual information is continuous, we can choose ǫ small enough so that

∣

∣I(U1;U2|f(U))− I(Y1;Y3|Y2)
∣

∣ ≤ δ1.

Then, by the triangle inequality, I(Y1;Y3|Y2) ≥ δ1.
�

Definition 4.5. From now on, for any integer s ≥ 2, let ǫ = ǫ(s) > 0 be chosen small enough
so that ǫ ≤ 1

s2(2s+1) and ǫ satisfies Lemma 4.4. Then let δ2 = δ2(s) > 0 be chosen small

enough to satisfy Proposition 4.3 for both k = s and k = s2 for this value ǫ. Then, with
δ1 as defined in Lemma 4.4, let δ = min(δ1, δ2).

Lemma 4.6. Let n ≥ 5 be an integer and let P be any non-trivial protocol on Cn with s ≥ 2 colours.
The random variables X1, X2, X3, X4, X5 (Definition 2.5) satisfy:

H5
1 ≤ 3 + h(2, 4)− I(X2;X4|X3).

Proof. By Lemma 2.7, it suffices to show H5
1 ≤ h(1) + h(3) + h(5) + h(2, 4) − I(X2;X4|X3). By

Shannon’s Inequality (Proposition 2.3) we have:

h(2, 3, 4) + h(3) = h(2, 3) + h(3, 4)− I(X2;X4|X3), (4.1)

h(1, 2, 3, 4) + h(2, 3) ≤ h(1, 2, 3) + h(2, 3, 4), (4.2)

and h(2, 3, 4, 5) + h(3, 4) ≤ h(2, 3, 4) + h(3, 4, 5). (4.3)

Also, since Xi = fi(Xi−1, Xi+1) for i = 2, 3, 4 respectively we have:

h(1, 2, 3) = h(1, 3) ≤ h(1) + h(3), (4.4)

h(2, 3, 4) = h(2, 4), (4.5)

and h(3, 4, 5) = h(3, 5) ≤ h(3) + h(5). (4.6)

The required result is the sum of equations (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6). �

Lemma 4.7. Let n ≥ 5 be an integer and let P = (f1, f2, . . . , fn) be a non-trivial protocal on Cn with
s ≥ 2 colours and let X ∈u fix(P). For any j, if fj+2 is not semi-perfect or (Xj+1, Xj+3) is not

(s2, ǫ)-uniform then Hj+4
j ≤ 5− δ, for δ as in Definition 4.5.

Proof. Without loss of generality let j = 1. There are 3 cases.

• If, for any i ∈ {1, 2, 3, 4, 5}, the variable Xi is not (s, ǫ)-uniform, then h(i) ≤ 1 − δ2 (Proposi-
tion 4.3). In this case, by Lemma 2.8,

H5
1 ≤

5
∑

i=1

h(i) ≤ 5− δ2.

• If (X2, X4) is not (s
2, ǫ)-uniform, then h(2, 4) ≤ 2−δ2 (Proposition 4.3). Therefore, by Lemma 4.6,

we have

H5
1 ≤ 3 + h(2, 4)− I(X2;X4|X3) ≤ 5− δ2.

• Otherwise, X2, X3, X4 are each (s, ǫ)-uniform and (X2, X4) is (s
2, ǫ)-uniform and f3 is not semi-

perfect. In this case, by Lemma 4.4, we have I(Xj+1;Xj+3|Xj+2) ≥ δ1. By Lemma 4.6, we
have

H5
1 ≤ 3 + h(2, 4)− I(X2;X4|X3) ≤ 5− δ1.

In all cases, we have H5
1 ≤ 5− δ because δ = min{δ1, δ2}. �



Guessing Numbers of Odd Cycles 11

Lemma 4.8. Let n ≥ 7 be an integer and let P = (f1, f2, . . . , fn) a non-trivial protocol on Cn with
s ≥ 2 colours and let X ∈u fix(P). For any j, if any of fj+2, fj+3 or fj+4 are not semi-perfect, or

any of (Xj+1, Xj+3), (Xj+2, Xj+4) or (Xj+3, Xj+5) are not (s2, ǫ)-uniform, then Hj+6
j ≤ 7− δ.

Proof. Without loss of generality let j = 1. We treat each case individually, and use Lemma 4.7.

• If f3 is not semi-perfect or (X2, X4) is not (s
2, ǫ)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6)+ h(2, 3, 4, 5, 6, 7)

= h(1, 2, 3, 4, 6) + h(2, 3, 4, 5, 7)

≤ H5
1 + h(6) + h(7)

≤ (5− δ) + 1 + 1.

