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Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure

field effect transistor (HFET) has been investigated under both positive and negative substrate

bias. Clear evidence of redistribution of charges in the carbon doped region by thermally gener-

ated holes is seen, with electron injection and capture observed during positive bias. Excellent

agreement is found with simulations. It is shown that these effects are intrinsic to the carbon

doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936780]

I. INTRODUCTION

GaN-based hetero-structure field effect transistors

(HFETs) have matured during recent years. Devices deliver-

ing performance superior to those based on GaAs or Si tech-

nology are commercially available for RF applications.1

Also devices for power applications have been introduced to

the market recently.2 The underlying physics for those devi-

ces are generally understood, but some effects like the cur-

rent collapse (CC) phenomena and buffer breakdown have

not been explained fully and can cause major restrictions to

device performance. CC partly originates from surface

effects, which can be suppressed by advanced device design,

in particular, by the use of field plates, but is also related to

charge trapping in the buffer,3,4 in particular, under high

voltage conditions.

The fact that both CC and electrical breakdown are

related to the layers below the two dimensional electron gas

(2DEG) shows that characterization of those layers is critical

to delivering efficient, reliable power devices. Recent studies

on vertical leakage currents in GaN power devices refer to

current flow through the entire structure.5,6 At low vertical

electrical fields, though currents do not flow through the

entire structure but can flow locally. To investigate charge

transport in this regime, the ramped back biasing technique

can be used.7–9 Carbon containing buffer layers are not only

known to prevent punch-through effects and improve vertical

breakdown,10,11 but are also linked to CC behavior.12

In this work, a structure containing a thick carbon doped

GaN layer has been investigated by the back biasing tech-

nique. With the help of simulations, position and movement

of charges could be identified and clearly linked to CC.

II. EXPERIMENTAL DETAILS

A GaN on Si HFET structure, grown by metal organic

vapor phase epitaxy (MOVPE), is studied, with the details of

the structure shown in Fig. 1. It consists of an AlN nucleation

layer grown on a p-type conducting Si substrate, followed by

a graded AlGaN layer to compensate the lattice mismatch

between the substrate and the GaN, the carbon doped GaN

layer (GaN:C), unintentionally doped GaN (uid GaN), and

an AlGaN barrier on top. The 2DEG, forming the transistor

channel, accumulates in the uid GaN layer just below the

barrier. The graded AlGaN layer, starting as pure AlN at the

substrate interface transforming to pure GaN at the GaN:C

interface, was chosen to not introduce any hetero-interface

between GaN:C and substrate that might lead to accumula-

tion of free charges and/or hinder vertical charge flow.

Aluminum concentration in the barrier, 2DEG density, and

carbon concentration in the GaN:C of the wafer investigated

are 25%, �6� 1012 cm�2, and �5� 1018 cm�3, respectively.

To characterize current flow in the device structure, a

back biasing technique was employed. A voltage is applied

to the conducting substrate. This affects the electrical fields

in the layer structure. These fields impact the carrier concen-

tration in the 2DEG (nS), so monitoring nS while applying a

back bias reveals details about the electrical properties of

layers between the substrate and the 2DEG. The setup used

in this work is depicted in Fig. 1. More details on this tech-

nique can be found in Ref. 7.

FIG. 1. Epitaxial AlGaN/GaN-on-Si structure investigated with contacts

used for back bias characterization and equivalent circuit model.a)Electronic mail: a.pooth@bristol.ac.uk

0021-8979/2015/118(21)/215701/4/$30.00 VC 2015 AIP Publishing LLC118, 215701-1
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An insulating buffer would lead to capacitive coupling

between conducting substrate and 2DEG, resulting in a linear

relation between Vsub and nS. This behavior, associated with

the capacitors of the equivalent circuit model also shown in

Figure 1, is usually observed for small substrate voltages. If

layers start to conduct and charging occurs, the ramped Vsub

versus nS relation begins to deviate from linear. Conducting

layers are represented by resistors in the equivalent circuit

model. In case of sudden changes in doping polarity at inter-

faces, pn junctions will also appear. In the structure tested in

this work, such a rectifying junction is located at the uid

GaN/GaN:C interface. All measurements have been made at

room temperature.

III. SIMULATION DETAILS

Drift diffusion simulations were performed using

Silvaco’s Atlas Device Simulation Framework with activated

Shockley-Read-Hall recombination and Fermi-Dirac statis-

tics models. To represent n-type background doping in the

uid GaN layer, 5� 1016 cm�3 shallow donors are introduced.

