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Abstract  

Bias correction is a necessary post-processing procedure in order to use Regional Climate 

Model (RCM) simulated local climate variables as the input data for hydrological models due 

to systematic errors of RCMs. Most of present bias correction methods adjust statistical 

properties between observed and simulated data based on a predefined duration (e.g., a month 

or a season). However, there is a lack of analysis about the optimal period for bias correction. 

This study has attempted to address the question whether there is an optimal number for bias 

correction groups (i.e. optimal bias correction period). To explore this optimal number we 

used a catchment in southwest England with the regional climate model HadRM3 

precipitation data. The proposed methodology uses only one grid of RCM in the Exe 

catchment, one emission scenario (A1B) and one-member (Q0) among 11-members of 

HadRM3. We tried 13 different bias correction periods from 3-day to 360-day (i.e., the whole 

one year) correction using the quantile mapping method. After the bias correction a low pass 

filter is used to remove the high frequencies (i.e., noise) followed by estimating Akaike’s 

information criterion. For the case study catchment with the regional climate model HadRM3 

precipitation, the results showed that about 8-day bias correction period is the best. We hope 

this preliminary study about the optimum number of bias correction period for daily RCM 

precipitation will stimulate more research activities to improve the methodology with 

different climatic conditions so that more experience and knowledge could be obtained. 

Future efforts on several unsolved problems have been suggested such as how strong the 

filter should be and the impact of the number of bias correction groups on river flow 

simulations.  

 

Keywords: regional climate model, bias correction, quantile mapping, digital filter, AIC  
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1. Introduction  

From the hydrological cycle and water resources perspective, the impacts of climate change 

are of increasing interest to water resources managers (Bates et al. 2008, Compagnucci et al. 

2001). Numerous studies have been done to assess the impacts of climate change on water 

resources which are based on climate variables from Global Climate Models (GCMs) and 

water resources models (Fung et al. 2011). However, because of the relatively low spatial 

resolution (100-250km) of GCMs, Regional Climate Models (RCMs) are widely used for 

regional impact studies at catchment scale (25-50km) (Qin et al. 2007, Fowler et al. 2007). 

Although RCMs are able to simulate local climate at a finer grid, it is well known that outputs 

from RCMs cannot be used as direct input data for hydrological models due to systematic 

errors (i.e., biases) and need post processing of the model outputs to remove biases (Sharma 

et al. 2007, Hansen et al. 2006, Christensen et al. 2008).  Research has shown that typical 

systematic model errors of RCMs are shown as misestimation (over or under) of climate 

variables, incorrect seasonal variations of precipitation (Terink et al. 2009, Christensen et al. 

2008, Teutschbein and Seibert 2010) and simulation of too many wet days of low intensity 

rainfall (drizzle effect) than the observed (Ines and Hansen 2006). Several studies on bias 

correction methodology have been done recently from simple linear scaling to complex 

quantile mapping methods (Piani et al. 2010, Johnson and Sharma 2011, Chen et al. 2011b, 

Chen et al. 2011a, Zhang et al. 2014b, Xu et al. 2014, Teutschbein and Seibert 2012).  

Most of the existing bias correction methods are performed on monthly (i.e., 12 groups) or 

seasonal (i.e., 4 groups) bases, i.e., the monthly or seasonal statistic properties are equalised 

between the modelled and observed climate data (Bennett et al. 2011, Lafon et al. 2012, 

Lopez et al. 2009, Teutschbein and Seibert 2012). Lopez et al. (2009) applied a quantile 

mapping method based on the Gamma distribution for correcting RCM simulated daily 

precipitation in the southwest of England. The results showed that after bias correction the 
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long term monthly mean precipitation of RCM became very similar to that of the observation 

data. Lafon et al. (2012) analysed the performance of four bias correction methods (linear, 

nonlinear, γ-based quantile mapping and empirical quantile mapping) for seven catchments 

spread across Great Britain. Scaling factors and distributions are based on monthly data for 

all the four bias correction methods. The results showed that all the methods showed some 

improvements in reducing the biases of RCM simulated precipitation. Teutschbein and 

Seibert (2012) compared the performance of four bias correction methods (linear scaling, 

local intensity scaling, power transformation and distribution mapping) and all the bias 

correction methods were on a monthly basis. The results showed that all those methods are 

capable of improving RCM outputs, especially the distribution mapping performed the best. 

Bennett et al. (2011) used Tasmania catchment in Australia to explore the performance of the 

quantile-quantile bias correction method and calculated correction factors for each season and 

for each percentile. After correction the spatial correlation between the observed and 

modelled seasonal and annual rainfall have been improved.  