• If f4 is not semi-perfect or (X3, X5) is not (s
2, ǫ)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6)+ h(2, 3, 4, 5, 6, 7)

= h(1, 3, 4, 5, 6) + h(2, 3, 4, 5, 7)

≤ h(1) +H6
2 + h(7)

≤ 1 + (5− δ) + 1.

• If f5 is not semi-perfect or (X4, X6) is not (s
2, ǫ)-uniform then

H7
1 = h(1, 2, 3, 4, 5, 6)+ h(2, 3, 4, 5, 6, 7)

= h(1, 3, 4, 5, 6) + h(2, 4, 5, 6, 7)

≤ h(1) + h(2) +H7
3

≤ 1 + 1 + (5− δ).

�

Lemma 4.9. Let n ≥ 7(δ−1 + 2). Suppose P = (f1, f2, . . . , fn) is a non-trivial protocol on Cn with
s ≥ 2 colours and let X ∈u fix(P) such that, for each j, either

• at least one of fj−1, fj, fj+1 is not semi-perfect, or
• at least one of (Xj−2, Xj), (Xj−1, Xj+1), (Xj , Xj+2) is not (s2, ǫ)-uniform,

then fix(P) < s(n−1)/2.

Proof. Let m be an odd integer such that m > δ−1 and 7m ≤ n. By Lemma 2.9 and Lemma 4.8, we
have

2H(X) ≤
m−1
∑

j=0

H7j+7
7j+1 +

n−1
∑

i=7m

h(i)

≤ m(7− δ) + (n− 7m)

= n−mδ.

Since m > δ−1, this means that H(X) < n−1
2 . Therefore fix(P) < s(n−1)/2 by Lemma 2.7. �

5. Guessing numbers of large odd cycles

In this section, we prove our main result in Theorem 5.6, which states that, for any given s, this
fractional-clique-partition protocol is optimal on any large enough odd cycle.
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Definition 5.1 (Perfect function). For any function f : Z2
s → Z, let L(f, z) and R(f, z) denote

the subsets

L(f, z) = {x | f(x, y) = z for some y}
and R(f, z) = {y | f(x, y) = z for some x}.

The function f is called a perfect function if it is semi-perfect and the cardinalities |L(f, z)|
and |R(f, z)| do not depend on z, i.e. if |L(f, z)| = |L(f, z′)| and |R(f, z)| = |R(z′)| for all
z, z′ ∈ Zs.

Proposition 5.2. If f is a semi-perfect function then for all z ∈ Zs then

f−1(z) = L(f, z)×R(f, z).

Moreover |L(f, z)||R(f, z)| = s.

Proof. Let U = (U1, U2) ∈u Z
2
s and for a given z, let L = L(f, z) and R = R(f, z). Since f is semi-

perfect, we have I(U1, U2 | f(U)) = 0. Therefore, U1 and U2 are conditionally independent given f(U).
For any x ∈ L and any y ∈ R, we must have

P(U1 = x ∧ U2 = y|f(U) = z) = P(U1 = x|f(U) = z)P(U2 = y|f(U) = z) > 0,

and f−1(z) = L×R.

Furthermore, since U1 and U2 are independently uniformly distributed over Zs and U is uniformly
distributed over Z2

s, we have

1

s
= P(f(U) = z) = P(U1 ∈ L ∧ U2 ∈ R) = P(U1 ∈ L)× P(U2 ∈ R) =

|L|
s

× |R|
s
.

Therefore, |L||R| = s. �

Lemma 5.3. Let s ≥ 2 be an integer, let 0 < ǫ ≤ 1
s2(2s+1) be a constant. Let P = (f1, f2, . . . , fn) be any

non-trivial protocol on Cn with s colours and let X ∈u Fix(P). If f1 and f2 are semi-perfect functions
and (X0, X2) and (X1, X3) are (s2, ǫ)-uniform, then, for any c1, c2 ∈ Zs, we have

|{c0|f1(c0, c2) = c1}| = |{c3|f2(c1, c3) = c2}|.
Proof. We proceed by contradiction. Let S0 = {c0|f1(c0, c2) = c1} and S3 = {c3|f2(c1, c3) = c2}.
Without loss of generality assume |S0| < |S3| so since |S0| < s we must have |S3| >

(

1 + 1
s

)

|S0|. Now
since (X0, X2) is (s

2, ǫ)-uniform,

P(X1 = c1 ∧X2 = c2) =
∑

x∈S0

P
(

(X0, X2) = (x, c2)
)

≤ |S0|
(

1

s2
+ ǫ

)

.

