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Integrability and strong normal forms for
non-autonomous systems in a neighbourhood of an
equilibrium*
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Abstract

The paper deals with the problem of existence of a convergent “strong” normal form in
the neighbourhood of an equilibrium, for a finite dimensional system of differential equations
with analytic and time-dependent non-linear term. The problem can be solved either under
some non-resonance hypotheses on the spectrum of the linear part or if the non-linear term
is assumed to be (slowly) decaying in time. This paper “completes” a pioneering work of
Pustil’'nikov in which, despite under weaker non-resonance hypotheses, the nonlinearity is
required to be asymptotically autonomous. The result is obtained as a consequence of the
existence of a strong normal form for a suitable class of real-analytic Hamiltonians with
non-autonomous perturbations.
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1 Preliminaries and main result

1.1 Introduction

The study of the dynamics of a system of ordinary differential equations (ODESs) in a neighbour-
hood of an equilibrium, boasts nowadays a rich and well established theory. Its foundation goes
even back to the late XIX century to the contribution of Poincaré [Poi79] and Lyapunov [Lya92].
Given an analytic vector field, the possibility to write the motions of the associated system in the
vicinity of an equilibrium as a convergent power series, is deeply related to some non-resonance
conditions on the eigenvalues of the linear part.

The results have been afterwards extended in the studies of Siegel started in [Sie42]|. The problem
of the reducibility of a given system to a linear form via an analytic transformation, it is shown
to be solvable in [Sie52| for a full measure set of eigenvalues .

In the case of Hamiltonian structure, investigated later in [Sie54]| , the problem can be naturally
interpreted in terms of the existence of a (convergent) canonical transformation of variables,
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casting a Hamiltonian of the form “quadratic” + “perturbation” into a suitable' normal form, in
some neighbourhood of the examined equilibrium. Based on this approach, the paper |Gio| pro-
vides a generalisation of the results by Lyapunov, removing the hypothesis of purely imaginary
eigenvalues.

In any case, we remark that, as a common feature of this class of problems, without any as-
sumption on the eigenvalues, the program of casting the Hamiltonian at hand into a normal
form, at least in general, fails. In fact, it is immediate to recognize how the linear combinations
of eigenvalues occurring in the normalization scheme could produce some “small divisor effects”.
Knowingly, this phenomenon can either obstruct the formal resolvability of the homological equa-
tions produced during the normalization or jeopardize the convergence of the series.

We recall that, for instance, the described problem of well-posedness of the homological equation
is overcome by Moser in [Mos56], in the case of “one and a half?” degrees of freedom Hamilto-
nian H (p,q,t) close to a hyperbolic equilibrium located at p = ¢ = 0. The strategy consists of
keeping terms of the form (pg)*, k > 2, in the normal form. In this way the canonical equations
are still integrable (z := pq is a prime integral) but this allows to avoid the division by zero in
the homological equation which would have been carried by those terms. This analysis plays a
fundamental role in the context of instability phenomena in Hamiltonian systems with several
degrees of freedom (Arnold’s diffusion), in order to describe the flow in the neighbourhood of
partially hyperbolic tori of a priori unstable systems, see [CG94].

The pioneering work by Pustil’nikov [Pus74], aims to extend the results of the paper [Sie52]|, by
introducing a time dependence in the non-linear part of the vector field (not necessarily Hamil-
tonian). As it is natural, the choice of a suitable class of time-dependent perturbations and its
treatment is a further difficulty to the phenomenon of the “resonances”. In [Pus74|, under the
non-resonance condition already assumed in [Sie52] for the autonomous case, it is required that
the perturbation is asymptotic to a time-independent, analytic function. However, no restric-
tions are imposed on the “type” of the time dependence, more specifically, it has to be neither
periodic nor quasi-periodic. This case is also known as aperiodic time dependence.

After [Pus74], the interest in a general dependence on time has been renewed in [GZ92]| then
followed by [Boul3|, [FW14] and subsequent papers. Basically, all of them deal with the Hamil-
tonian case (see [F'W15a] for the case of Poisson systems). The paper [FW15b] extends the above
described result by Moser to the case of a perturbation aperiodically dependent on time.