However, all of these studies did not provide the explanation on why monthly or seasonal 

period precipitation data have been used for bias correction. From the intuition, the number of 

bias correction groups controls the accuracy of the model: using fewer groups might smooth 

out the information contained within the observed and modelled data, while using too many 

groups might result in overfitting of the RCM precipitation to the observed precipitation. If 

the bias correction period is too long it may lose temporal information (in other words, 

variation within the bias correction period will be lost). On the other hand if the period is too 

short even the noise of natural variation will be matched. Hence, it is possible that there could 

be an optimal bias correction period. So far there are no reported studies on this topic. This 

study intends to explore the optimal bias correction period (i.e., optimal number of bias 

correction groups) which is based on a balance between the bias and the variance (the well-
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known trade-off between the bias and variance in mathematical modelling). A short bias 

correction period has more variance but less bias, while a long bias correction period has less 

variance but high bias. The Akaike’s information criterion which is a measure of the 

goodness of fit of an estimated statistical model and leave-one-out cross validation are used 

to find the optimal number of bias correction groups. Before evaluating different number of 

groups, a low pass filter is applied to eliminate high frequencies and consider more 

meaningful underlying temporal change. A similar application has been done in assessing 

GCMs performance by using wavelets to evaluate the skill of GCMs in reproducing the 

observed low frequency variability (Johnson et al. 2011). Here, we do not propose a new bias 

correction method or evaluate the performance of different bias correction methods but 

explore the best window size for bias correction by applying a commonly used quantile 

mapping bias correction method. We would like to note that the proposed methodology uses 

only one grid of the Exe catchment which is located in the southwest of England, one 

emission scenario (A1B) and one-member (Q0) among 11-members of HadRM3 RCM 

precipitation because the purpose of this study is mainly to illustrate the logic of finding the 

optimal window size for bias correction of daily precipitation. 

Although bias correction is a controversial issue (Muerth et al. 2013, Ehret et al. 2012) it is 

widely used in climate impact studies because practitioners can use the bias corrected data 

directly. Despite its wide usage, there are still many unsolved problems. For example, which 

bias correction method to apply is a controversial subject as well. On the one hand, some 

studies argue there is a  flaw with the quantile mapping (Madadgar et al. 2014) and claim that 

the conditional bias correction methodologies produce better results than the quantile 

mapping which is an unconditional approach. (Brown and Seo 2013, Verkade et al. 2013, 

Madadgar et al. 2014). On the other hand, the quantile mapping has been used for many 

practical datasets widely used by practitioners such as the well-known ‘Future Flows Climate’ 
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(Prudhomme et al. 2012) dataset which is an 11-member ensemble climate projection for 

Great Britain at a 1-km resolution. In this study we are not arguing that the quantile mapping 

is the only and the best method. Instead, it is a method used to illustrate the optimal window 

size methodology. For any other bias correction methods the same principle proposed here 

could be applied and the optimal window size could be studied. 

 

2. Study Catchment and data 

2.1 Study area  

The Exe catchment is located in Southwest England. The catchment area is 1530 km2 and its 

average annual rainfall is 1088 mm. The four major tributaries of River Exe are River Culm, 

River Barle, River Clyst and River Creedy, and the trunk flows into the sea via the Exe 

Estuary on the south coast of England. The main urban areas in the Exe catchment are Exeter, 

Crediton, Tiverton, Cullompton. Figure 1 shows the overview of the Exe catchment area. In 

this study the Thorverton catchment (606km2) which is one of the Exe subcatchment is used. 

Daily time series of the observed precipitation data over the Thorverton catchment is derived 

from 5 rain gauges (extracted from the UK Met Office’s MIDAS database) using the 

Thiessen polygon method for the baseline period (1961-1990).  

 

2.2 Regional climate model (RCM) data 

The climate data used in this research has been generated by HadRM3. HadRM3 is a Met 

Office Hadley Centre's regional climate model (resolution 25×25km) which is used to 

produce regional projections of the future climate from the global climate model HadCM3 

(Murphy et al. 2009). In this study we used HadRM3 data driven by HadCM3 rather than 

using reanalysis data as the boundary conditions for HadRM3. The RCM data consist of one 

unperturbed member and 10 perturbed members driven by historical emissions and future 
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emission scenario A1B which assumes a balance between fossil fuels and other energy 

sources. 31 parameters were selected for this perturbation from the unperturbed member 

representing cloud, convection, radiation, atmospheric dynamics, boundary layer, land 

surface and sea-ice. The HadRM3 Perturbed Physics Experiment Dataset (HadRM3-PPE-UK) 

provides time series data from 1950 to 2100. Detailed information about the HadRM3-PPE 

data can be found at http://badc.nerc.ac.uk/browse//badc/hadrm3/data/hadrm3-ppe-uk. The 

RCM 25km grid boxes are rotated 0.22o as shown in Figure 1. Here, among 11-members only 

the unperturbed RCM daily precipitation series for the baseline period 1961~1990 is used in 

this study and the grid is selected covering the Thorverton catchment. 