Similarly, since (X1, X3) is (s
2, ǫ)-uniform,

P(X1 = c1 ∧X2 = c2) =
∑

x∈S3

P
(

(X1, X3) = (c1, x)
)

≥ |S3|
(

1

s2
− ǫ

)

.

However, since ǫ ≤ 1
s2(2s+1) , this implies

1 +
1

s
<

|S3|
|S0|

≤ s−2 + ǫ

s−2 − ǫ
≤

1
s2 + 1

s2(2s+1)

1
s2 − 1

s2(2s+1)

= 1 +
1

s
,

which is a contradiction. �

Lemma 5.4. Let P = (f1, f2, . . . , fn) be a non-trivial protocol on Cn with s ≥ 2 colours, let X ∈u

Fix(P) and let j be any index (indices taken modulo n). If fj−1, fj and fj+1 are semi-perfect functions
and (Xj−2, Xj), (Xj−1, Xj+1) and (Xj , Xj+2) are (s2, ǫ)-uniform, then fj is a perfect function.
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Proof. We proceed by contradiction. Without loss of generality, assume j = 0 and fix c0, c
′
0 ∈ Zs

arbitrarily. Now choose c−1, c1 ∈ Zs such that f0(c−1, c1) = c0 and choose c′−1, c
′
1 ∈ Zs such that

f0(c
′
−1, c

′
1) = c′0. Also let c′′0 = f0(c

′
−1, c1). Now by Lemma 5.3,

|L(f0, c0)| = |{x|f0(x, c1) = c0}| = |{x|f1(c0, x) = c1}| = |R(f1, c1)|
and |L(f0, c′′0)| = |{x|f0(x, c1) = c′′0}| = |{x|f1(c′′0 , x) = c1}| = |R(f1, c1)|.

Similarly

|R(f0, c′′0)| = |{x|f0(c′−1, x) = c′′0}| = |{x|f−1(x, c
′′
0 ) = c′−1}| = |L(f−1, c

′
−1)|

and |R(f0, c′0)| = |{x|f0(c′−1, x) = c′0}| = |{x|f−1(x, c
′
0) = c′−1}| = |L(f−1, c

′
−1)|.

Recall that |L(f0, z)| · |R(f0, z)| = s for all z ∈ Zs (Proposition 5.2). Therefore, |R(f0, c′0)| = |R(f0, c′′0)|
if and only if |L(f0, c′0)| = |L(f0, c′′0 )|. Hence,

|L(f0, c0)| = |L(f0, c′′0)| = |L(f0, c′0)|.
Similarly, |R(f0, c0)| = |R(f0, c′0)| (for arbitrary c0, c′0 ∈ Zs) and therefore f0 is a perfect function. �

Lemma 5.5. Let P = (f1, f2, . . . , fn) be a non-trivial protocol on Cn with s ≥ 2 colours, such that fj
is a perfect function for some j. Then fix(P) ≤ as(n−1)/2, where a is the greatest factor of s less than
or equal to

√
s.

Proof. Without loss of generality, assume j = 2. Since f2 is perfect, let l = |L(f2, z)| and r = |R(f2, z)|.
Without loss of generality, assume l ≤ r and therefore l ≤ a. Then X2 takes at most s different values
and X1, conditioned on X2 = z for any z ∈ Zs, takes at most l different values. Therefore, the pair
(X1, X2) takes at most ls different values in Z

2
s and h(1, 2) ≤ logs(ls). We have

H(X) = h(1, 2, 3, . . . , n)

= h(1, 2, 4, 6, . . . , n− 3, n− 1)

≤ h(1, 2) +

(n−3)/2
∑

i=1

h(2i+ 2)

≤ logs(ls) +
n− 3

2
.

Therefore fix(P) = sH(X) ≤ ls(n−1)/2 ≤ as(n−1)/2. �

Theorem 5.6. For any integer s ≥ 2, let a be the greatest factor of s less than or equal to
√
s. There

exists some N ∈ N such that

gn(Cn, s) =











n
2 , for even n,

n−1
2 + logs a, for odd n > N,

and Pfcp is an optimal protocol on Cn with s colours for any odd n ≥ N .