As a matter of fact, the Hamiltonian structure is not a real obstruction for the use of the tools
apt to treat the Hamiltonian case. In fact, given a system of ODEs, it can be always interpreted
as (“a half” of the) canonical equations of a suitable Hamiltonian system, of larger dimension,
see e.g. |Ber09]. The strategy of this paper is to derive the integrability of the system of ODEs
at hand, see (7), as a particular case of the existence of a normal form for a real-analytic Hamil-
tonian with aperiodic perturbation, see (1), by using the tools introduced in [FW15b] for the
one degrees of freedom case.

The possibility to cast the Hamiltonian (1) into a normal form is shown to be possible in the
two cases described in Theorem 1.1. In the second case, we deal with perturbations linear in
the y variables, in the presence of some non-resonance assumption on the eigenvalues. This case
is directly related to the Hamiltonian formulation of a system of ODEs (due to the linearity in
y). It is immediate to notice that, with respect to [Pus74, (0.3)], the condition (4) on the eigen-
values is clearly more restrictive. Nevertheless, the hypothesis of asymptotic time-independence
assumed in [Pus74] is weakened to the simple boundedness.

T.e. such that the corresponding canonical equations are integrable.
2With periodic time dependence.



On the other hand, the first case, has a more general character: if the perturbation decays® in
time, either the described assumption on the form of f or on the eigenvalues turn out to be
unnecessary. Basically, the presence of resonance phenomena is no longer an obstruction for the
existence of the normal form, see also [F'W15c].

The paper, based on the Lie series formalism developed by A. Giorgilli et al., can be regarded,
at the same time, as a non-autonomous version of [Gio].

1.2 Setting

Let us consider the following Hamiltonian

H(z,y,n,t) = b,y ) + f(z,y,0),  Blx,y,m) =n+ Y Nz, (1)
=1

where (z,y,n) € D := [—r,r]"x[—r,r]" xR, withn > landr > 0, \; € Cand t € RT := [0, +00).
The assumptions on f will be discussed below. The system (1) is nothing but the “autonomous
equivalent” of H(z,y,t) = > /.y Ny + f(y,z,t), once n has been defined as the conjugate
variable to ¢.

The standard use of the analytic tools requires the complexification of the domain D as follows.
Given R € (0,1/2] set Dg := Qr x Sg, where

Qr = {(z,y) € C*™ : |z|,|y| < R}, Sr={ne€C: [ <R},

It will be required that, for all t € R, f belongs to the space of real-analytic functions on QO R
and continuous on the boundary, which we denote with €(Qg). In such a way H € €(Dg).
In particular, the space of all the G € €(Qp) is endowed with the Taylor norm

IG(@,y,t)lg = > |gas(®) R, (2)
a,BeN”

where G(z,y,t) =t 3, genn Jo5(t)z%y? and* |a| := 3°1-; a;. We recall the standard result for
which, if G € €(Qp) for all t € R*, then |g, 5(t)| < |G|z R71TP!, where |G|g := SUP(zy)ecay |G-
In particular, |G|z < 400 for all R’ < R.

Throughout this paper we shall deal with perturbations satisfying the following conditions:

1. fis “at least” quadratic in z and “at least” linear in y: a property that we will denote with
(QzLy), ie. fop(t) =0 forallt € RT and for all (o, 3) € N>\ I, where I' := {(a, 3) €
N2 o] > 2,16] > 1),

2. there exist My € [1,+00) and a € [0,1) such that®, for all (z,y,t) € Qr x RT,

I1f (@, y,t)|| g < Mpe™ . (3)

3The exponential decay, see (3), is chosen for simplicity of discussion. The only necessary assumption is the
summability in ¢ of the perturbing function over the non-negative real semi-axis, see [FW15c].

41t is understood that z®y? := S ... . z2n . yIB1 ceybn

®The interval a € [0, 1) is a compact way to denote either the time decay a € (0,1) or the boundedness a = 0.
As in our previous paper we recall that we are interested in the case of small a (slow decay) and the upper bound
a =1 is set for simplicity. On the other hand, it is easy to realise that the case a > 1 is straightforward.




