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Abstract

The higher-order, equivalent single-layer model developed in Part I is applied to the stretching and bending of exemplar
multilayered flat plates, where the results are compared with different 3D models, and trends and insights are subsequently
drawn. The present mixed displacement/stress-based model is derived from inherently equilibrated 3D stress fields that
satisfy the interlaminar and surface traction equilibrium conditions. A new set of governing equations is derived from a
contracted Hellinger-Reissner functional that only enforces the classical membrane and bending equations via Lagrange
multipliers. Combined with the fact that the same set of stress resultants is used for all stress fields, the number
of unknown variables of the theory reduces, while maintaining sufficient fidelity to capture higher-order transverse
shearing and zig-zag effects. A wide range of stacking sequences are considered ranging from orthotropic straight-fibre
laminates to sandwich panels with variable-stiffness face sheets, i.e. composite plies in which the reinforcing fibres
describe curvilinear paths. Hence, the model is used to study laminated plates with 3D heterogeneity, that is laminates
comprising layers with material properties that can differ by multiple orders of magnitude and that vary continuously
in-plane. The governing equations are solved both analytically using trigonometric expansions and numerically using
the pseudo-spectral differential quadrature method. The 3D stress fields predictions correlate closely with 3D elasticity
and 3D finite element solutions and are accurate to within a few percent for thick plates with characteristic length to
thickness ratios as small as 5:1. In fact, the results suggest that 3D stress fields from our model satisfy Cauchy’s 3D
equilibrium equations more accurately, and at a three-order degree of freedom reduction in computational cost, compared
to high-fidelity 3D FEM models.

Keywords: Hellinger-Reissner mixed-variational principle, Variable-stiffness laminated plates, Transverse shear
deformation, Zig-zag effects

1. Introduction

1.1. Hellinger-Reissner model

In Part I [1] of this work, a mixed displacement/stress-
based, higher-order zig-zag (ZZ) theory for the bending
and stretching of multilayered plates was derived from the
Hellinger-Reissner (HR) mixed-variational statement. The
model is applicable to multilayered plates of uniform thick-
ness t comprising Nl perfectly bonded laminae with indi-
vidual thicknesses t(k) (where the superscript (k) refers to
properties of the kth layer) as shown in Figure 1. The plies
are of arbitrary linear elastic constitution and hence, may
be straight-fibre or tow-steered reinforced plastic, foam,
honeycomb or other compliant materials. The initial con-
figuration of the plate is referenced in orthogonal Cartesian
coordinates (x, y, z) with x and y defining the two in-plane
dimensions and z ∈ [−t/2, t/2] defining the thickness co-
ordinate.

∗Corresponding author: rainer.groh@bristol.ac.uk

The displacement and stress fields within the domain of
the plate are expanded as a Taylor series of the through-
thickness coordinate z multiplied by unknown variables de-
fined on the reference surface Ω coincident with the (x, y)-
plane. The through-thickness expansion functions are split
into global z-wise fields to capture transverse shearing ef-
fects, and local piecewise-continuous z-wise fields to cap-
ture the ZZ effect. By using the inverse of the higher-order
ABD-matrices, the in-plane stress fields are expressed in
terms of layerwise material properties, through-thickness
shape functions and a vector of higher-order stress resul-
tants. Hence,

σ(k) =


σ(k)
x

σ(k)
y

σ(k)
xy

 = Q̄
(k)
f (k)
ε sF (1)

where s is the inverse of the higher-order ABD-matrix,

Q̄
(k)

is the reduced stiffness matrix assuming plane stress
in the z-direction, f (k)

ε is an array of through-thickness
shapes functions that capture the z-wise variations of the
in-plane stresses σ(k), and F = (N ,M, . . . ) is a stress
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Figure 1: A 3D multilayered plate condensed onto an equivalent single layer. The assumed through-thickness displacement field
accounts for layerwise ZZ discontinuities which are disregarded in classical theories.

resultants vector defined with respect to the chosen ref-
erence surface Ω and includes the classical membrane
stress resultants N = (Nx, Ny, Nxy), bending moments
M = (Mx,My,Mxy), and all other higher-order moments.
The stress resultants vector is defined by

F =

∫ t/2

−t/2
f (k)>

ε σ(k)dz.

Model assumptions for the transverse stresses are de-
rived by integrating the in-plane stresses Eq. (1) in
Cauchy’s equilibrium equations, and applying interlami-
nar and surface equilibrium conditions. Hence, the 3D
stress field is based on the same set of unknowns F and is
inherently equilibrated. This gives

τ (k) =

{
σ(k)
xz

σ(k)
yz

}
= D>

[(
−Q̄(k)

g(k)+α(k)
)
sF
]
+T̂b (2)

σ(k)
z = ∇>D>

[{
Q̄

(k)
h(k) −α(k)z + β(k)

}
sF
]
−

∇>T̂b (z − z0) + P̂b (3)

where g(k) and h(k) are arrays of through-thickness shape
functions that capture the z-wise variations of the trans-
verse shear stresses τ (k) and transverse normal stress σ(k)

z ,

respectively, and α(k) and β(k) enforce the interfacial con-
tinuity conditions of τ (k) and σ(k)

z , respectively.

Note that ∇ is the del operator and D> is a differential
operator matrix defined by

D> =


∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

 .
The governing equations are derived in generalised no-

tation that allows the order of the model to be specified
a priori without having to re-derive the equations. By

integrating all structural properties in the thickness z-
direction, the model is an equivalent single-layer theory
defined in terms of functional unknowns defined on a cho-
sen reference surface Ω, and therefore the total number of
variables is independent of the number of layers.

For a certain set of prescribed shear (T̂ ) and normal (P̂ )

tractions
(
T̂bx, T̂by, P̂b

)
and

(
T̂tx, T̂ty, P̂t

)
on the bottom

(b) and top (t) surfaces of the 3D body, respectively, the
governing field equations derived in [1],

D>N + T̂t − T̂b = 0 (4a)

∇>D>M+∇>
(
zNl

T̂t − z0T̂b
)

+ P̂t − P̂b = 0 (4b)

(s+ η)F + ηx
∂F
∂x

+ ηy
∂F
∂y

+ ηxx
∂2F
∂x2

+ ηxy
∂2F
∂x∂y

+ ηyy
∂2F
∂y2

+ χT̂b + χx
∂T̂b
∂x

+ χy
∂T̂b
∂y

+ Leq = 0 (4c)

are to be solved for the unknown displacement variables
u = (ux0

, uy0 , w0), i.e. the in-plane and transverse dis-
placements of the equivalent single layer in Cartesian
(x, y, z)-coordinates, and the stress resultants vector F .
Eqs. (4a) and (4b) are the classical membrane and bend-
ing equilibrium equations, respectively. Eq. (4c) represents
an “enhanced” constitutive relation between the reference
surface strains ε0, curvatures κ and the stress resultants
F taking into account higher-order shearing and zig-zag
effects. Thus, the matrices η are transverse shear correc-
tion factors that, when multiplied by their corresponding

higher-order moment derivatives
∂nF
∂xni

, correct the classi-

cal reference surface strain, which is defined by the prod-
uct sF . Similarly, the matrices χ are correction factors
related to the applied surface shear tractions.

When solving the governing field equations Eq. (4), the
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pertinent essential and natural boundary conditions

ηbcF + ηbcx
∂F
∂x

+ ηbcy
∂F
∂y

+ χbcT̂b + Lbc = Ûbc

w0 = ŵ0

 on C1

(5a)

F∗bc = F̂∗bc and Qnz = Q̂nz on C2 (5b)

need to be satisfied on the perimeter curve Γ of the equiv-
alent single layer, where this perimeter is split into two
disjoint curves C1 and C2 on which displacement and
stress resultant boundary conditions are prescribed, re-
spectively. The addition of the superscript bc to any ma-
trix denotes correction factors that are applicable to the
boundary curve Γ, Qnz is the transverse shear force nor-
mal to the boundary surface, and Ûbc is a column vector
of prescribed displacement variables on the boundary.

Leq is a column vector that includes derivatives of the
Lagrange multipliers u = (ux0 , uy0 , w0) and captures the
reference surface stretching strains ε0 and curvatures κ,

Leq = −
[
ε0 κ 0

]>
(6)

Similarly, Lbc is a column vector that includes the
Lagrange multipliers un0

= nxux0
+ nyuy0 , us0 =

−nyux0
+nxuy0 and rotations

∂w0

∂n
and

∂w0

∂s
of the bound-

ary perimeter Γ in the local normal-tangential (n, s, z)-
coordinate system, where n = (nx, ny) is the outward nor-
mal vector to Γ, i.e.

Lbc =

[
un0

us0 −∂w0

∂n
−∂w0

∂s
0

]>
. (7)

Detailed derivations and explanations of these governing
equations are presented in [1].

1.2. Variable-stiffness laminated composites

Part I of this work presented an historic review of
displacement-based and mixed-variational 2D equivalent
single-layer theories for multilayered plates. Hence, the
purpose of this literature review is to briefly introduce the
notion of variable-stiffness laminates, which have gained
increasing interest over the last decade, and are also mod-
elled within this paper.

Variable-stiffness composites are a promising technology
for improving the efficiency of engineering structures due
to the increased design space available for tailoring. The
idea of tailoring the structural performance of composite
laminates by spatially varying the pointwise fibre orien-
tations has been explored since the early 1970’s [2]. For
example, early work by Hyer and Lee [3] and Hyer and
Charette [4] showed that such variable angle tow (VAT)
laminates can alleviate stress concentrations around holes
by aligning the fibre paths with the directions of principle
stress.

In recent years, the use of fibre reinforced composites in
primary aircraft structures has led to increased interest in
VAT technology. Numerous works have shown that tai-
loring the in-plane stiffness of a plate allows prebuckling
stresses to be redistributed to supported regions, thereby
increasing the critical buckling load [5–13]. Specifically,
Gürdal et al. [6] have shown that varying the stiffness of
the panel perpendicular to the direction of applied end
compression results in greater improvements than varying
the stiffness in the direction of loading.

Recent results show that VAT plates with linear fibre
variations can be designed to exhibit smaller stiffness re-
ductions in the postbuckling regime than their straight-
fibre counterparts [14]. In this regard, an interesting ap-
plication of variable-stiffness technology is in designing
cylindrical shells with stable postbuckling paths. It is well
known in the engineering community that cylindrical shells
are prone to collapse if loaded in axial compression beyond
the buckling load. A direct consequence of this postbuck-
ling instability is an extreme sensitivity to initial geomet-
ric imperfections and loading conditions, which can lead
to actual buckling loads less than 50% of analytical pre-
dictions from linear eigenvalue analyses [15]. White and
Weaver [16] have recently shown that this imperfection
sensitivity can be effectively eliminated, thereby creating
stable, plate-like postbuckling responses, by tailoring the
fibre paths across the surface of the shell. The idea of intro-
ducing flat, plate-like behaviour in shells was also exploited
by applying the variable-stiffness concept to decouple the
linear membrane-bending coupling characteristic of curved
structures [17].

To date, the primary technology for manufacturing VAT
laminates is Automated Fibre Placement (AFP), a manu-
facturing process originally developed in the 1980’s to au-
tomate lamination of straight fibre laminates. AFP uses
a robotic fibre placement head that deposits multiple pre-
impregnated tows of “slit-tape” allowing cutting, clamping
and restarting of every single tow. However, in AFP, steer-
ing is accomplished by bending the tows in-plane which
leads to local fibre buckling on the inside radii of the curved
tow, and thus limits the steering radius of curvature [18].
Furthermore, if individual tows are placed next to each
other by shifting the reference path along a specific di-
rection, tow gaps and overlaps are inevitably required to
cover the whole surface.

To overcome the drawbacks of AFP machines, the Con-
tinuous Tow Shearing (CTS) technique was developed,
which uses shear deformation to steer fibres at the point
of application [19]. This technique not only allows much
tighter radii of curvature but tow gaps and overlaps are
also avoided by tessellating tows on the substrate. In re-
cent characterisation work, Kim et al. [20] showed that
CTS can produce impregnation quality similar to com-
mercial pre-preg. One feature of CTS is that in order to
maintain the volume fraction of fibre, the thickness of a
tow inherently increases as it is sheared. The relation be-

3



tween unsheared tow thickness t
(k)
0 and sheared tow thick-

ness t(k) of a layer k is

t(k) =
t
(k)
0

cos γ(k)
= t

(k)
0 sec γ(k) (8)

where γ(k) is the shearing angle of the tow at the point of
application. Consequently, the thickness of a ply may lo-
cally increase by a factor of three if the fibre tow is sheared
through an angle of 70◦.