 

3. Methodology 

3.1 Statistical bias correction methods 

The Gamma distribution is commonly used for rainfall distribution since it can provide a 

variety of distribution shapes (Wilks 1990). In this study the two parameter Gamma 

distribution is applied and its function is as follows: 

𝑓(𝑥) =
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1𝑒−𝑥/𝛽;  𝑥 ≥ 0;  𝛼, 𝛽 > 0       (1)   

 where, 𝛤 is gamma function, α is shape parameter, and β is scale parameter. Among various 

bias correction methods the quantile mapping method based on the Gamma distribution is 

selected for bias correction of the daily RCM simulated precipitation data. The objective is to 

map the observed and simulated quantiles using their corresponding Gamma distributions. 

The calendar year is divided into different segments and bias correction is performed within 

each segment individually. In this study, bias correction is conducted for various time periods 

independently after matching wet day frequency between the observed and RCM simulated 

precipitation data by modifying the RCM simulated data using a cut-off threshold (a 

http://badc.nerc.ac.uk/browse/badc/hadrm3/data/hadrm3-ppe-uk
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commonly adopted approach). Daily Gamma cumulative distribution functions (CDFs) are 

built from each time period for both the observed and RCM simulated precipitation from 

1961 to 1990. Figure 2 presents the schematic of the distribution mapping method. First, the 

value of the RCM simulated daily precipitation is found in the Gamma CDF and the 

corresponding cumulative probability from the observed Gamma CDF. Then the value of 

precipitation with the same cumulative probability is searched in the observed Gamma CDF. 

This value is the corrected value of the RCM simulated precipitation. The mapping equation 

can be expressed as follows: 

𝑋𝑐𝑜𝑟 =  𝐹−1 [𝐹(𝑋𝑚𝑜𝑑 ;  𝛼𝑚𝑜𝑑 𝛽𝑚𝑜𝑑) ; 𝛼𝑜𝑏𝑠 𝛽𝑜𝑏𝑠]      (2) 

where, F is Gamma CDF, F-1 is its inverse function, 𝑋𝑐𝑜𝑟 is the bias corrected data in the 

baseline period, α and β are shape and scale parameters of the Gamma distribution 

respectively. The subscripts mod and obs indicate the parameters from the RCM simulated 

precipitation and observed precipitation.  

Usually the RCM simulated precipitation values have a numerous number of days with low 

precipitation compared with the observed precipitation. Therefore, a cut-off threshold is 

commonly used to remove low precipitation values in the model output in order to equalise 

the frequency of wet days between the observed and simulated precipitation before applying 

the quantile mapping method. After bias correction, the RCM simulated Gamma CDF is 

shifted to the observed Gamma CDF. In this study, to find out the optimal number of bias 

correction groups, bias correction has been done by 13 different time periods as follows and  

Figure 3 shows the schematic of bias correction with different bias correction periods : 3 days 

(120 groups), 4 days (90 groups), 8 days (45 groups), 15 days (24 groups), 30 days (12 

groups), 40 days (9 groups), 45 days (8 groups), 60 days (6 groups), 72 days (5 groups), 90 

days (4 groups), 120 days (3 groups), 180 days (2 groups) and 360 days (1 group). For both 
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the observed and RCM simulated precipitation, the CDFs of each group are built from daily 

precipitation from 1961 to 1990 as shown in Figure 3. 

 

3.2 Akaike’s information criterion 

In this study, to find out the optimum numbers of bias correction groups, Akaike’s 

information criterion (Burnham and Anderson 2001) which is a measure of the goodness of 

fit of an estimated statistical model is applied. 

AIC = −2 × 𝑙𝑛(likelihood) + 2 × 𝑘       (3) 

where, ln is the natural logarithm and k is the number of parameters included in the model. 

The penalty for the model complexity is done by adding k in AIC. As a result the optimal 

model is selected that fits well but has a minimum number of parameters. In this study, the 

more bias correction groups we divide the more complex the model will become and k will 

get larger. When AICs of different models are compared, the model having the lowest AIC is 

the optimal. In practice, AIC is usually estimated using the residual sums of squares (RSS) 

from regression. 

AIC = 𝑛 × 𝑙𝑛(RSS/𝑛) + 2 × 𝑘        (4) 

where, n is the number of data points and RSS is the residual sums of squares. If the ratio of 

n/k is less than 40 the following equation should be used instead to derive more reliable 

results. 