1.3 Main result

In the described setting, the main result can be stated as follows

Theorem 1.1. Suppose that one of the following conditions are satisfied:
1. Time decay: a > 0.

II. Linearity in y + non-resonance: a =0 and the perturbation is linear in y, denoted by (Ly),
i.e. of the form f(xz,y,t) =y - g(x,t). In addition, the vector A := (A1,...,\,), satisfies
the non-resonance condition

 Inax (|1RU(a, el,A)|_1) < lal, Va € N™, (4)
=1,..5n
where U(a, B, A) := (o — B) - A, for some v > 0 and T > n. e stands for the |—th vector
of the canonical basis of R™.

Then it is possible to determine R,, Ry with 0 < R, < Ry < R'S and a family of canonical
transformations (x,y,n) = M(z(>), 4 n(>)) M : Dg — Dg,, analytic on Dg, for all
t € RY, casting the Hamiltonian (1) into the strong normal form

HO) (209) () (09} — py(2(09)y(00) (o2, (5)

Remark 1.2. It is immediate to recognize the similarity between (4) and the standard Dio-
phantine condition. Clearly, all the vectors A whose real part is a Diophantine vector, satisfy
condition (4), no matter what the imaginary part is. Hence the set of vectors satisfying (4) is, a
fortiori, a full-measure set.

As anticipated in the introduction, we stress that condition (4) is stronger than the non-resonance
condition imposed in [Pus74| and it is not satisfied in the case of purely imaginary A.

Remark 1.3. As usually done in the Lie series method, see e.g. [Gio03], the transformation M
will be constructed as the limit (defined, at the moment, only at a formal level)

M= lim MY o MUDo. 0o MO (6)

]*)OO

where M) .= exp(Ly ) =1d + 2821(8!)_1520) and L, ;) = {-, xY}. The generating sequence
{X(j)}jeN, where x) = xU)(z,5,1t), see [GZ92], is meant to be determined.
We will show (see the proof of Lemma 3.3) that in the case of a perturbation which is (Ly), it
is possible to show that xU)(z,y,t) is (Ly) as well, for all j € N. In such a case, it is easy to
check by induction that () = M@Wz+) does not depend on the variable y, for all j. Hence
the composition z = 20 = Mz() = Mm(x(oo),t) does not depend on y(*) i.e. is an analytic
map M, : Qr, — Qp, parametrised by ¢, where Qp := {z € C" : |z| < R}. This will play a
key role in the next section.

1.4 The corollary
Let us consider the following non-linear system
0= Av+ g(v,t), (7)

where v € R", A is a n X n matrix with real entries and the function ¢ is such that 04¢(0,t) =0
for all v € N” such that |v| < 11ie. g is at least quadratic in v. We restrict ourselves to the



class of diagonalizable A with non-purely imaginary eigenvalues A;. In the obvious system of
coordinates denoted with x, the system (7) easily reads as

a'cl:)\lxl—l—gl(m,t), l=1,...,n. (8)
In this framework one can state the next

Corollary 1.4. Suppose that f(z,y,t) ==y - g(x,t) and A is such that the conditions described
in II of Theorem 1.1 are satisfied. Then the system (8) is integrable in a suitable neighbourhood
of the origin.

The same result holds, in particular, without any non-resonance condition on A, provided that
g(z,t) is such that (3) is satisfied with a > 0.

Proof. The key remark, see e.g. [Ber09], is that (8) can be interpreted as a set of canonical
equations of the Hamiltonian system with Hamiltonian K := n+ ;" yi(Ajz + Gz, t)), ie.
(1) with f(x,y,t) defined in the statement. Hence, by Theorem 1.1, there exists a suitable
neighbourhood of the origin endowed with a set of coordinates (x(oo),y(oo),n(oo)), such that I is

cast into the (integrable) strong form K = 77(00)—1—2[":1 )\lyloo)xl(oo). Furthermore, as noticed in
Remark 1.3, M, is an analytic map between z and z(>). Hence x(t) = M (2 (0) exp(At), 1),
with A := diag(A1,...,A\,), gives the explicit solution of (8). O