Whereas a number of works in the literature deal with
global structural phenomena of tow-steered composites
laminates, such as vibration and buckling, relatively lit-
tle work has been conducted on higher-order effects in
these laminates. Akhavan and Ribeiro [21] and Akha-
van et al. [22] investigated the natural modes of vibra-
tion and nonlinear bending deflections and stresses of tow-
steered composites, respectively, using a Reddy-type third-
order shear deformable theory solved via a p-version finite
element approach, for a variety of different edge condi-
tions including plates clamped along all four edges. As
elucidated in reference [23], the Reddy-type model used
by these researchers leads to static inconsistencies for
the clamped boundary condition. Furthermore, by being
based on a displacement-based theory, the transverse shear
stresses were derived by integrating the in-plane stresses in
Cauchy’s equilibrium equations via a post-processing step.
The researchers also point out that tow-steered laminates
can be used effectively to tailor deflections and stresses
locally, in order to improve damage resistance in certain
applications. In further work, Akhavan and Ribeiro [24]
extended the vibrational analysis into the nonlinear regime
using a first-order model. Coburn et al. [25, 26] accounted
for the effect of transverse shear deformation on the buck-
ling behaviour of tow-steered, blade-stiffened wing pan-
els. Akbarzadeh et al. [27] studied the effects of trans-
verse shear deformation on the vibrational and buckling
response of moderately thick AFP panels with gaps and
overlaps using a Reddy-type third-order shear deformable
theory. The authors corroborate the findings of the present

authors published in [28] that transverse shear deforma-
tion has a bigger impact on tow-steered than straight-
fibre laminates. Yazdani and Ribeiro [29] and Yazdani
et al. [30] recently published layerwise extensions of the
earlier works by Akhavan and co-workers on the free vi-
bration and bending behaviour of tow-steered laminates
cited above. Finally, Tornabene et al. [31] studied the
free vibrations of doubly curved, variable-stiffness shells
using a generalised higher-order model implemented via
Carrera’s Unified Formulation (CUF) using a local differ-
ential quadrature method. Due to the relative novelty of
tow-steered laminates, there is little work in the litera-
ture on detailed analyses of full 3D stress fields in tow-
steered laminates and how these could be tailored to opti-
mise structures for specific objectives. Hence, the present
work aims to contribute new insights in this field.

1.3. Structure of the paper

In this work, the derived HR formulation is compared
against 3D elasticity and 3D FEM results for a num-
ber of straight-fibre and variable-stiffness laminates, as
well as sandwich plates. Overall, four different imple-
mentations of the HR formulation are considered. The
first is a third-order model that does not account for ZZ
effects denoted by HR3. The displacement and stress
field expansions are truncated after the z3 term such
that there are twelve stress resultants in F , the classi-
cal membrane forces N = (Nx, Ny, Nxy), classical bend-
ing moments M = (Mx,My,Mxy), second-order mo-
ments M2 = (M2x,M2y,M2xy) and third-order moments
M3 = (M3x,M3y,M3xy). Second, the third-order model
is enhanced via a ZZ degree of freedom by using either
Murakami’s zig-zag function (MZZF),

φ
(k)
iMZZF

(z) = (−1)k
2

t(k)

(
z − z(k)m

)
for i = x, y (9)

where z(k)m and t(k) are the midplane coordinate
and thickness of layer k, respectively, or by using
the Refined Zig-zag Theory (RZT) function [32],

φ
(1)
iRZT

(x, y, z) =

(
z +

t

2

)(
Gi(x, y)

G
(1)
iz (x, y)

− 1

)

φ
(k)
iRZT

(x, y, z) =

(
z +

t

2

)(
Gi(x, y)

G
(k)
iz (x, y)

− 1

)
+

k∑
j=2

t(j−1)

(
Gi(x, y)

G
(j−1)
iz (x, y)

− Gi(x, y)

G
(k)
iz (x, y)

)


for i = x, y (10)

and Gi(x, y) =

[
1

t

Nl∑
k=1

t(k)

G
(k)
iz (x, y)

]−1
.

For variable-stiffness composites, the RZT ZZ function
is not only a layerwise quantity, but also varies with the
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in-plane coordinates (x, y) as the transverse shear moduli

G
(k)
iz (x, y) can change from point to point over surface Ω.

MZZF on the other hand is invariant of transverse material
properties and therefore only varies with location (x, y)
when the thickness of the plate changes. In the case of
a constant thickness plate, MZZF is purely a layerwise
function with φ(k)xMZZF

= φ(k)yMZZF
.

When MZZF is used, the model is referred to as HR3-
MZZF. When the RZT ZZ function is used, a distinction is
made between the original implementation of the RZT ZZ
function as defined by Tessler [32], denoted by HR3-RZT,
and Gherlone’s adaptation [33] that accounts for the pres-
ence of externally weak layers (EWLs), which is denoted
by HR3-RZTmx, where the mx stands for “modified exter-
nal”. In the RZTmx case, the RZT ZZ function is calcu-
lated from modified values of the transverse shear moduli
G(k)
xz and G(k)

yz of layer k:

• If G
(1)
iz < G

(2)
iz , then G

(1)
iz = G

(2)
iz .

• If G
(Nl)
iz < G

(Nl−1)
iz , then G

(Nl)
iz = G

(Nl−1)
iz .

(11)

where Nl is the total number of layers and i = x, y.
The rule does not apply if the condition reduces the
laminate to have the same transverse shear moduli for
all layers, as would be the case for [0/90], [90/0] and
[90/0/90] laminates. The ZZ functionality adds three ad-
ditional ZZ bending moments Mφ = (Mφ

x ,M
φ
y ,M

φ
xy) in

the case of MZZF, and four in the case of RZT Mφ =
(Mφ

x ,M
φ
y ,M

φ
xy,M

φ
yx), such that the number of unknowns

in F is increased to fifteen and sixteen, respectively.

The presentation of the results is split into two sec-
tions. Section 2 shows the benchmarking results for
straight-fibre laminates, whereas Section 3 treats tow-
steered laminates. In total, 12 laminates are investigated;
four orthotropic straight-fibre laminates, four anisotropic
straight-fibre laminates and four tow-steered laminates.
For further results, the interested reader is directed to ref-
erence [34] and the supplementary online figures submitted
with this article. In Section 2.1, orthotropic laminates are
compared with Pagano’s 3D elasticity solution [35] of an
orthotropic plate simply supported along all four edges and
loaded by a sinusoidal pressure loading on the top surface.
This 3D elasticity solution is not applicable to anisotropic
laminates with extension/shear coupling, bend/twist cou-
pling or load cases involving shear tractions applied to the
top and bottom surfaces. Therefore, high-fidelity 3D FEM
solutions from Abaqus are used to compare more general
laminations and load cases in Section 2.2. This second test
case considers general anisotropic laminates that are fully
clamped along all four edges and loaded by a constant pres-
sure loading and shear traction on the top surface. Similar
3D FEM solutions are used in Section 3.1 to test the ac-
curacy of the model for tow-steered laminates. A large
number of different stacking sequences and characteristic
in-plane length to width ratios are considered to validate
the general applicability of the HR models. Finally, Sec-

tion 4 draws conclusions and makes suggestions for future
work.

2. 3D stress fields in straight-fibre laminates and
sandwich plates

Consider a square plate of unit in-plane dimensions
a = b = 1 m and total thickness t < a, b. The plate
comprises Nl orthotropic, straight-fibre laminae of layer
thickness t(k), material stiffness tensor C(k) and fibre ori-
entation α(k). The individual layers can be arranged
in any general fashion but are assumed to be perfectly
bonded, such that displacement and traction continuity at
the interfaces holds. The plate is subjected to certain dis-
placement or traction boundary conditions along its four
straight-edge surfaces, e.g. simply supported or rigidly
built-in, and is loaded via certain external tractions on
the top and bottom surfaces. In reaction to the applied
loading and constraining boundary conditions, the plate is
assumed to deform isothermally into a new static equilib-
rium state.

2.1. Benchmarking of 3D stresses in orthotropic laminates

2.1.1. Model implementation

As a first test, consider the multilayered plate loaded by
a sinusoidally distributed pressure load on the top sur-
face and simply supported along all four edges shown
in Figure 2. In the HR formulation, the 3D continuum
is compressed onto an equivalent single layer Ω coinci-
dent with the midplane of the plate as depicted by the
grey surface. All externally applied tractions are zero ex-
cept for the sinusoidal pressure on the top surface P̂t =
p0 sin(πx/a) sin(πy/b).

Following Pagano [35], an exact 3D elasticity solu-
tion exists for this problem with arbitrary number of or-
thotropic or isotropic layers, and this is readily imple-
mented in software packages such as MATLAB. Thus,
Pagano’s solution serves as the benchmark for the or-
thotropic composite laminates and sandwich plates con-
sidered in this section.

For straight-fibre laminates the HR governing field equa-
tions (4) are given by

sF + ηxxF,xx + ηyyF,yy + ηxyF,xy + Leq = 0 (12a)

Nx,x +Nxy,y = 0 (12b)

Nxy,x +Ny,y = 0 (12c)

Mx,xx + 2Mxy,xy +My,yy + P̂t = 0 (12d)

where the comma notation is used to denote differentia-
tion, and Nx, Ny, Nxy and Mx,My,Mxy are the classical
membrane forces and bending moments, respectively, and
are the first six entries in the stress resultant array F .

The simply supported boundary conditions, i.e. each
edge can rotate and move normal to its boundary curve
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Figure 2: A composite plate loaded by a sinusoidally dis-
tributed pressure load on the top surface and sim-
ply supported along all four edges. In the HR for-
mulation, the 3D continuum is compressed onto an
equivalent single layer Ω coincident with the mid-
plane of the plate.

but not tangential to it, are expressed mathematically as

at x = 0, a : σx = uy0 = w0 = 0 (13a)

at y = 0, b : σy = ux0
= w0 = 0. (13b)

Variable assumptions that satisfy the conditions in
Eq. (13), and that are sufficiently general to solve the
boundary value problem depicted in Figure 2, are given
by

ux0
= Ucos

(πx
a

)
sin
(πy
b

)
, uy0 = V sin

(πx
a

)
cos
(πy
b

)
,

(w0,Fx,Fy) = (W,Fx0
, Fy0) sin

(πx
a

)
sin
(πy
b

)
,

Fxy = Fxy0 cos
(πx
a

)
cos
(πy
b

)
(14)

where Fx = (Nx,Mx, . . . ,M
φ
x ) are the x-wise axial stress

resultants, Fy = (Ny,My, . . . ,M
φ
y ) are the y-wise lateral

stress resultants, and Fxy = (Nxy,Mxy, . . . ,M
φ
xy) are the

in-plane shear stress resultants. Note that Mφ
xy does not

exist for HR3, Mφ
xy = (Mφ

xy,M
φ
yx) for HR3-RZT and

Mφ
xy = Mφ

xy for HR3-MZZF.

Substituting Eq. (14) into the governing differential
equations (12) results in a set of Neq algebraic equations
in Neq variables (Fx0

, Fy0 , Fxy0 , U, V,W ), where Neq = 15
for HR3, Neq = 18 for HR3-MZZF and Neq = 19 for HR3-
RZT. Note that for orthotropic laminates considered in
this problem, the extension/shear coupling stiffness terms
Q̄16 = Q̄26 = 0. As a result, all extension/shear and
bend/twist coupling terms sij in the direct compliance

matrix s must vanish, i.e. s13 = s16 = · · · = s23 = s26 =
· · · = s31 = s32 = s34 = s35 = · · · = 0 because all com-
ponents in s are linearly dependent on Q̄. For the direct
shear correction matrix ηxx, the terms associated with Q̄16

and Q̄26 also vanish, i.e. ηxx13
= ηxx16

= · · · = ηxx23
=

ηxx26 = · · · = ηxx31 = ηxx32 = ηxx34 = ηxx35 = · · · = 0,
and similarly for the direct stiffness matrix ηyy. On the
contrary, for the in-plane coupling shear correction matrix
ηxy, these aforementioned vanishing terms are the only
non-zero values, such that ηxy11 = ηxy12 = ηxy14 = ηxy15 =
· · · = ηxy21 = ηxy22 = ηxy24 = ηxy25 = · · · = ηxy33 =
ηxy36 = · · · = 0.