Proof. Let ǫ and δ be the values given in Definition 4.5, let N = 7(δ−1+2) and let P = (f1, f2, . . . , fn)
be any non-trivial protocol on Cn with s colours. We have two cases:

Case one. For all j, either:
• at least one of the functions fj−1, fj and fj+1 is not semi-perfect or
• at least one of (Xj−2, Xj), (Xj−1, Xj+1), (Xj , Xj+2) is not (s

2, ǫ)-uniform.
Case two. There exists some j such that:

• the functions fj−1, fj and fj+1 are all semi-perfect and
• (Xj−2, Xj), (Xj−1, Xj+1) and (Xj , Xj+2) are all (s2, ǫ)-uniform.

For case one, we can conclude that fix(P) ≤ s(n−1)/2 ≤ fix(Pfcp) by Lemma 4.9. In case two, fj must

be a perfect function (Lemma 5.4) and then fix(P) ≤ as(n−1)/2 = fix(Pfcp) (Lemma 5.5). In either
case, fix(Pfcp) ≥ fix(P). Hence Pfcp is optimal. �
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6. An application to index coding with side information

In the problem of index coding with side information on a graph G, a sender aims communicate n
messages c1, c2, . . . , cn (where ci ∈ Zs) to n receivers v1, v2, . . . , vn (the vertices of G). Each receiver,
ci, knows cj in advance, for each j such that vivj is an edge in G. The sender is required to broadcast
a message to all receivers (the same message to all receivers) so that each receiver, vi, can recover
ci. If m is the smallest integer such that the sender can achieve this by broadcasting one of only m
different messages, then the information defect [13] of G with s colours is defined to be

β(G, s) = logs(m).

The relationship between the guessing number and information defect of a graph is well known.
Explicitly, let Cs(G) be the confusion graph [1, 3] (also known as the “code graph” [7]), defined to
have vertex set Zn

s , in which two vertices c, c′ ∈ Z
n
s are adjacent if and only if for some i ∈ [n], ci 6= c′i

but for each j such that ij ∈ E(G) we have cj = c′j . Intuitively c, c
′ ∈ Zn

s are ‘confusable’ (joined
by an edge in the confusion graph) if there is no protocol P , for the guessing game on G, such that
both c, c′ ∈ Fix(P) (i.e. c and c′ cannot both be encoded with the same message from the sender.).
If χ(Cs(G)) is chromatic number of the confusion graph of G and α(Cs(G)) is the size of the largest
independent set in the confusion graph of G, then

β(G, s) = logs χ(Cs(G)) and gn(G, s) = logs α(Cs(G)).

For any graph H , we have the identity χ(H)α(H) ≥ |H | and so we have the identity [13]

β(G, s) + gn(G, s) ≥ logs |Cs(G)| = n.

We use this identity and the fact that the fractional-clique protocol Pfcp is optimal (Theorem 5.6)
to prove Theorem 6.1. This theorem in general is a new result, although the case s = 2 was proven
combinatorially in [3]. Theorem 6.1 shows that the size of an optimal index code, β(G, s), depends on
the factorisation structure of the size of the alphabet, s, used for the input.

Theorem 6.1. For a given s, let b be the smallest factor of s which is at least
√
s. There exists some

N such that for all odd n > N ,

β(Cn, s) =
n− 1

2
+ logs b.

Proof. Write a = s/b. First by Theorem 5.6, gn(Cn, s) = (n− 1)/2 + logs a for all large enough odd
n. Therefore,

β(Cn, s) ≥ n− gn(Cn, s) =
n− 1

2
+ logs b.

To show that we in fact get equality, we define a set of bs(n−1)/2 possible messages with which the
sender can solve the index coding with side information problem on Cn. Let φ and ψ be defined as
in Definition 3.1. This means that φ × ψ is a bijection from Za × Zb to Zs. Now for any colouring
c = (c1, c2, . . . , cn) ∈ Z

n
s let the sender broadcast the following values:

• For i = 1, 2, 3, . . . , n−1
2 , the sender broadcasts the residue φ(c2i−1) + φ(c2i) modulo a and the

residue ψ(c2i) + ψ(c2i+1) modulo b.
• Additionally, the sender broadcasts the residue ψ(c1) + φ(cn) modulo b.

The sender broadcasts n−1
2 residues modulo a and n+1

2 residues modulo b, and so the total number
of possible messages that the sender might send is

m = a(n−1)/2b(n+1)/2 = bs(n−1)/2.

Furthermore, each receiver, vi, knows ci−1 and ci+1, and so can recover both ci because she can recover
both φ(ci) and ψ(ci). �
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