2 Some preliminary results

2.1 Two elementary inequalities

Proposition 2.1. For all R < e™* and all 6 < 1/2 the following inequalities hold

SRV <omem R, S 1 — )Y < Clm,p)s (9)
|V€\§]"\Lf veN™

where m > 2, 11> 0 and C(m, p) := e* T (m + @)™+ /(m — 1)),

Proof. See Appendix. O

2.2 A result on the homological equation
Proposition 2.2. Consider the following equation
L ph+f9 =0, (10)
where h has been defined in (1) and fU) = fO0)(z,y,t) = Z(a,ﬁ)eF fo(z%(t)xayﬁ satisfies Hf(j)HR <
M exp(—at) for some a € [0,1). The following statements hold for all 6 € (0,1/2]:
1. If a > 0, there exists C1 = Ci(n,A) > 0 such that

o < CiMyalaA, (11)

x a0

7 H (1-8)R’

2. If a = 0, fU) is of the form fU) = y.gU)(x,t) and A satisfies (/), there exists Cyp =
Ca(n, A, 7,7) > 0 such that

atXU)H < Oy M), (12)

(1-8)R

R



Proof. First of all note that £,;h = XY 4+ 370 M(2002, — y19y,)xY). By expanding the

generating function as x)(z,y,t) = 2 (a,B)enzn € ((x)ﬁ( )z®yP, equation (10) reads, in terms of
Taylor coefficients, as

D) + Ula, B, M), = FIL(8). (13)
The solution of (13) is easily written, for all («, ) € T, as
) i ,
(D0) = e UV 0y 4 [0 syas). (1)

while trivially c(j) 5(t) =0 for all (a,B) € N27\ T.

Now denote Ur + iUy := U(c, f,A) with Ur r € R and recall that, by hypothesis, \fo(f%(t)] <
Mij|a+5\efat-

Case a > 0. For all (o, 8) € T such that U > 0 we choose CS)B(O) = 0 then we have

) t ) - t -
jelI| < eUnt /O Hrs| £ (s)|ds < My R™Io+ / e 5 ds < M;R™Io+8lg 1

Otherwise, for those a and 3 such that g < 0, redefine UR —UpR with Ur > 0 and choose
cg)ﬁ(O) — Jp+ expU(e, B,A)s )fo(éjﬁ( )ds. Note that |C 5(0)] < +oo. In this case we have

|Cgﬁ| < exp(Ugt) [, exp(—L{Rs)|fa5( s)|ds < M; R~letBlg— 1 Hence |c(j)5| < M; R~letBlg=1 for
all (a, B) € I'. By recalling (2) one gets HX( H(l ni < Mja~ Z(a5 enzn (1 — 5)|04+5\ The use
of the second of (9) with v := (o, ), yields the ﬁrst part of (11) with Cj set for the moment to
C1 :=C(2n,0).
Directly from (13) we get |c((j7)5| < |Oé+5||A||cgi)ﬁ| —|—|f0(1%| < a ' M;(1+|A])|a+B|R™I8 By (9)
with © = 1 we get the second of part of (11). The constant is chosen as C; := (1+]|A])C(2n,1) >
Ch.
Case a = 0. In such case, the homological equation reads as

60 + Ul e, N)e) = 1) (1), (15)

where fg l) = ] 3=, (the same notation for c(] )), for all @ € N™ such that |a| > 2 and for all
I=1,...,n. By hypothe51s (4), Ur # 0. Similarly to the case a > 0, if Ur > 0 we set cg%(O) =0,
otherwhise, cg%(O) = — fpr exp(U(a,el,A)s)f(j)( )ds. Proceeding as before, one obtains, by
using (4),

()] < Mg RV <y |afm Rl
This implies ||xV H oz < nrM; S aenn a7 (1 = &)1l which is, by (9), the first part of (12

with Cy = nyC(n, T) On the other hand, from the homological equation, we get ]cfj%(t)\ <
M;la|™ (1 + y|A])R7I*I=1. Similarly, the latter yields the second part of (12) with Cy :=

max{n(l—i—'y]A]) (n, T—i—l),CQ}. O
2.3 A bound on the Lie operator

Proposition 2.3. Let F,G be two functions such that ||F||;_5z,IGllq_zg < +00 for some
d e (0,1/4] and R > 0. Then for all s € N the following bound holds