According to the definition of ηxx and ηyy (see Ap-
pendix in [1]), these two direct shear correction matrices

are functions of the products
(
IxQ̄

(k)
)>
·
(
IxQ̄

(k)
)

and(
IyQ̄

(k)
)>
·
(
IyQ̄

(k)
)

, respectively, where

Ix =

[
1 0 0
0 0 1

]
and Iy =

[
0 0 1
0 1 0

]
. (15)

The in-plane coupling shear correction matrix ηxy (see
Appendix in [1]), however, is a function of mixed terms(
IxQ̄

(k)
)>
·
(
IyQ̄

(k)
)

+
(
IyQ̄

(k)
)>
·
(
IxQ̄

(k)
)

. By com-

puting these matrix products involving Ix, Iy and Q̄
(k)

with Q̄16 = Q̄26 = 0, the set of vanishing shear correction
factors above is readily verified.

Thus, in consideration of these vanishing compliance
and shear correction terms, and the fact that a = b = 1m,
the set of algebraic governing field equations reads

KfF0 +KuU0 = 0 (16a)

Nx0
−Nxy0 = 0 (16b)

Ny0 −Nxy0 = 0 (16c)

π2 (Mx0 +My0 − 2Mxy0) = p0 (16d)

where F0 = (Nx0 , Ny0 , Nxy0 ,Mx0 ,My0 ,Mxy0 , . . . ) and
U0 = (U, V,W ). The stiffness matrices Kf and Ku mul-
tiplying the unknowns F0 and U0 are given by,

Kf :
Kfii = sii − π2 (ηxxii + ηyyii) , Kfij = π2ηxyij

Kfji = π2ηxyji , Kfjj = sjj − π2
(
ηxxjj

+ ηyyjj
)

Ku =



π 0 0
0 π 0
−π −π 0
0 0 −π2

0 0 −π2

0 0 2π2

0 0 0
...

...
...


where subscripts ij denote components of the associated
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matrices with indices i and j defined by

HR3: i = (1, 2, 4, 5, . . . , 10, 11), j = (3, 6, . . . , 12)

HR3-MZZF: i = (1, 2, 4, 5, . . . , 13, 14), j = (3, 6, . . . , 15)

HR3-RZT: i = (1, 2, 4, 5, . . . , 13, 14), j = (3, 6, . . . , 15, 16).

Thus, Eqs. (16) represent a system of Neq simultaneous
algebraic equations that are readily solved for the Neq
unknowns (F0, U0) by standard matrix inversion. In the
present work, computations of all stiffness terms and shear
correction factors, and the matrix inversion operations
were carried out in MATLAB.

2.1.2. Model validation

To test the general applicability of the HR models a va-
riety of different symmetric and non-symmetric composite
laminates and sandwich plates are tested. Table 1 shows
the two different materials used throughout the analysis.
The first material c is representative of a high-performance
carbon-fibre reinforced plastic with high orthotropy of in-
plane modulus to transverse shear modulus. The second
material h is a transversely isotropic honeycomb core and
features significantly lower transverse shear stiffness than
material c to exacerbate the ZZ effect. The stacking se-
quences of different laminates including layer orientations,
layer thicknesses and layer material codes are summarised
in Table 2.

Laminates A and B are composite laminates, whereas
laminates C and D are sandwich plates. Laminate D fea-
tures two different kinds of sandwich core, the full consti-
tutive core h and the degraded core 0.01h, where for the
latter, all material moduli of material h are degraded by
a factor of 100. As a variety of thin and thick laminates
with characteristic length to thickness ratios ranging from
a/t = 100 to a/t = 5 are investigated in this section, the
layer thicknesses are quoted as ratios of the total laminate
thickness.

Henceforth, all deflection and stress results are pre-
sented in normalised form. The chosen metrics for assess-
ing the accuracy of the HR models are the maximum trans-
verse bending deflection w0 and the full 3D stress field, i.e.
axial stress σx, lateral stress σy, in-plane shear stress σxy,
transverse shear stresses τxz and τyz, and transverse nor-
mal stress σz. The normalised quantities are defined as
follows:

w̄0 =
E

(c)
2 t2

p0a2b2

∫ t
2

− t
2

uz

(
a

2
,
b

2
, z

)
dz,

σ̄x(z) =
t2

p0a2
σx

(
a

2
,
b

2
, z

)
, σ̄y(z) =

t2

p0b2
σy

(
a

2
,
b

2
, z

)
,

σ̄xy(z) =
t2

p0ab
σxy

(
a

4
,
b

4
, z

)
, σ̄xz(z) =

1

p0
σxz

(
0,
b

2
, z

)
,

σ̄yz(z) =
1

p0
σyz

(a
2
, 0, z

)
, σ̄z(z) =

1

p0
σz

(
a

2
,
b

2
, z

)
(17)

and are calculated at the indicated locations (x, y, z)
throughout the 3D plate. Note that the bending deflec-
tion is normalised using the matrix-dominated modulus

E
(c)
2 of material c. Furthermore, the normalised bending

deflection w̄0 for the HR models is constant through the
thickness of each laminate and is thus compared against
Pagano’s [35] normalised average through-thickness deflec-
tion. As w̄0 is calculated at the in-plane centroid of the
plate, this metric corresponds to the maximum bending
deflection. Similarly, the normal stress metrics σ̄x, σ̄y
and σ̄z are also computed at the in-plane centroid of the
plate. The two transverse shear stress metrics σ̄xz and σ̄yz
are calculated at the midspan locations of the supported
edges, whereas the in-plane shear stress is taken at the
quarterspan of both in-plane x- and y-dimensions.

The relative percentage errors in the normalised met-
rics of Eq. (17) for the four HR models HR3, HR3-RZT,
HR3-RZTmx and HR3-MZZF with respect to Pagano’s 3D
elasticity solution [35] are shown Tables 3-6. The results
for Pagano’s solution are given to four significant figures,
whereas the percentage errors are cited to two decimal
places. These tables allow the accuracy of the four HR
models to be compared for a number of different stack-
ing sequences and characteristic length to thickness ratios
ranging from thin laminates with a/t = 100 to thick lam-
inates with a/t = 5.

As indicated by the table headings, the results in Ta-
bles 3-6 compare the absolute maximum through-thickness
values of the stress metrics σ̄x, σ̄y, σ̄xy, σ̄xz and σ̄yz, where
the notation ∨ |m| is used to indicate the absolute maxi-
mum value of metric m through the thickness of the plate.
For the transverse normal stress metric σ̄z, the value at
the interface z = zNl−1 between layers Nl and Nl − 1, i.e.
at the first layer interface from the top of the laminate, is
used. Laminate A is a three-layer laminate and therefore
the RZT modification rule for EWLs given in Eq. (11)
need not be applied. As a result, the models HR3-RZT
and HR3-RZTmx are the same and are combined under a
single heading HR3-RZT in Table 3.

The results in Tables 3-4 show that the error in the
HR3 model without ZZ functionality is around 1% for the
non-sandwich laminates A and B with a/t ratios up to 20.
However, the HR3 model loses accuracy compared to the
ZZ HR models when a/t ≤ 10. For laminate A, the error in
σ̄x is as great as 4.25% for a/t = 10 and then increases to
8.05% for a/t = 5. However, as plies are blocked together
into relatively thick groups in laminates A and B, part of
the error in HR3 is due to the ZZ effect that arises from the
difference in transverse shear moduli of the 0◦ and 90◦ lay-
ers. In practical engineering laminates, where plies are reg-
ularly dispersed to prevent transverse matrix cracking, the
influence of ZZ effects diminishes. Thus, for general engi-
neering laminates, the HR3 model can safely be considered
to be applicable for composite, non-sandwich plates up to
a/t ratios of around 10. The increasing discrepancy for
a/t = 5 is due to the increasing effects of normal through-
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Table 1: Mechanical properties of materials c and h.

Material E1 E2 E3 G12 G13 G23

c 172.5 GPa 6.9 GPa 6.9 GPa 3.45 GPa 3.45 GPa 1.38 GPa
h 276 MPa 276 MPa 3.45 GPa 110.4 MPa 414 MPa 414 MPa

Material ν12 ν13 ν23

c 0.25 0.25 0.25
h 0.25 0.02 0.02

Table 2: Analysed orthotropic stacking sequences. Subscripts indicate the repetition of a property over the corresponding number
of layers. Layer thicknesses stated as ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

A [(1/3)3] [c3] [0/90/0]
B [0.254] [c4] [0/90/0/90]
C [0.1/0.3/0.35/0.25] [c2/h/c] [0/90/0/90]
D [0.12/0.3/0.4/0.052] [c2/0.01h/h/c2] [90/03/90/0]

Table 3: Orthotropic laminate A: Percentage error in normalised bending deflection and 3D stresses for various HR models and
a/t ratios with respect to Pagano’s solution [35].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

100

Pagano 0.004347 0.5393 0.1808 0.01068 39.47 8.282 -0.7407
HR3 (%) 0.01 0.05 -0.02 0.03 0.01 -0.01 0.00

HR3-RZT (%) 0.01 0.00 -0.02 -0.01 0.00 -0.01 0.00
HR3-MZZF (%) 0.01 0.00 -0.02 0.00 0.00 -0.01 0.00

50

Pagano 0.004451 0.5410 0.1846 0.01082 19.67 4.212 -0.7406
HR3 (%) 0.03 0.22 -0.07 0.13 0.03 -0.03 0.01

HR3-RZT (%) 0.02 0.01 -0.07 0.01 0.01 -0.04 0.00
HR3-MZZF (%) 0.03 0.01 -0.07 0.01 0.01 -0.04 0.00

20

Pagano 0.005162 0.5525 0.2101 0.01170 7.692 1.875 -0.7398
HR3 (%) 0.15 1.28 -0.39 0.76 0.17 -0.16 0.04

HR3-RZT (%) 0.14 0.09 -0.27 0.40 0.04 -0.19 0.00
HR3-MZZF (%) 0.14 0.07 -0.38 0.04 0.04 -0.19 0.01

10

Pagano 0.007524 0.5906 0.2882 0.01449 3.573 1.228 -0.7371
HR3 (%) 0.50 4.25 -1.17 2.37 0.64 -0.29 0.17

HR3-RZT (%) 0.33 0.02 -1.09 0.91 0.11 -0.30 0.06
HR3-MZZF (%) 0.42 0.08 -1.17 0.19 0.15 -0.44 0.05

5

Pagano 0.01528 0.7180 0.4784 0.02185 1.471 0.9557 -0.7264
HR3 (%) 1.28 8.05 -2.97 5.56 -0.35 0.25 0.76

HR3-RZT (%) 0.97 -2.18 -3.03 1.07 0.41 -0.15 0.45
HR3-MZZF (%) 0.97 -2.20 -3.05 1.03 0.39 -0.15 0.44
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Table 4: Orthotropic laminate B: Percentage error in normalised bending deflection and 3D stresses for various HR models and
a/t ratios with respect to Pagano’s solution [35].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.005169 0.4887 0.4886 0.01259 14.02 14.02 -0.8599
HR3 (%) 0.03 -0.01 0.01 0.08 0.03 0.04 0.00

HR3-RZT (%) 0.05 0.07 0.00 0.51 -0.05 -0.05 -0.04
HR3-RZTmx (%) 0.03 -0.03 -0.01 0.02 0.00 0.00 0.00
HR3-MZZF (%) 0.03 0.03 0.04 0.08 0.00 0.00 0.00

20

Pagano 0.005713 0.4982 0.4979 0.01305 5.567 5.567 -0.8590
HR3 (%) 0.16 -0.03 0.03 0.50 0.21 0.21 0.00

HR3-RZT (%) 0.15 0.19 0.25 0.50 0.02 0.02 0.00
HR3-RZTmx (%) 0.15 -0.15 -0.09 0.12 0.01 0.01 0.00
HR3-MZZF (%) 0.15 0.18 0.25 0.50 0.02 0.02 0.00