The carbon concentration in the GaN:C layer is set at

5� 1018 cm�3 with the deep acceptor energy level at 0.9 eV

above the valence band according to simulations in Ref. 13

under the assumption that carbon is incorporated mainly on

nitrogen sites. Those deep acceptors are partially compen-

sated by n-type background doping of 1.5� 1017 cm�3.

Doping in the graded AlGaN layer contains a shallow

acceptor concentration of 1� 1018 cm�3 representing the

polarization induced charge in a linearly graded layer.14

Those acceptors are fully compensated by shallow donors

with a concentration of 1.5� 1018 cm�3, which again are

compensated by an acceptor with a concentration of

2� 1018 cm�3 defined with constant energy below the con-

duction band, ensuring a smooth alignment of bands at the

graded region’s upper interface and a mid gap position at the

interface with the Si substrate, causing insulating behavior.

The nucleation layer is ignored in the simulation and the

conducting Si substrate is represented as an electrode. No

signs of deep depletion in the p-type Si, which would lead to

an obvious reduction of overall vertical capacitance, were

observed experimentally. The polarization charge at the

AlGaN barrier/GaN interface is represented by a fixed

charge of 0.017 C/m2. The polarization charge at the barrier

surface is set to zero corresponding to full compensation by

surface donors. Self heating and impact ionization are being

neglected, since we are only concerned with the low field re-

gime well below breakdown. The simulated temperature was

293 K for all simulations.

IV. RESULTS AND DISCUSSION

In Figure 2, results of a fast and a slow back bias ramp

experiment are shown. The dashed lines in those graphs rep-

resent the expectations for capacitive coupling. In both

graphs, the curve bends downwards at high negative back

bias, corresponding to a reduction of current, exceeding what

the capacitive coupling suggests. After sweeping back from

negative back bias to 0 V, the current remains lower than it

initially was, indicating a negative charge in the investigated

layers. When ramping towards positive voltages afterward,

the current continues to increase until a current level near the

initial current is reached, where it saturates. On the ramp

back to 0 V, the current again is reduced ending up at a cur-

rent either further reduced or in between the former levels at

0 V substrate bias, depending on ramp rate. Vertical leakage

currents are in the order of �1� 10�7 A/cm2 throughout the

measurements. Transient measurements, not shown here,

reveal that the current reduction observed remains for several

100s of seconds, but is reversible by illumination with white

light.

Ramp curves based on the simulations are also shown in

Figure 2 and show excellent agreement. The ramp rates for

agreement between simulation and experiment are

FIG. 2. Simulated (left) and measured

(right) back bias sweeps are shown for

fast (top) and slow (bottom) ramp

rates. Arrows indicate the direction of

the substrate voltage ramps. VD¼ 1 V.

The dashed line corresponds to the pre-

diction of capacitive coupling.

215701-2 Pooth et al. J. Appl. Phys. 118, 215701 (2015)
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surprisingly close given the essentially unknown compensa-

tion level with the remaining difference in ramp rate reflect-

ing a difference in the thermally activated hole density in the

GaN. To explain the charging effects, we will focus on the

slower ramp rate simulation. The good agreement between

experiment and simulation suggests that the assumed carbon

level of 0.9 eV above the valence band is correct, since simu-

lation results are very sensitive to changes of the dominant

dopant’s energy level. Also the good agreement suggests

that the observations can be explained by effects based only

on the physics simulated by the software. Hence, vertical

leakage through the uid GaN layer as observed for both sam-

ples in Ref. 7, other trap assisted tunneling effects related to

high electric fields, or radiative recombination caused by hot

electrons as described in Ref. 15 do not significantly influ-

ence the observed behavior. The measured vertical leakage

is higher than the simulated displacement currents, which are

less than 1� 10�8 A/cm2. We assume that the measured

leakage is caused by local leakage paths appearing along

some extended defects mainly under the ohmic contacts sim-

ilar to the findings in Ref. 16. We still get the good

agreement between experiment and simulation, because

these leakage paths are highly localized, whereas the sub-

strate ramp measurement is sensitive to the field averaged

over the entire source/drain gap area.

For the sample investigated here, Figures 3 and 4 show

simulated band diagrams and charge position during the

back bias ramp. Figure 3(b) shows that flattening of bands in

the GaN:C region and increasing the electrical fields in the

adjacent layers cause the extended current reduction under

negative back bias. The reason for the flattening can be

deduced from Figure 4, where the formation of positive and

negative space charges under negative back bias is depicted.

Near the 2DEG carbon, acceptor states are ionized, creating

free holes that move towards the substrate where they are

trapped, partially neutralizing deep acceptors in the graded

layer and creating the positive space charge. After the back

bias (c), the space charges remain, causing the current reduc-

tion shown in Figure 2 after moderate �150 V bias.