ILEF Nl -y < € 28 (RA) |G| gyl 1F 1l o - (16)
Proof. Straightforward from [Gio, Sec 3.2| and [Gio03, Lemma 4.2]. O



3 Proof of the main result: convergence of the normal form

3.1 Preparation of the domains

Taking into account the domain restriction imposed by Proposition 2.3, the canonical trans-
formations will be constructed of the form M; : Dg,,, — Dg; > (29),4@) 0y (understood
(2@, 4O nO)) = (z,9,n)), where {DR, }jen is a suitable sequence of nested domains. We will
also provide another sequence {¢;} which will be used to control the size of the remainder.

Lemma 3.1. Let us consider the following sequences
ej1=Ka 'd;7€, Ry :=(1-2d))R;, (17)
with €j, R; < 1, dj <1/4 and where €, Ry, a, K,0 > 0 are given. If
€0 < eq:=a2m) K (18)

then it is possible to construct {d;}jen in such a way R; > R, := Ro/2 and €; — 0 monotonically
as j — oo.
Remark 3.2. The property R, > 0is crucial, as R, is the lower bound for the analyticity radius

of the normalised Hamiltonian.

Proof. Straightforward from [FW15c, Lemma 4.4]. We recall that a suitable choice is €; =
eo(j +1)77, then, by (17), d; = (eoKa~")1/?)(j +2)2/(j 4+ 1)*. From the latter, one has

> d; < 1/6, (19)
Jj=0

provided that condition (18) is satisfied. O

3.2 TIterative lemma
Let us define for all j > 0, HU*Y) := M;HV) with H©®) .= H.

Lemma 3.3. Under the same hypotheses of Theorem 1.1 and under the condition (18) it is
possible to find a Ry and a sequence {x\9)} ;e such that HU) (z,y,n,t) = h(z,y,n) + 9 (z,y,1)
with fY9) (QxLy) and such that Hf(j)HR, < eje % for all j, where €j, R; are given by (17).

J

The stated result exploits the possibility to remove the perturbation with the normalization
algorithm obtaining, in this way, the desired normal form (5). The interpretation of €; as a
bound for the remainder is clearly related to the well known feature of the quadratic method.

Proof. By induction. If j = 0, the statement is clearly true by hypothesis, by setting f(© := f,
either in the case I or in the case I1. We are supposing here that €g is small enough in order to
satisfy (18). This will be achieved later by a suitable choice of Ry.
Let us suppose the statement to be valid for j. In this way we get

HUHY = exp(L,))HD = h+ fU + L b+ ()7L 9+ ()7L ) e

s>1 5>2

We shall determine xU) in such a way (10) is satisfied so that, by setting

A 1 . A 1 . (10) s 5 ,
FUHD gﬁx(j)fu) + Z Eﬁx(j)h — Z (7£x<f>f(j)’ (20)

! ! s+1)!
s>1 §>2 s>1 + )



one has HUtD) = p 4 fU+1),

It is immediate from (13) that x9) has the same null Taylor coefficients as f). Hence if fU)
is (QxLy) then x\9) is also. It is easy to check by induction that this implies that E;(j)f(j) is
(QzLy) for all s, then fU+Y) is (QxLy). Similarly, equation (15) implies that if fU) is (Ly) then
x\9) is also. This implies that E;(j)f(j) is (Ly) for all s, hence fU+1) is (Ly). This completes the
formal part. In particular, by induction, f\@) is (Ly) for all j, as claimed in Remark 1.3.