10

Pagano 0.007617 0.5306 0.5309 0.01460 2.715 2.720 -0.8557
HR3 (%) 0.57 -0.02 -0.07 1.80 0.90 0.72 0.01

HR3-RZT (%) 0.44 0.75 0.67 1.93 0.15 -0.02 0.04
HR3-RZTmx (%) 0.44 -0.48 -0.53 0.46 0.13 -0.04 0.02
HR3-MZZF (%) 0.44 0.74 0.69 1.75 0.15 -0.02 0.03

5

Pagano 0.01475 0.6384 0.6560 0.01985 1.245 1.264 -0.8430
HR3 (%) 1.73 0.77 -1.94 5.02 3.16 1.55 0.21

HR3-RZT (%) 0.87 2.64 -0.28 4.98 0.81 -0.72 0.31
HR3-RZTmx (%) 0.86 -0.95 -3.61 1.54 1.03 -0.54 0.25
HR3-MZZF (%) 0.86 2.56 -0.20 4.73 0.83 -0.74 0.31

Table 5: Orthotropic laminate C: Percentage error in normalised bending deflection and 3D stresses for various HR models and
a/t ratios with respect to Pagano’s solution [35].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.006048 0.2451 0.6576 0.01883 3.268 19.69 -0.8002
HR3 (%) 0.03 0.07 0.46 0.08 -0.15 0.08 0.01

HR3-RZT (%) 0.03 -0.07 0.03 0.04 -0.08 0.01 0.00
HR3-RZTmx (%) 0.03 -0.06 0.01 0.04 -0.08 0.01 0.00
HR3-MZZF (%) 0.03 -0.04 0.19 0.16 -0.10 0.02 0.00

20

Pagano 0.008037 0.3159 0.6757 0.02216 1.605 7.357 -0.7997
HR3 (%) 0.24 0.54 2.64 0.50 -0.62 0.47 0.08

HR3-RZT (%) 0.15 -0.30 0.16 0.21 -0.38 0.09 -0.01
HR3-RZTmx (%) 0.15 -0.30 0.04 0.21 -0.39 0.09 -0.01
HR3-MZZF (%) 0.16 -0.16 1.06 0.84 -0.40 0.14 0.01

10

Pagano 0.01384 0.4927 0.7746 0.03001 1.154 3.193 -0.7970
HR3 (%) 1.02 2.31 10.82 1.82 -0.87 -2.97 0.26

HR3-RZT (%) 0.44 -0.68 0.91 0.72 -0.80 0.20 -0.02
HR3-RZTmx (%) 0.44 -0.67 0.17 0.72 -0.81 0.26 -0.03
HR3-MZZF (%) 0.52 -0.12 6.97 2.46 -0.64 -0.77 0.02

5

Pagano 0.02969 0.8067 1.081 0.04158 0.8103 1.649 -0.7829
HR3 (%) 2.74 7.49 21.13 5.28 -0.08 -6.96 0.81

HR3-RZT (%) 0.95 -1.03 1.64 1.96 -0.95 1.54 0.10
HR3-RZTmx (%) 0.95 -1.02 0.32 1.95 -0.96 1.56 0.10
HR3-MZZF (%) 1.23 0.79 12.57 6.08 -0.20 0.35 0.22
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Table 6: Orthotropic laminate D: Percentage error in normalised bending deflection and 3D stresses for various HR models and
a/t ratios with respect to Pagano’s solution [35].

a/t Model |w̄0| ∨ |σ̄x| ∨ |σ̄y| ∨ |σ̄xy| ∨ |σ̄xz| ∨ |σ̄yz| σ̄z(zNl−1)

50

Pagano 0.02123 1.153 1.190 0.02576 9.003 9.478 -0.9849
HR3 (%) 0.25 6.07 3.64 16.16 -0.50 -0.41 -0.05

HR3-RZT (%) 0.00 0.01 0.02 0.00 0.00 0.00 0.00
HR3-RZTmx (%) 0.00 0.00 0.01 0.01 0.00 0.00 0.00
HR3-MZZF (%) 0.23 7.24 0.69 21.83 -0.52 -0.37 -0.06

20

Pagano 0.08638 1.599 1.643 0.05179 4.072 4.285 -0.9817
HR3 (%) 2.02 25.88 11.18 28.06 -8.98 -2.42 -0.27

HR3-RZT (%) 0.00 0.01 0.04 0.05 0.03 0.01 0.00
HR3-RZTmx (%) 0.00 -0.02 0.03 0.06 0.01 0.01 0.00
HR3-MZZF (%) 1.79 30.62 9.49 44.21 -5.93 -3.73 -0.34

10

Pagano 0.2483 3.169 3.668 0.1281 3.723 3.792 -0.9738
HR3 (%) 6.71 29.18 20.13 26.56 -10.86 3.32 -0.91

HR3-RZT (%) -0.06 0.51 0.43 0.45 0.46 0.42 0.01
HR3-RZTmx (%) -0.06 0.42 0.42 0.48 0.42 0.42 0.01
HR3-MZZF (%) 5.90 36.23 17.20 46.60 -5.84 -1.31 -1.14

5

Pagano 0.5129 6.188 6.565 0.2376 3.131 3.148 -0.9600
HR3 (%) 13.38 24.97 35.38 38.74 -1.89 16.38 -2.07

HR3-RZT (%) -1.12 4.19 4.38 4.37 4.42 4.46 0.18
HR3-RZTmx (%) -1.12 4.15 4.37 4.52 4.37 4.47 0.18
HR3-MZZF (%) 11.50 31.84 30.70 61.03 3.37 9.34 -2.52

thickness deformation. Thus, under these circumstances
the HR formulation needs to be modified to account for
thickness stretch.

For sandwich plates C and D (Tables 5 and 6), the ac-
curacy of the HR3 model is inferior to the HR models
with ZZ functionality. Without the ZZ degree of freedom,
the HR3 model cannot account for the fact that layerwise
differences in transverse shear moduli lead to changes in
the z-wise slopes of the displacement and stress fields at
layer interfaces. The pronounced transverse orthotropy
between the composite layers c and the honeycomb lay-
ers h increases the ZZ effect in the sandwich plates C and
D compared to composite laminates A and B. The errors
in the HR3 model are especially pronounced for laminate
D, which features both the honeycomb core h and the de-
graded core 0.01h. For this laminate the error in the in-
plane shear stress metric σ̄xy is around 16% for the rel-
atively thin a/t ratio of 50. For thicker laminates with
a/t = 10 this error increases to over 25%. However, for
sandwich plate C (Table 5), which only includes core h,
the HR3 model maintains reasonable accuracy.

The HR3-RZT and HR3-RZTmx models are the most
accurate of the HR formulations investigated herein, with
a maximum error of 1.93% (Laminate B) for a/t ratios up
to 10. When the thickness of the plate is further increased
to a/t = 5 the HR-RZT models are accurate to within 5%
(Laminate D). As previously noted, the increasing inac-
curacy for a/t = 5 arises because the effects of through-
thickness normal deformation can no longer be ignored.
However, given the highly orthotropic material properties

and “cube”-like nature of a plate with a/t = 5, errors to
within a few percent of a 3D elasticity solution are ac-
ceptable given the reduced computational effort of the HR
model compared to the alternative of full 3D FEM analy-
ses. Interestingly, for sandwich plate C both the HR3-RZT
and HR3-RZTmx models are accurate to within 2% for the
thick configuration a/t = 5. One possible explanation for
this behaviour is that the low transverse shear rigidity of
the sandwich core (414 MPa) with respect to the trans-
verse normal modulus (3.45 GPa) makes it energetically
favourable for the plate to deform via transverse shear-
ing and ZZ mechanisms rather than by transverse normal
deformation, thereby reducing the relative influence of in-
accuracies associated with neglecting thickness stretch.

Based on these findings, the difference in accuracy be-
tween the HR3-RZT and HR3-RZTmx models is benign.
Gherlone [33] modified the definition of the RZT ZZ func-
tion based on observations of the in-plane displacement
fields, but the present results suggest that the effect of
EWLs is less pronounced for stress fields. Stresses are
based on the derivatives of displacements, and therefore
differences in the displacements of the HR3-RZT and HR3-
RZTmx models do not necessarily mean the stresses are
different. However, given that accurate internal displace-
ment fields are needed in many nonlinear failure analyses,
such as cohesive zone models, Gherlone’s [33] modified ver-
sion of the RZT ZZ function is recommended for most ac-
curate results.

The other third-order ZZ model based on MZZF, HR3-
MZZF, shows similar accuracy to the HR models based
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on the RZT ZZ function for composite laminates A-B and
sandwich plate C. For composite laminates A-B, all seven
metrics are accurate to within 2% for a/t ratios up to 10.
When the thickness of the plate is further increased to
a/t = 5, the HR3-MZZF model also suffers from a loss in
accuracy to around 5% due to the thickness stretch ef-
fect. The first discrepancy between the accuracy of the
RZT- and MZZF-based HR models can be observed for
sandwich plate C. For this plate, the error in σ̄y of the
HR3-MZZF model is close to 7% when a/t = 10, whereas
the HR3-RZTmx model remains within 2% even for the
thicker configuration of a/t = 5.

For sandwich plate D, which comprises two different core
materials h and 0.01h, the errors in HR3-MZZF are more
pronounced and are in fact comparable to the accuracy
of the HR3 model without ZZ functionality. The error in
σ̄xy is around 22% for the relatively thin configuration of
a/t = 50 and increases to 47% for the moderately thick
configuration at a/t = 10. In comparison, the error in the
RZT-based HR models is less than 1% for sandwich plate
D up to t/a = 10.

These observations corroborate the findings of previ-
ous work [33, 36] that MZZF loses accuracy for laminates
comprising three different constitutive materials. This is
because MZZF does not formally account for differences
in the transverse shear moduli that underlie the mechan-
ics of the ZZ effect. It is perhaps appropriate to point
out the caveat in the original paper by Toledano and
Murakami [37] that the “inclusion of the zig-zag shaped
C0 function was motivated by the displacement micro-
structure of periodic laminated composites” and that “for
general laminate configurations, this periodicity is de-
stroyed”, such that the “theory should be expected to
break down in these particular cases”.

However, the authors would like to emphasise that, in
general, MZZF provides accurate solutions for most com-
monly used laminates when employed in a third-order HR
theory. For sandwich plates with very flexible cores or
laminates with pronounced heterogeneity, the constitutive
independence of MZZF can lead to large errors. Thus,
the RZT ZZ function should be used for the most general
straight-fibre laminations.

To qualitatively compare the accuracy of the four HR
models, the through-thickness variations of all six stress
metrics are plotted in Figures 3-14 for the characteristic
length to thickness ratio a/t = 10. The in-plane (x, y) lo-
cations of each z-wise plot are provided in the stress metric
definitions of Eq. (17) and are additionally indicated in the
figure captions. The observations previously made about
the data in Tables 3-6 are corroborated in these figures,
namely:

1. The HR3-RZT and HR3-RZTmx through-thickness
plots of the 3D stress fields closely match Pagano’s 3D
elasticity solution for any type of stacking sequence
investigated herein. Most importantly, the transverse
stress profiles are captured accurately from the a pri-

ori model assumptions, precluding the need for stress
recovery steps.

2. The difference in the 3D stress fields between HR3-
RZT and HR3-RZTmx models is benign.

3. The HR3 model generally only provides accurate 3D
stress fields to within nominal errors for composite
laminates. In the case of sandwich plates or laminates
that feature materials with transverse shear proper-
ties that vary by orders of magnitude, a ZZ term is
generally recommended. However for practical engi-
neering laminates most commonly used in industry,
the HR3 model provides the best trade-off between
accuracy and computational effort.

4. A third-order model with a ZZ term based on MZZF is
accurate for most composite laminates and stiff sand-
wich cores. In the case of more flexible or degraded
sandwich cores, laminates with two different types of
cores, or laminates with more than two unique consti-
tutive materials, the HR3-MZZF model leads to large
errors.

5. For characteristic length to thickness ratios a/t ≤ 5,
thickness stretch should be incorporated for generally
accurate 3D stress fields. Thus, the assumed displace-
ment field for uz needs to be modified to account for
a higher-order variation through the thickness.