As shown in Figure 2, ramping to a positive back bias of

150 V subsequently results in I2DEG saturation near the initial

current level. This is due to the injection of electrons into the

structure via the forward biased np junction between 2DEG

and GaN:C (Figure 3(d)). The injected electrons are trapped

by acceptor states in the GaN:C, mainly at the GaN:C/graded

AlGaN interface. The resulting negative charge screens the

2DEG from the substrate bias and keeps the electric field

below the channel constant. In case of the slow ramp, the

number of thermally generated holes in the GaN:C region,

which are created during the positive ramp, is sufficient to

mostly neutralize the excess ionized acceptor charge at the

top interface. The result is described by Figures 3(e) and 4.

Though the injected electrons create a significant negative

charge at the bottom of the GaN:C, the ionized acceptor con-

centration at the top is reduced. The impact of charge on nS

is weighted by its distance to the 2DEG based on classical

electrostatics: qDnS ¼ �
Ð

yQðyÞdy. As the charges at the top

FIG. 3. Band diagrams during a back bias sweep, displayed against depth.

Initially, the Fermi levels are leveled throughout, as no substrate bias has

been applied yet (a). Under negative back bias (b), the bands are lifted on

the substrate side. In the C-doped region, the bands are flattened. More volt-

age is, therefore, dropped across the uid GaN channel and the graded AlGaN

layer. At 0 V substrate voltage after negative back bias (c), charge accumula-

tion in the GaN:C results in a lift of the bands, whereas a lowering of the

band energies is observed in the graded layer. Under positive back bias (d),

the upper part of the structure is screened with most voltages dropped across

the deeper layers. After negative and positive back bias (e), bands are lifted

throughout, but mainly in the lower part of the GaN:C.

FIG. 4. Simulated net charge concentrations versus depth under bias condi-

tions a to e, illustrating charge position and movement in the epitaxial struc-

ture on logarithmic scales for positive (upper half) and negative (lower half)

net charges. Under negative back bias (b), a negative charge accumulates at

the upper GaN:C interface, and a positive charge of similar size builds up in

the graded layer. Both space charges remain after the back bias (c). Positive

back bias (d) leads to an additional negative charge at the lower GaN:C

interface, whilst the charge region at the upper interface is reduced in size.
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interface are much closer to the 2DEG, their effect on nS is

far greater, explaining less reduction of I2DEG after the posi-

tive back bias ramp. It is important to notice that the simula-

tion does not suggest any electron injection from the

substrate into the epitaxial structure. The charge redistribu-

tion within the GaN:C layer on its own is obviously suffi-

cient to explain the observed behavior. Experimentally,

electron injection from the Si substrate is likely to occur

associated with vertical leakage;17 however, any electron

trapping would most likely be localized to those leakage

paths and hence would not strongly impact our measure-

ments. The fact that the experimentally observed current

reduction lasts for a period of several 100s of seconds and

that recovery can be accelerated by white light illumination

is perfectly explained by the ionized deep acceptor states

being its main cause.

The current collapse after negative back bias implies

high dynamic on-resistance and serious current instabilities

under field polarities corresponding to those of a device with

grounded substrate and positive voltage applied to the drain

contact, making the device unsuitable for power applica-

tions. The investigated sample obviously lacks a vertical

leakage path for holes from the 2DEG.7 Intentional incorpo-

ration of dislocations into the uid GaN, which presumably

establishes the vertical leakage path, could prevent the cur-

rent collapse, but increasing the defect density is also likely

to come with other detrimental effects. The ionization and

redistribution of charges in the carbon doped GaN discussed

here also impact its beneficial effect regarding vertical break-

down, as the described effects cause increased voltage drop

and therefore higher electrical fields in the adjacent layers.

Keeping the thickness of such a layer reasonably thin in rela-

tion to the overall epitaxial structure is therefore desirable.

V. CONCLUSION

A reduction of 2DEG current after back bias application

of both polarities has been shown for a GaN HFET structure

containing a carbon doped layer. Thermally activated hole

flow, trapping within the GaN:C layer and electron injection

into the layer structure from the 2DEG have been identified

as the origin with the help of simulations. As the current

reduction is linked to acceptor trap states with long lifetimes,

it will cause strong current collapse.

This paper clearly shows and explains that detrimental

effects for GaN-based power devices linked to the carbon

doped layer can occur. It is essential to take these effects

into account to keep the benefits of carbon doping whilst pro-

viding reliable AlGaN/GaN/GaN:C based devices.
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