Let us now discuss the quantitative estimate on fU) in the case a > 0. By Propositions 2.2, 2.3
and the inductive hypothesis, one gets

2
s £0) 0%t -G
Hﬁx(“f H(1_2dj)Rj s sl@ee ™, 0:= aREd?"HG]' 2D
Setting K := 2ne’?CiR;? and o := 2n + 5, we have that
20 = (Keja~'d; 7)d; < dj, (22)

as €j41/€; < 1 by Lemma 3.1. Hence, © < 1/2 and the series defined in (20) is convergent,
furthermore

(22) (

17
et <¢j Z ©° <2nB¢; < Kafldj_aﬁz L) €j+15 (23)
>1

‘ f<j+1>‘

Rjt1 !

which completes the inductive step. The condition (18) in this case reads as
€0 < aR%(2m) 77 (8ne®Cy) 7L (24)

On the other hand, from the analyticity of f, we get |fa ()] < MyR™Io+0l < MfRa‘OhLBl/lG, as
Ry < R' by hypothesis. By using the first of (9) we get 1 fllr, < My Z(a7ﬁ)eN2n RélS/lGNOﬁLBl <
2ne(2"_1)MfR335/64 =: ¢y. Replacing the latter in (24), the condition on Ry described in the
statement of Theorem 1.1 is meant to be completed with the following one

Ry < [a/(16(27)7 " 120y M) %47 (25)

The case a = 0 is analogous: it is sufficient to replace C; with Cs, remove the term e** from
the statement, (21) and (23), then replace a with 1 from (21) to (24), where now o = n+ 7 +5.
The only substantial difference consists in the sum obtained from (9), which is slightly improved,

since f linear in y. We have in this case || f||z, < nQenfleRgS/g2 =: ¢p leading to
Ry < [8(2m)° "M ndCy M) 7321 (26)

O

3.3 Bounds on the coordinate transformation
Lemma 3.4. The transformation of coordinates defined by the limit (6) satisfies
|25 — [, [y =y, [>) — | < Ro/6, (27)

(00

in particular, it defines an analytic map M : Dr, — Dgr, and H ) .= MH is an analytic

function on Dp, .



Proof. We will discuss the case a > 0. The case a = 0 is straightforward simply replacing C
with Cs, a with 1 and changing the value of o, where necessary.

Let us start from the variable x. Note that, by Proposition 2.3, one has
sl©°Ry for all I =1,...,n. Hence we have, by (22)

s (j+1>H <
EX“)xl (1-2d;)R; —

s (G+1)

. , 1
20D — 20 <n max 37— ( )} < 2nRyO < Royd,.

=1,...,n S
s>1

lo-apm,

In this way |2() —z| < >j>0 |20 — 20)| converges by (19). The procedure for y is analogous.
As for the third of (27), it is necessary to observe that £, ;yn = —9,xY). Hence, by (16) and the

ﬁ;(j)WH(l 2R)) < e 251057 1(R2e720) < 5!©°Ry, hence |nlith — )| <
—2R;

second of (11), one has ‘

27”LRO® < R(]dj.

The bounds (27) ensure that points in Dp, are mapped within Dg, where R, = Ry/2. Fur-
thermore, the absolute convergence of the above described series, ensured by (19), guarantees
the uniform convergence in every compact subset of D, and the analyticity of M, and then of
H() follows from the theorem of Weierstra®, see e.g. [Det65]. O

Appendix. Proof of Proposition 2.1

First of all, recall 3y, n VPRIV = 30 (771 IR!. Now note that log [T} (1 + j) <
flm log(l4 z)dx =1 —m+log[(m + l)(mH)(l + l)*(Hl)] hence (m — 1)!(1';;’1_11) = H;n:_ll(l +7j) <
e Lm + 1) (1 4 1)~ 04D < e2m=2(pm 4 )"+ This yields
> wPRM <[22/ (m = 1)) ) (m+ DR (28)
>N I>N
On the other hand, the function h(z) := (m + x)*R*/* has a maximum in z = 0 (in the non-
negative semi-axis) if R < exp(—4x/m) and in z* := —m — 4x/log R otherwise. Hence, from

(28) with po =0 we have } > v R < [(m — 1) tm™e2m—2 dSN RG/ which gives the first
of (9) by using the inequality m™ < e™ 'm! and recalling R < e~%.

Now set R = 1 — 8. By hypothesis R > e, hence (m + 1)) (1 - §)V/* < (1 —68)""/2(=2(m +
1)/ log(1 — 6))m+1) | By substituting the latter in (28) with N = 0, then using the inequalities
—log(1—0) > and [1 — (1 —0)%*4] > /2 as § < 1/2, the second of (9) easily follows.
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