Note that the discrepancies between the two HR models
HR3 and HR3-MZZF, and Pagano’s 3D elasticity solution
are most evident for sandwich laminate D comprising two
different sandwich cores (see Figures 12-14).

An interesting phenomenon is observed in the transverse
shear stress profiles of laminate D in Figures 14a and 14b.
In these plots, a reversal of the transverse shear stresses in
the stiffer face layers is observed. This behaviour only oc-
curs for extreme cases of transverse orthotropy, i.e. when
the transverse shear rigidity of an inner layer is insuffi-
cient to support the peak transverse shear stress of the
adjacent outer layer. In essence, it is a load redistribution
effect that arises because the transverse shear force must
remain constant for a unique loading configuration, i.e. the
transverse shear stress through-thickness distribution may
change with layup, but the through-thickness integral of
this transverse shear stress is independent of layup.

As the transverse shear stresses and in-plane stresses
must equilibrate in Cauchy’s equilibrium equations, we
can also observe that the corresponding plots of σ̄x, σ̄y
and σ̄xy for sandwich plate D change sign in some layers
remote from the neutral axis. As a result, some of the lay-
ers are both in tension and compression even when they
are situated far away from the neutral axis. Fundamen-
tally, this means that a cross-section of the plate no longer
has one unique neutral axis. The extreme case of trans-
verse orthotropy occurs when the stiffer outer layers are
bending independently with fully reversed in-plane stress
profiles within one layer, i.e. equal amounts of tension and
compression. Such a scenario occurs if the properties of the
sandwich core are negligible, such that they have “air-like”
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 3: Laminate A: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 10.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 4: Laminate A: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy) stresses
at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 5: Laminate A: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (0, b/2, z)
and (a/2, 0, z), respectively for a/t = 10.
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(a) Normalised axial stress, σ̄x

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised lateral stress, σ
y

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3
HR3−RZT
HR3−RZTmx
HR3−MZZF

(b) Normalised lateral stress, σ̄y

Figure 6: Laminate B: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 10.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 7: Laminate B: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy) stresses
at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 8: Laminate B: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (0, b/2, z)
and (a/2, 0, z), respectively for a/t = 10.
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 9: Laminate C: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 10.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 10: Laminate C: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 11: Laminate C: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (0, b/2, z)
and (a/2, 0, z), respectively for a/t = 10.
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(a) Normalised axial stress, σ̄x

−3 −2 −1 0 1 2 3 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised lateral stress, σ
y

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

Pagano
HR3
HR3−RZT
HR3−RZTmx
HR3−MZZF

(b) Normalised lateral stress, σ̄y

Figure 12: Laminate D: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 10.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 13: Laminate D: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 14: Laminate D: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (0, b/2, z)
and (a/2, 0, z), respectively for a/t = 10.
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properties that cannot support any shear loading.
In conclusion, the results for the orthotropic plates

presented in this section corroborate the findings for or-
thotropic beams in [36]. The third-order RZT-based model
is the most accurate of the formulations investigated herein
for predicting bending deflections and 3D stress fields from
a priori model assumptions. This is because the RZT ZZ
function is derived from actual transverse shear material
properties. The HR3-MZZF model provides similar ac-
curacy for composite laminates and sandwich plates with
benign transverse anisotropy between the core and face
layers. For more pronounced anisotropy, the constitutive
independence of MZZF can lead to large errors such that
the HR3-RZTmx model is deemed to provide the most
accurate 3D stress predictions for arbitrary straight-fibre
laminations.

2.2. Benchmarking of 3D stresses in anisotropic laminates

2.2.1. Model implementation

As a second test, consider the multilayered square plate
(a = b = 1 m) shown in Figure 15, loaded on the top sur-
face by a uniformly distributed pressure load P̂t = p0 and
a uniform shear traction in the x-direction T̂tx = t0. The
plate is rigidly built-in along all four edges, such that
the three translations and three rotations are constrained
through the entire cross-section. In the HR model, the 3D
continuum is compressed onto an equivalent single layer Ω
coincident with the midplane of the plate, depicted by the
grey surface. This loading configuration represents a more
challenging test case than the orthotropic plate subjected
to sinusoidal pressure loading in the previous section, as
both the layer fibre orientations and the loading condition
are more general.

z

y

x

t

a b

Cla
mpe
d

Cla
mpe
d

Clamped

Clamped

O

Figure 15: A composite plate loaded on the top surface by a
uniformly distributed pressure load and a uniform
shear traction. All four edges are clamped. In the
HR model, the 3D continuum is compressed onto
an equivalent single layer Ω coincident with the
midplane of the plate.

For the anisotropic laminates investigated herein, the
third-order model HR3, and third-order ZZ models HR3-
RZT, HR3-RZTmx and HR3-MZZF are again imple-
mented. As general anisotropic laminates with off-axis
plies exhibit extension/shear and bend/twist coupling, it
is more challenging to ascertain an analytical solution for
the bending behaviour than for the orthotropic laminates
in Section 2.1.2. For general anisotropic laminates Q̄16 6= 0
and Q̄26 6= 0, such that the simple double sine series solu-
tion previously implemented no longer exactly satisfies the
governing differential equations.

The general governing equations are therefore solved
using the pseudo-spectral differential quadrature method
(DQM). Differential quadrature is a numerical discretisa-
tion technique proposed by Bellman et al. [38], that ap-
proximates the partial derivative of a functional field with
respect to a specific spatial variable using a linear weighted
sum of all the functional values in the domain. For exam-
ple, the nth partial derivative of function f(x) at the ith

discretisation point is

∂nf(xi)

∂xn
= A

(n)
ij f(xj) i = 1, 2, . . . , Np (18)

where xi is the set of Np discretisation points in the x-
direction, typically defined by the non-uniform Gauss-

Lobatto-Chebychev distribution, A
(n)
ij are the weighting

coefficients of the nth derivative, and repeated index j
means summation from 1 to Np. The same technique is
easily extended to the other two spatial dimensions to com-
pute mixed derivatives.

The computations of the weighting coefficients are based
on the generalised differential quadrature by Shu and
Richard [39, 40], such that the the interpolating polyno-
mials are based on Lagrange polynomial basis. In this
manner, the interpolation coefficient matrix gk for a La-
grangian polynomial basis [41] is given by

gk(x) =
m(x)

(x− xk)m(1)(xk)
, k = 1, 2, . . . , Np

m(x) =

Np∏
j=1

(x− xj), m(1)(xi) =

Np∏
k=1,k 6=i

(xi − xk)

and this leads to the weighting coefficients of the deriva-

tives A
(n)
ij ,

A
(1)
ij =

1

xj − xi

Np∏
k=1,k 6=i,j

xi − xk
xj − xk

for i 6= j

A
(1)
ii =

Np∑
k=1,k 6=i

1

xi − xk
.

(19)

Subsequently, all higher order weighting coefficients are
obtained by direct matrix multiplication, i.e. [A(m)] =
[A(1)][A(n−1)], with n = 2, 3, . . . , Np− 1 [42]. In this man-
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ner, any set of linear differential equations can be ex-
pressed as a linear system of algebraic equations by re-
placing the differential operators with the weighting ma-
trix in Eq. (19). Thus, the unknown functional values
f(xi) at each grid point are found by solving the system of
equations with the appropriate boundary conditions. The
DQM is a versatile numerical discretisation technique that
can be used to develop strong-form finite elements [43].
Using this technique, the relatively simple geometry of a
square, flat plate investigated here can be extended to the
analysis of more complex geometries.

The advantage of the DQM is that the differential-
algebraic relation of Eq. (18) allows differential equations
to be solved in the strong form, i.e. the differential rela-
tions are solved exactly for each grid point, rather than
in an average sense over the whole domain, as is the case
in the classic weak-form FEM based on the generalised
Galerkin method of weighted residuals. This means that
both essential and natural boundary conditions are en-
forced along the boundary points such that local stress
gradients towards boundaries are captured with relatively
few degrees of freedom. In the weak-form FEM, the natu-
ral boundary conditions are not enforced explicitly but the
solution generally converges to satisfy the natural bound-
ary condition with increasing mesh density.

Following the description of DQM, the governing dif-
ferential equations are converted into algebraic ones by
replacing the differential operators in the governing field
equations (4) and boundary conditions (5) with DQ
weighting matrices that operate on all functional un-
knowns within the domain. Thus, each differential opera-
tor is converted into a linear weighted sum of the functional
unknowns at predetermined grid points. In this work, the
non-uniform Chebychev-Gauss-Lobatto grid is used to dis-
cretise the planar domain of the continuum x ∈ [0, 1] and
y ∈ [0, 1] into a computational domain with Np grid points
in either direction. In the Chebychev-Gauss-Lobatto grid,
the location of the grid points Xi in direction X is given
by

Xi =
1

2

(
1− cos

(i− 1)π

Np − 1

)
for i = 1, 2, . . . , Np. (20)

An important characteristic of the Chebychev-Gauss-
Lobatto grid is that it results in the minimum discreti-
sation error, and by biasing the grid points towards the
boundaries, avoids Runge’s phenomenon1 associated with
a uniform grid [42]. Based on an initial mesh convergence
study, a disretisation grid with 19 points in both the x-
and y- directions was chosen (see Figure 16). The cho-

1Runge’s phenomenon is a problem of oscillation between discreti-
sation points which occurs when high-order interpolation polynomi-
als are used in a grid of uniformly spaced points. Thus, increasing
the interpolation order of the polynomial on a uniform grid spac-
ing does not necessarily lead to better numerical solutions. The
Chebychev-Gauss-Lobatto grid, on the other hand, guarantees that
the maximum error reduces with increasing polynomial order.

sen mesh size of 361 grid points provides a good trade-off
between computational time and accuracy of the results.

Following the generalised approach by Shu and Du [44],
the governing field equations (4) are discretised only for the
internal grid points, whereas the boundary conditions (5)
are only applied on the boundary points. Both sets of
equations are expressed in terms of two unknown vectors:
a vector of internal field unknowns Ui and a vector of
boundary unknowns Ub. This step of splitting the problem
into internal and boundary points, as well as into field and
boundary equations, is depicted in Figure 16. In this man-
ner, the complete set of governing equations is substruc-
tured into four unique matrices that allow the boundary
unknowns to be eliminated,

Ui =
[
Kii −KibKbb

−1Kbi

]−1 · (Fi −KibKbb
−1 · Fb

)
(21a)

Ub = Kbb
−1 · (Fb −Kbi · Ui) (21b)

where i refers to the internal field and b to the boundary.
Thus, the final matrix inversion problem in Eq. (21a) in-
cludes both the discretised field and boundary equations in
one matrix, which is solved for the vector of internal field
unknowns Ui. The unknowns on the boundary Ub are sub-
sequently post-processed using the internal field variables
in Eq. (21b).

It is important to point out that the stiffness matrices
in Eq. (21) are densely populated, such that certain pre-
conditioning steps are recommended to reduce the condi-
tion number2 of the associated matrices and to improve
the accuracy of the matrix inversion. For variable-stiffness
laminates, the material properties change across the dis-
cretisation grid such that the magnitudes of the terms
along the rows of the stiffness matrices may vary signif-
icantly. Moreover, in the governing field equations and
boundary conditions Eqs. (4)-(5), the unknown stress re-
sultants F and their in-plane derivatives are multiplied by
compliance terms s and shear correction factors η. These
material property-dependent terms can be orders of mag-
nitude smaller than the DQM weighting coefficients which
appear in the strain vectors Leq and Lbc (see Eqs. (6)
and (7), respectively). Thus, elements along the rows of
the stiffness matrices, where each row corresponds to a
unique equilibrium equation at a discretisation grid point,
can vary by orders of magnitude and lead to a large con-
dition number. The use of the compliance matrix s is
an inherent numerical drawback of the chosen theoretical
framework in terms of solving the problem numerically us-
ing the DQM. This drawback can be partially remedied by

2In linear algebra, the condition number of a matrix is a metric
to gauge how sensitive the solution to a system of linear equations
is to errors in the inputs. Thus, the condition number indicates the
expected accuracy of matrix inversion and of the solution. In general,
the condition number κ of a matrix A is given by the product of two
norms κ(A) = ‖A−1‖ · ‖A‖, such that by definition κ(A) ≥ 1 with
values near unity indicating a well-conditioned matrix [45, p. 321].
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Figure 16: A non-uniform Chebychev-Gauss-Lobatto grid broken into a set of internal grid points and a grid of boundary points.
The governing field equations are only applied at the internal points and the boundary conditions only at the boundary
points. Thus, the problem is substructured into four unique matrices and solved for the field and boundary unknowns
Ui and Ub, respectively.

normalising each row Kr of the stiffness matrix, i.e. each
equilibrium equation, using the root-mean-square of the
corresponding row,

Kn
r =

Kr√∑
c
K2
rc

(22)

where Krc are the c components of row Kr, and Kn
r is a

normalised row.

Finally, the stiffness matrices in Eq. (21) are generally
non-symmetric and can have zeros on the leading diagonal.
This occurs because the in-plane and bending equilibrium
equations Eqs. (4a) and (4b), as well as the enhanced con-
stitutive equations Eq. (4c), are discretised into the same
matrix due to the mixed displacement- and stress-based
nature of the HR model. To overcome the issue of ze-
ros on the leading diagonal, the idea of damping, as pro-
posed in the works of Levenberg [46] and Marquardt [47], is
used, by replacing the zeros with small terms of magnitude
10−10. Even though this method considerably reduces the
condition number of the stiffness matrix, the authors are
aware that damping the diagonal in this manner perturbs
the underlying numerical problem and more elegant solu-
tions may be possible. Second, the matrix inversion is not
computed using the backslash operator in MATLAB, but
rather with the Moore-Penrose pseudoinverse as detailed
in reference [48]. One possible solution is to discretise the
plate into multiple DQM elements using the method pro-
posed by Tornabene et al. [43]. Such an approach is equiv-
alent to a strong-form FEM and considerably reduces the
bandwidth of the matrices to improve the conditioning of
the stiffness matrix.

As Pagano’s 3D elasticity solution [35] is only valid for
simply supported orthotropic plates, a 3D FEM model is
used to benchmark the HR model results for anisotropic
laminates. The plate is modelled in the commercial

software package Abaqus using a 3D body that is 1 m
long, 50 mm thick and 1 m wide. This plate, with char-
acteristic length to thickness aspect ratio of a/t = 20, is
meshed with 784,080 linear C3D8R reduced integration
brick elements with enhanced hourglassing control, i.e. 80
elements through the thickness and 99 elements in both
in-plane dimensions. This choice was based on initial con-
vergence criteria and on the constraint of keeping the run-
time at less than 12 hrs. In Section 2.2.2, laminates with
up to eight unique layers are analysed such that each lam-
inate features a minimum of ten elements per layer. A
pressure loading of P̂t = −100 kPa and a shear traction of
T̂tx = −50 kPa are applied on the top surface. Finally, all
six degrees of freedom (three translations and three rota-
tions) are constrained at the four clamped edges through-
out the entire plate cross-section. With 810,000 nodes and
six degrees of freedom per node (4.86 million variables) the
run-time on the local desktop PC equipped with an Intel
i7-2600S processor with 2.80 GHz and 8 GB of RAM is
about 12 hrs, whereas the HR3 (15 variables) and HR3-
RZT (19 variables) codes in MATLAB have run-times of
around 120 sec and 180 sec, respectively, at the chosen
mesh size of 361 grid points (5,415 and 6,859 variables, re-
spectively). Thus, the HR model in MATLAB reduces the
number of degrees of freedom by three orders of magnitude
compared to the 3D FEM model in Abaqus. However, it
must be noted that the runtime in Abaqus is highly de-
pendent on the available RAM and not the CPU speed.
Therefore, the Abaqus model can be sped-up considerably
if the available RAM is increased.

2.2.2. Model validation

To test the general applicability of the HR formulation
a variety of different symmetric and non-symmetric com-
posite laminates and sandwich plates are tested. The two
materials used throughout the analysis are as defined in
Table 1 of Section 2.1.2. The stacking sequences of differ-

18



Table 7: Analysed anisotropic stacking sequences. Subscripts indicate the repetition of a property over the corresponding number
of layers. Layer thicknesses stated as ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

E [0.254] [c4] [45/− 45/0/90]
F [0.25] [c5] [60/30/75/30/60]
G [0.1252/0.5/0.1252] [c2/h/c2] [45/− 45/0/0/90]
H [(1/12)3/0.5/(1/12)3] [c3/h/c3] [15/75/45/0/45/75/15]

ent laminates including layer orientations, layer thickness
and layer material codes are summarised in Table 7. All
laminates have a total thickness of 50 mm, i.e. a/t = 20.

Laminates E and F are general composite laminates
with orthotropic and off-axis plies with respect to the
(x, y) coordinate system. Laminate E is a balanced, non-
symmetric laminate that exhibits in-plane/out-of-plane
coupling and bend/twist coupling. Laminate F is an un-
balanced, symmetric laminate which exhibits both exten-
sion/shear and bend/twist coupling. Laminates G and H
extend the two coupling mechanisms mentioned above to
a soft-core sandwich plate that accentuates the ZZ effect.
Thus, these two latter test cases represent non-classical
laminates with arbitrary fibre orientations and material
heterogeneity, which intend to test the full capability of
the different HR models.

Henceforth, all deflection and stress results are pre-
sented in normalised form. The same definitions of the
normalised metrics as previously defined in Eq. (17) are
used, but due to the change in load case the factor p0 in
the denominators of the metrics is replaced by the norm√
p20 + t20. Furthermore, the transverse shear stresses σxz

and σyz are no longer computed at the edges of the plate,
as this represents a singularity in the 3D FEM model, but
at the quarterspan. Hence, the new definition of the stress
metrics is given by

w̄0 =
E

(c)
2 t2

a2b2
√
p20 + t20

∫ t
2

− t
2

uz

(
a

2
,
b

2
, z

)
dz,

σ̄x(z) =
t2

a2
√
p20 + t20

σx

(
a

2
,
b

2
, z

)
,

σ̄y(z) =
t2

b2
√
p20 + t20

σy

(
a

2
,
b

2
, z

)
,

σ̄z(z) =
1√
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σz

(
a

2
,
b

2
, z

)
,

σ̄xy(z) =
t2

ab
√
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σxy

(
a

4
,
b

4
, z

)
,

σ̄xz(z) =
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σxz

(
a

4
,
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2
, z

)
,

σ̄yz(z) =
1√
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σyz

(
a

2
,
b

4
, z

)
.

(23)

The normalised deflection w̄0 for the HR models is com-

pared against the normalised average through-thickness
deflection of the 3D model.

The accuracy of the different HR models in predicting
the bending deflection of laminates E-H, with character-
istic length to thickness ratio a/t = 20, under the load
case defined in Figure 15 is presented in Table 8. The
table summarises the percentage error in the maximum
normalised bending deflection |w̄0| to four significant fig-
ures with respect to the 3D FEM result. The results show
that the models with and without ZZ functionality predict
the bending deflection to within 1% of the 3D FEM solu-
tion, with the exception of a 2.59% error in the HR3-RZT
model for laminate F.

There are two possible explanations for the larger dis-
crepancy of the HR3-RZT result for laminate F. A pos-
sible first source of error is the numerical conditioning of
the problem. However, as shown in Table 9, the condi-
tion number κ of the DQM stiffness matrix K is of equal
magnitude as κ (K) of HR3-RZTmx, and in fact slightly
less than the condition number for HR3. In all cases, the
condition number is relatively high, and as discussed in
Section 2.2.1, future work should focus on strategies to re-
duce κ (K). One possible solution is to reduce the band-
width of the matrices, either by using localised DQ meth-
ods or by implementing the strong-form DQ finite element
method developed by Tornabene and co-workers [43]. An
alternative would be to transform the governing differen-
tial equations Eqs. (4) into the weak form by using the
generalised Galerkin method. One drawback of this latter
approach is that derivatives used to compute the stresses
are not calculated as accurately using C0 continuous finite
elements as they are with DQ weighting matrices in the
strong-form FEM.

A second source of error in the HR3-RZT model is that
it does not account for EWLs. As the error in the HR3
model for laminate F is small (0.23%) and the presence
of EWLs only influences the definition of the ZZ function,
which is not included in HR3, it is possible that failing
to account for EWLs artificially alters the stiffness of the
structure. This explanation is likely as the HR3-RZTmx
model, which does account for EWLs, reduces the error
by a factor of three. Furthermore, the through-thickness
plots of the two transverse shear stress metrics σ̄xz and
σ̄yz in Figure 22 show that the HR3-RZT solution does
not exactly correlate with the 3D FEM solution, whereas
the other three HR models are almost coincident with the
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Table 8: Anisotropic laminates E-H with a/t = 20: Percentage error in normalised bending deflection |w̄0| to four significant
figures for different HR models with respect to a 3D FEM solution.

Laminate E Laminate F Laminate G Laminate H

3D FEM 0.002525 0.002613 0.004148 0.004282
HR3 (%) 0.18 0.23 0.04 0.20

HR3-RZT (%) 0.06 2.59 -0.05 -0.38
HR3-RZTmx (%) 0.19 0.80 -0.09 -0.21
HR3-MZZF (%) 0.13 0.06 -0.08 0.15

Table 9: Laminate F: Condition number κ of the DQM stiffness matrix K that is inverted to solved the structural problem.

HR3 HR3-RZT HR3-RZTmx HR3-MZZF

κ (K) 1.929× 1016 1.367× 1016 1.326× 1016 1.391× 1016

benchmark. As the ZZ effect, and by extension the in-
fluence of EWLs, arises from differences in the transverse
shear moduli, the results suggest that the discrepancy in
the HR3-RZT model is due to a failure to account for
EWLs. Thus, the modified RZT ZZ function implemented
in HR3-RZTmx is recommended for most accurate results.

To compare the accuracy of the HR 3D stress fields, the
through-thickness variations of all six stress metrics are
plotted in Figures 17-28 for the characteristic length to
thickness ratio a/t = 20. The in-plane (x, y) locations of
each z-wise plot are given in the stress metric definitions
of Eq. (23) and are also indicated in the figure captions.

For all laminates investigated herein, the HR3, HR3-
RZTmx and HR3-MZZF model results follow the 3D FEM
solutions closely throughout the entire thickness. The
HR3-RZT model also correlates well with the 3D FEM so-
lution for most laminates with the exception of the trans-
verse shear stresses for laminate F (Figure 22). As previ-
ously discussed, this inaccuracy arises because the HR3-
RZT model does not account for EWLs in the definition
of the RZT ZZ function, and is therefore less robust than
the modified HR3-RZTmx model.

The through-thickness plots support the findings of Ta-
ble 8 that both the HR3 model without ZZ functionality
and the HR3 ZZ models accurately predict the structural
behaviour of the anisotropic laminates. As shown in Fig-
ures 17-19 and Figures 20-22 the HR3 model remains ac-
curate for the anisotropic composite laminates E and F. In
general, most composite laminae haveG13 < G23 such that
the maximum and minimum values of transverse shear
stiffness occur for 0◦ and 90◦ plies, respectively. Thus,
the HR3 model is expected to be more accurate for gen-
eral anisotropic than for orthotropic 0/90 laminates, as the
layerwise differences in transverse shear moduli is reduced.
However, for sandwich laminate H the HR3 model is less
accurate than the HR3-RZTmx model, with the discrep-
ancies especially pronounced for the in-plane shear stress
plot in Figure 27b.

As for the orthotropic laminates investigated in Sec-
tion 2.1.2, the HR3-RZTmx model most consistently cor-

relates with the 3D benchmark solution for the full range
of anisotropic laminates investigated. The only marked
discrepancy between the 3D FEM solution and the HR3-
RZTmx model, and in fact all other HR models, is the in-
plane shear stress σ̄xy for laminate F shown in Figure 21b.
To ascertain which of these stress fields, the 3D FEM or
the HR solutions, is the most accurate result, the residuals
in Cauchy’s x- and y-direction equilibrium equations are
calculated. Only these two equilibrium equations explic-
itly contain the in-plane shear stress σxy. Furthermore, as
the 3D FEM and HR solutions of the two in-plane stresses
σx and σy, and the two transverse shear stresses σxz and
σyz are well correlated, the model that satisfies Cauchy’s
equilibrium equations with the least residual is deemed to
be the most accurate. Hence, the two normalised residuals

R̄x

(
a

4
,
b

4
, z

)
=

1√
p20 + t20

[
∂σx
∂x

+
∂σxy
∂y

+
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∂z

]∣∣∣∣∣x= a
4

y= b
4

(24a)

R̄y
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4
,
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4
, z

)
=

1√
p20 + t20

[
∂σxy
∂x

+
∂σy
∂y

+
∂σyz
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]∣∣∣∣∣x= a
4

y= b
4

(24b)

are used to compare the accuracy of the in-plane shear

stress field σxy of laminate F at

(
a

4
,
b

4
, z

)
. The 3D FEM

stress results are extracted from Abaqus using a Python
script and then post-processed in MATLAB using the in-
ternal gradient function to calculate the derivatives in
Eq. (24).

Figure 29 compares the normalised residuals R̄x and R̄y
of 3D FEM and the HR3 model through the thickness

of laminate F at

(
a

4
,
b

4
, z

)
. The plots show that for all

cases considered here, the residuals for the HR3 model are
less than the residual for the 3D FEM model. Figure 30
shows that the residuals R̄x and R̄y for all four HR models
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 17: Laminate E: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 20.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 18: Laminate E: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 20.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 19: Laminate E: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (a/4, b/2, z)
and (a/2, b/4, z), respectively for a/t = 20.
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 20: Laminate F: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 20.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 21: Laminate F: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 20.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 22: Laminate F: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (a/4, b/2, z)
and (a/2, b/4, z), respectively for a/t = 20.
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 23: Laminate G: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 20.
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(b) Normalised in-plane shear stress, σ̄xy

Figure 24: Laminate G: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 20.
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(a) Normalised transverse shear stress, σ̄xz

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse shear stress, σ
yz

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

3D FEM
HR3
HR3−RZT
HR3−RZTmx
HR3−MZZF

(b) Normalised transverse shear stress, σ̄yz

Figure 25: Laminate G: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (a/4, b/2, z)
and (a/2, b/4, z), respectively for a/t = 20.
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 26: Laminate H: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z) for
a/t = 20.

−0.8 −0.6 −0.4 −0.2 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Normalised transverse normal stress, σ
z

N
or

m
al

is
ed

 th
ro

ug
h−

th
ic

kn
es

s 
lo

ca
tio

n 
(z

/t)

 

 

3D FEM
HR3
HR3−RZT
HR3−RZTmx
HR3−MZZF

(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 27: Laminate H: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 20.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 28: Laminate H: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at (a/4, b/2, z)
and (a/2, b/4, z), respectively for a/t = 20.
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Figure 29: Laminate F: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y, respectively, for 3D FEM and HR
models at (a/4, b/4, z) with a/t = 20.
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(a) Normalised x-direction Cauchy residual, R̄x
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(b) Normalised y-direction Cauchy residual, R̄y

Figure 30: Laminate F: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y, respectively, for all HR models at
(a/4, b/4, z) with a/t = 20.
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are close to zero throughout the whole laminate thickness.
For the 3D FEM and HR models, the maximum residuals
occur at the ply interfaces due to the relatively higher
numerical error associated with calculating derivatives at
interval ends. The maximum error in the HR models at the
ply interfaces is of order 10−1, whereas the maximum 3D
FEM residual is almost two orders of magnitude greater,

i.e. of the order of the applied loading norm
√
p20 + t20.

In fact, remote from the layer interfaces the HR model
residuals are of order 10−6 and therefore negligibly small
compared to the loading norm.

Thus, even the detailed 3D FEM meshes considered
here, with more than ten elements per layer and multi-
ple hours of runtime on a high-performance computer, do
not guarantee that Cauchy’s equilibrium equations are sat-
isfied with negligible error. The results in Figure 30 sug-
gest that the HR formulation 3D stress fields equilibrate
more accurately in Cauchy’s equations than the 3D FEM
stresses. At the same time the HR models reduce the
number of variables by three orders of magnitude, thereby
cutting the computational runtime from multiple hours to
1-2 minutes.

3. 3D stress fields in tow-steered laminates

In this section, the laminates considered are generalised
further by allowing the fibre paths to vary continuously
across the planform of the plate, i.e. with (x, y) location.
Thus, these laminates exhibit what is henceforth called
full 3D heterogeneity, as the material properties can vary
in both planar dimensions and through the thickness of
the plate. The aim of this section is to benchmark the
3D stress fields in these tow-steered plates using the HR
formulation and 3D FEM solutions.

3.1. Benchmarking of 3D stresses in tow-steered laminates

Consider a square plate of unit in-plane dimensions
a = b = 1 m and t = 0.1 m thickness (a/t = 10) as de-
picted graphically in Figure 31. The plate comprises Nl
orthotropic, tow-steered laminae of arbitrary thickness t(k)

with the fibre orientation α(k)(x, y) varying smoothly over
the planform of the plate. Due to the variable-stiffness
design of the curvilinear tow paths, the reduced material

stiffness matrix Q̄
(k)

(x, y) is a function of the in-plane loca-
tion. As a result, the complete laminated plate has varying
stiffness properties in all three Cartesian coordinates.

The individual tow-steered layers can be arranged in any
general fashion but are assumed to be perfectly bonded,
such that displacement and traction continuity at the in-
terfaces is guaranteed. The plate is rigidly built-in along
all four edges and is loaded via a uniformly distributed
pressure P̂t = p0 on the top surface. In reaction to the ap-
plied loading and constraining boundary conditions, the
plate is assumed to deform isothermally into a new static
equilibrium state.

z

y

x

t

a b

Cla
mpe
d

Cla
mpe
d

Clamped

Clamped

O

Figure 31: A composite plate with tow-steered fibre paths,
loaded on the top surface by a uniformly dis-
tributed pressure load. All four edges are
clamped. In the HR model, the 3D continuum
is compressed onto an equivalent single layer Ω
coincident with the midplane of the plate. For
reference, the curvilinear fibre paths have been su-
perimposed onto this equivalent single layer.

In this work only linear fibre variations in one direction,
i.e. prismatic variations, are considered. Such tow-steered
fibre paths are conveniently defined using the notation of
Gürdal and Olmedo [5],

α(x, y) = Φ〈T0|T1〉 (25)

where Φ denotes the rotation of the fibre path with respect
to the global x-axis, and angles T0 and T1 are the fibre
directions at the ply centre and at a characteristic length
d from the centre, respectively, with respect to the global
rotation Φ. Thus, angle Φ also represents the direction of
fibre variation. To cover the whole planform of the plate
the fibre trajectories are shifted perpendicular to Φ.

Manufacturing techniques that steer fibres by in-plane
bending, such as AFP, inevitably cause gaps and overlaps
when the reference path is shifted perpendicular to Φ. The
CTS technique, which steers fibre tows by in-plane shear-
ing, allows the fibres to be tessellated without any gaps
or overlaps, but induces an asymmetric variable thickness
profile. Throughout this analysis the presence of tow gaps,
tow overlaps and thickness variations is neglected as the
main aim of the current work is to demonstrate the ca-
pability of modelling accurate 3D stresses for an idealised
flat plate with variable stiffness. However, the HR models
are readily extended to account for discrete or continu-
ous thickness variations by locally changing the limits of
through-thickness integration and by taking account of the
ensuing curvature of the neutral axis [49].

The third-order model HR3 and third-order ZZ model
HR3-MZZF are used to model the tow-steered plates. The
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Figure 32: Variation of ZZ stiffness term Sφφ and ZZ compliance term sφφ of the HR3-RZT model along the length of a 1D
beam with layup [0± 〈90|0〉/0± 〈45| − 45〉]s.

governing differential field equations (4) and boundary
conditions (5) are converted into algebraic equations us-
ing the DQM approach outlined in Section 2.2.1. Thus,
a system of algebraic equations in the form of Eqs. (21)
is derived that is solved via standard matrix inversion,
taking into account the normalisation of the equilibrium
equations via Eq. (22).

In the present formulation, the RZT ZZ function
can lead to certain numerical conditioning problems for
variable-stiffness laminates when the governing equations
are solved using the DQM. The RZT ZZ function varies
over the planform of a variable-stiffness plate as it is based
on actual transverse shear material properties. For a gen-
eral fibre variation, the orthotropy in transverse shear
moduli that drives the ZZ effect can be finite in some areas
of the plate, but vanish locally if the layup is unidirectional
or close to unidirectional at a specific point. Under these
circumstances the RZT ZZ function vanishes and leads to
numerical ill-conditioning in the matrix inversion s = S−1

(See Figure 32).

Furthermore, it was found here that for variable-stiffness
plates, the in-plane derivatives of the RZT ZZ function can
vary significantly over the planform and thus lead to lo-
cal singularities that ill-condition the DQ stiffness matrix.
When using MZZF this is not an issue as this ZZ function
is invariant with location (x, y). Hence, due to the numeri-
cal ill-conditioning issues faced with the RZT ZZ function,
the HR3-RZT and HR3-RZTmx models were not used for
the variable-stiffness panels analysed in this section.

The ill-conditioning problem due to the in-plane deriva-
tives of the RZT ZZ function may partially be remedied
by using a local DQM approach, where only small num-
ber of grid points rather than the full domain is used to
compute derivatives. Alternatively, the strong-form FEM

by Tornabene et al. [43] may provide a similar solutions.
Further investigating the numerical stability of the HR3-
RZT model within a DQM framework should be the focus
of future work.

Similar to Section 2.2.1, a 3D FEM model is used to
benchmark the HR model results for the tow-steered lami-
nates. After the plate geometry is meshed, a Python script
is used to assign the pertinent material orientations to the
elements depending on the exact location of the element
centroid in 3D Cartesian space. To achieve converged re-
sults, the in-plane mesh density has to be increased to 149
elements in both in-plane directions to guarantee suffi-
ciently smooth fibre variations from the discrete element
angles in the x- and y-directions. Combined with 80 ele-
ments through the thickness, the 3D body is thus meshed
with 1,776,080 linear C3D8R reduced integration brick ele-
ments with enhanced hourglassing control. Due to the high
computational effort required, the Abaqus model was run
on a high-performance computer with 128 GB of RAM.
A pressure loading of P̂t = −100 kPa is applied on the
top surface and all six degrees of freedom (three trans-
lations and three rotations) are constrained at the four
clamped edges for all nodes throughout the entire plate
cross-section.

The laminates investigated here are restricted to sym-
metrically laminated variable-stiffness composites and
sandwich plates and are tabulated in Table 10. These
laminates comprise the commonly used industrial material
system IM7 8552 with E1 = 163 GPa, E2 = E3 = 12 GPa,
G12 = 5 GPa, G13 = 4 GPa, G23 = 3.2 GPa, υ12 = υ13 =
υ23 = 0.3, and the sandwich core h previously defined in
Table 1. Laminates VAT A-C are tow-steered composite
laminates, whereas laminate VAT D is a sandwich plate
with tow-steered face sheets. The laminates have layers
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Table 10: Analysed tow-steered stacking sequences. Subscripts indicate the repetition of a property over the corresponding
number of layers. Layer thicknesses stated as ratios of total laminate thickness.

Laminate Thickness Ratio Material Stacking Sequence

VAT A [0.1258] [IM78] [0± 〈0|45〉/0± 〈90|45〉]s
VAT B [0.1258] [IM78] [90± 〈0|70〉/90± 〈90|20〉]s
VAT C [0.1258] [IM78] [90± 〈0|45〉/0± 〈45|0〉]s
VAT D [0.1252/0.5/0.1252] [IM72/h/IM72] [0± 〈90|0〉/0/0∓ 〈90|0〉]

Table 11: Tow-steered laminates VAT A-D with a/t = 10: Percentage error in normalised bending deflection |w̄0| to four signif-
icant figures for different HR models with respect to a 3D FEM solution.

VAT A VAT B VAT C VAT D

3D FEM .003857 .003265 .003427 .01039
HR3 (%) 0.15 0.22 0.18 3.72

HR3-MZZF (%) 0.15 0.22 0.18 -0.25

with fibre variations that vary explicitly in the x-direction
(laminates VAT A and VAT D), y-direction (laminate VAT
B) or both directions (laminate VAT C).

All deflection and stress results are presented as nor-
malised metrics. The same definitions and spatial loca-
tions of the normalised metrics as previously defined in
Eq. (23) is used. Due to the change in load case the factor
t0 = 0 in the denominators of the metrics. The accuracy of
the different HR models in predicting the bending deflec-
tion of laminates VAT A-VAT D, with characteristic length
to thickness ratio a/t = 10 under the load case defined in
Figure 31, is presented in Table 11. The table summarises
the percentage error in the maximum normalised bend-
ing deflection |w̄0| to four significant figures with respect
to the 3D FEM result. The results show that the mod-
els with and without ZZ functionality predict the bend-
ing deflection to within 1% of the 3D FEM solution for
the variable-stiffness composites laminates VAT A-VAT C.
For the variable-stiffness sandwich plate VAT D the max-
imum error in the HR3 model (3.72%) is greater than for
the HR3-MZZF model. As was previously shown for or-
thotropic and anisotropic straight-fibre laminates in Sec-
tions 2.1.2 and 2.2.2, the inclusion of ZZ functionality is
important for accurate modelling of sandwich panels.

Next, consider the through-thickness variations of all
six stress metrics for laminates VAT A-VAT D as plot-
ted in Figures 33-44 for the characteristic length to thick-
ness ratio a/t = 10. The in-plane (x, y) locations of each
z-wise plot are given in the stress metric definitions of
Eq. (23) and are also indicated in the figure captions. For
the variable-stiffness composite laminates VAT A-VAT C
both the HR3 and HR3-MZZF model results closely corre-
late the 3D FEM solutions throughout the entire thickness.

The plots for laminate VAT D in Figures 42-44 confirm
the inferior accuracy of the HR3 model in modelling sand-
wich panels previously observed for the deflection results
in Table 11. For laminate VAT D, both the in-plane stress
plots for σ̄x (Figure 42a), σ̄y (Figure 42b) and σ̄xy (Fig-

ure 43b), as well as the transverse shear plots for σ̄xz (Fig-
ure 44a) and σ̄yz (Figure 44b) show inaccuracies of 5-16%
in the HR3 results compared to 3D FEM. The HR3-MZZF
model follows the 3D FEM results more closely, with a
maximum through-thickness error ranging from 1.5% for
σxz to 8% for σxy.

As previously observed in Section 2.2.2, the in-plane
shear stresses σ̄xy are generally the worst-matching plots
for the laminates investigated. For example, consider the
in-plane shear stress distribution for VAT B in Figure 37b.
For four plies, the HR and 3D FEM results closely match,
but show some differences for the central two layers and the
two surface layers. The other stress fields that equilibrate
the in-plane shear stress in Cauchy’s x-direction equilib-
rium equations, σx and σxz, and Cauchy’s y-direction
equilibrium equations, σy and σyz, are closely correlated.
Thus, as introduced in Section 2.2.2, the extent to which
the 3D FEM and HR stress fields satisfy Cauchy’s x- and
y-direction equilibrium equations is ascertained using a
metric capturing the general accuracy of the stress fields.
Hence, the two normalised residuals in Eq. (24) are used
to compare the accuracy of the in-plane shear stress field

σxy of laminate VAT B at

(
a

4
,
b

4
, z

)
.

Figure 45 compares the normalised residuals R̄x and R̄y
of 3D FEM and the HR3 model through the thickness of

laminate VAT B at

(
a

4
,
b

4
, z

)
. For all cases considered

here, the residuals for the HR3 model are less than the
residuals in the 3D FEM model. Furthermore, Figure 46
shows that the residuals R̄x and R̄y for both HR models are
close to zero throughout the entire laminate thickness. The
maximum residual in the HR models at the ply interfaces is
of order 10−2 and reduces to 10−6 away from the interfaces.
The maximum 3D FEM residual at the ply interfaces is
of the order of the applied loading norm p0, which is four
orders of magnitude greater than the HR models, and even
at layer midplane level the residual can be of order 10−2.
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(a) Normalised axial stress, σ̄x
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(b) Normalised lateral stress, σ̄y

Figure 33: Laminate VAT A: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z)
for a/t = 10.
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(a) Normalised transverse normal stress, σ̄z
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(b) Normalised in-plane shear stress, σ̄xy

Figure 34: Laminate VAT A: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(a) Normalised transverse shear stress, σ̄xz
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(b) Normalised transverse shear stress, σ̄yz

Figure 35: Laminate VAT A: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at
(a/4, b/2, z) and (a/2, b/4, z), respectively for a/t = 10.
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(b) Normalised lateral stress, σ̄y

Figure 36: Laminate VAT B: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z)
for a/t = 10.
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(b) Normalised in-plane shear stress, σ̄xy

Figure 37: Laminate VAT B: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(b) Normalised transverse shear stress, σ̄yz

Figure 38: Laminate VAT B: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at
(a/4, b/2, z) and (a/2, b/4, z), respectively for a/t = 10.
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(b) Normalised lateral stress, σ̄y

Figure 39: Laminate VAT C: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z)
for a/t = 10.
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(b) Normalised in-plane shear stress, σ̄xy

Figure 40: Laminate VAT C: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(b) Normalised transverse shear stress, σ̄yz

Figure 41: Laminate VAT C: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at
(a/4, b/2, z) and (a/2, b/4, z), respectively for a/t = 10.
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(b) Normalised lateral stress, σ̄y

Figure 42: Laminate VAT D: Through-thickness distributions of the normalised axial (σ̄x) and lateral (σ̄y) stresses at (a/2, b/2, z)
for a/t = 10.
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(b) Normalised in-plane shear stress, σ̄xy

Figure 43: Laminate VAT D: Through-thickness distributions of the normalised transverse normal (σ̄z) and in-plane shear (σ̄xy)
stresses at (a/2, b/2, z) and (a/4, b/4, z), respectively for a/t = 10.
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(b) Normalised transverse shear stress, σ̄yz

Figure 44: Laminate VAT D: Through-thickness distributions of the normalised transverse shear stresses (σ̄xz and σ̄yz) at
(a/4, b/2, z) and (a/2, b/4, z), respectively for a/t = 10.
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Figure 45: Laminate VAT B: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y, respectively, for 3D FEM and
HR models at (a/4, b/4, z) for a/t = 10.
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(b) Normalised y-direction Cauchy residual, R̄y

Figure 46: Laminate VAT B: Normalised x-direction and y-direction Cauchy residuals R̄x and R̄y, respectively, for all HR models
at (a/4, b/4, z) for a/t = 10.
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As a result, we observe that very detailed 3D FEM
meshes with more than ten elements per layer and multiple
hours of runtime, do not guarantee that Cauchy’s equilib-
rium equations are satisfied with negligible error. The HR
formulation presented herein predicts 3D stress fields that
equilibrate more accurately than 3D FEM. At the same
time, the HR models reduce the number of variables by
four orders of magnitude when analysing variable-stiffness
laminates, which leads to a reduction in run-time from
10 hours in Abaqus on a high-performance computer with
128 GB of RAM to 1-2 minutes on a standard desktop PC
running interpreted MATLAB.

This combination of accuracy and computational ex-
pense makes the HR formulation an attractive basis for
industrial design tools. Two important reasons for the per-
formance of the HR models is their mixed displacement-
and stress-based nature, which inherently satisfies the
equilibrium of stresses in a variational sense, compared to
the displacement-based 3D FEM model in Abaqus, which
only explicitly guarantees the compatibility of displace-
ments and strains. Second, the strong-form DQM solution
technique used herein allows more accurate computation of
derivatives and enforces both essential and natural bound-
ary conditions explicitly.

4. Conclusions

Using the 2D ESLT derived from the HR principle in
Part I of this work [1], a large and diverse set of straight-
fibre and variable-stiffness composite and sandwich beams
has been analysed under different bending load cases,
boundary conditions and thickness to characteristic length
ratios. The laminates considered here include a variety of
symmetric and non-symmetric, balanced and unbalanced,
multimaterial sandwich plates, as well as laminates with
3D heterogeneity, i.e. laminates with material properties
that vary in all three dimensions.

Stress fields for orthotropic straight-fibre laminates were
validated against 3D elasticity solutions, whereas the
anisotropic straight-fibre and variable-stiffness laminates
were compared against 3D FEM results. Overall, the
through-thickness stress fields of the HR model show excel-
lent correlation to approximately 2% of 3D elasticity and
3D FEM results for characteristic length to thickness ratios
of 10 : 1. Below this value, agreement to approximately 5%
was found for characteristic length to thickness ratios as
small as 5 : 1. In some applications, e.g. wind turbine
blade roots, where the characteristic length to thickness
may approach values of 5 : 1, transverse normal deforma-
tion becomes increasingly significant. The accuracy of the
HR model, combined with the three-order-of-magnitude
reduction in runtime compared to high-fidelity 3D FEM
models, makes the HR formulation well-suited for indus-
trial design tools.

The results in Section 2.1.2 show that the HR3-RZTmx
model, i.e. using the RZT ZZ function accounting for

EWLs, correlates most accurately with Pagano’s 3D elas-
ticity solution for orthotropic straight-fibre laminates.
Thus, Gherlone’s adaptation [33] of the RZT ZZ function is
recommended to obtain most accurate stress results. The
HR model using MZZF (HR3-MZZF) is also accurate for
simple sandwich laminates comprising stiff face layers and
a soft core. When two different cores or three unique ma-
terial properties are used within a laminate, MZZF results
in large errors. This discrepancy occurs because MZZF is
based on an arbitrary ad hoc assumption of the ZZ slope
changes between layers, and not on actual material prop-
erties like the RZT ZZ function. For non-sandwich lami-
nates, the HR3 model without ZZ functionality gives simi-
lar accuracy to the HR3-RZTmx and HR3-MZZF models,
and as a result of the reduced computational expense, is
the preferred option for typical non-sandwich composite
laminates used in engineering applications.

The anisotropic laminates in Section 2.2.2 are influenced
less by the ZZ effect as the layerwise differences in trans-
verse shear moduli is reduced for combinations of off-axis
layers compared to orthotropic 0/90 laminates. Further-
more, the results for anisotropic, straight-fibre laminates
confirm that the HR3-RZTmx model predicts the 3D stress
fields most accurately for general multimaterial lamina-
tions, where layer material properties may vary by orders
of magnitude. However, for the variable-stiffness plates
studied in Section 3.1, the RZT ZZ function leads to ill-
conditioning of the numerical DQM stiffness matrix due to
local singularities in the in-plane derivatives of the RZT
ZZ function. Thus, within the present global DQM frame-
work, the HR3-RZTmx is not suited for robust analysis
of variable-stiffness laminates. To remedy this problem,
a local DQM approach, where only a small number of
grid points rather than the full domain is used to compute
derivatives, should be tested. Alternatively, a strong-form
or weak-form FEM that assigns constant fibre-angles to
each element within the discretisation mesh would also re-
move the numerical ill-conditioning.

The results presented in Sections 2.2.2 and 3.1 sug-
gest that the 3D stress fields from the HR models satisfy
Cauchy’s 3D equilibrium equations more accurately, and
at a three-order degree of freedom reduction in computa-
tional cost, compared to high-fidelity 3D FEM models in
Abaqus. This point highlights an important advantage of
the HR variational statement: it is computationally more
efficient to enforce the equilibrium of stresses explicitly in a
variational sense than relying on the assumption that finer
discretisation meshes in displacement-based theories con-
verge to a negligible residual. The largest errors between
the present HR plate model and the 3D FEM results, for
both straight-fibre and tow-steered composites, occur for
the in-plane shear stress σxy. To date, the authors have
not been able to elucidate the origin of this bias towards
the in-plane shear stress accuracy, and this issue is to be
investigated further in future work.

Indeed, the results show that a third-order HR model
enhanced by the RZT ZZ function can robustly model
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straight-fibre composites and sandwich panels with layer
properties that vary by multiple orders of magnitude. Pre-
viously, the consensus in the literature was that accurate
3D stress fields for such laminates can only be predicted
using layerwise theories. As a 2D ESLT, the HR model
is not capable of enforcing unique boundary conditions
for different layers. However, these loading conditions are
rare in practical engineering structures where the inter-
face between different components typically involves the
entire cross-section. Hence, the present work questions
the necessity of using layerwise theories for practical engi-
neering structures, and suggests that future work should
re-examine when these approaches are worth their extra
computational effort.
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