AIC = −2 × 𝑙𝑛(likelihood) + 2 × 𝑘 + (2 × 𝑘 × (𝑘 + 1)/(𝑛 − 𝑘 − 1)  (5) 

We are not considering only the model complexity as a major criterion but the overall 

accuracy of the bias corrected data since the model complexity is combined with RSS. AIC is 

an indicator to balance the model complexity and the closeness of the model to the 

observations. Without penalising for the complexity of the model, over-fitting would be an 

issue since the more complex the model is, the smaller temporal error will be in the bias 
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correction. In this study the k is a good indicator of the complexity of the bias correction 

function (i.e., the number of parameters) since a smaller window size would have more 

parameters and will produce more transfer functions. The other verification measures without 

considering the complexity will suffer from an over-fitting problem. 

 

3.3 Low pass signal filtering using FFT 

Since both the observation and RCM precipitation data have fluctuations (i.e., noisy), which 

makes it difficult to evaluate the optimal number of bias correction groups, it is necessary to 

eliminate these high frequencies in order to consider more meaningful underlying temporal 

change. Without using filter the natural variation may dominate the signal but if we remove 

the noise the impact of the noise on AIC value can be reduced and the optimal number of bias 

correction period could be found. In this case, small bias correction periods are not reliable 

because of the large variations in unfiltered daily rainfall time series. As the bias correction 

period is increased, the results become more stable.   

Here, a low pass filter based on the Fourier Transform is applied to filter out the noise, i.e. 

high frequency signals from the precipitation data and make the time series smoother to help 

identifying rainfall features between the observation and RCM data. The Fourier Transform 

is used to map signals from the time domain to the frequency domain. The Fourier Transform 

F(w) and inverse Fourier Transform f(t) are defined as follows.  

 𝐹(𝑤) = ∫ 𝑓(𝑡)𝑒−𝑖𝑤𝑡𝑑𝑡
∞

−∞
        (6) 

 𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝑤)𝑒𝑖𝑤𝑡𝑑𝑤

∞

−∞
        (7) 

After the Fourier transform of the data, a variety of filters are explored to smooth the data 

time series to reduce fluctuations. In this study, the Hamming-window filter is applied as 

follows. 
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𝑤(𝑛) = 0.54 − 0.46cos (
2𝜋𝑛

𝑁−1
), 0 ≤ n ≤ N-1     (8) 

where, N is the length of the filter window. 

We chose the cut-off frequency to filter out the noise in the precipitation which is determined 

on the basis of spectral analysis of the observed river flow. Therefore, the dominant 

frequencies of the observed flow have been selected for the cut-off frequency of the 

precipitation. When applying filter not only the cut-off frequency is considered but different 

number of filter coefficients are applied. The filter with large number of filter coefficients 

cuts off sharp frequencies but has poor time resolution, while the filter with small number of 

filter coefficients has a good time resolution but its frequency cut off may not be sharp 

enough. Here, we chose three different numbers of filter coefficients (m) 15, 30 and 60. This 

method can be justified since our major purpose with the rainfall data is for water resource 

management, i.e., the volume of water and the low pass filter can be considered as a 

catchment as shown in Figure 4. High frequencies of rainfall data will be removed by 

catchment filter resulting in low frequencies of river flow.  

 

3.4 Cross validation 

To evaluate the performance of different bias correction groups the leave-one-out cross 

validation is applied. Figure 5 shows the scheme of this method. Each of the 30 simulated 

years is processed once independently from the remaining 29 years used for calibration, i.e., 

the transfer functions for bias correction has been estimated for 29 years and then these 

transfer functions are applied to the remaining validation period (1 year). This procedure is 

repeated by leaving each year out in turn. Finally, all 30 one-year validated data has been 

grouped into a whole 30 years to evaluate with the 30 years observation data. The root mean 

square error (RMSE) is calculated based on 30 years mean daily precipitation rather than by 

averaging the error of each year since there is no relationship between every individual year 
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of the RCM and observations. (i.e., RCM data in 1961 have nothing to do with observations 

in 1961). Only the statistical properties can be compared between RCM data and observations. 

 

4. Results 

4.1 Comparison between RCM data and Observations 

To assess the performance of the 11-member RCM data for the baseline period, monthly 

mean precipitations for the Thorverton catchment have been compared between the RCM 

data and observation data. Figure 6 shows that the trend is similar but actual values do not 

match, and there are clearly biases between the observation and climate model during the 

baseline period. 11 RCMs tend to produce more rainfall than the observed between February 

and June, but less between August and December. Therefore, the biases exist in time (Figure 

6 (left)) and in rainfall intensity (Figure 6 (right)).  

 

4.2 Comparison of bias corrected data 

Figure 7 shows 30 years mean observed precipitation and RCM precipitation after bias 

correction with daily data. We can see that the more groups we divide for bias correction, the 

less biased the corrected data is. This is because if bias correction period is shorter, temporal 

distribution of time series can be considered with more details than a bias correction period 

which is longer and as a result rainfall characteristics can be matched more sophisticatedly 

between the observation and the simulated data. However, on the contrary, the higher the 

number of groups, the higher the variance will be. This is a well-known trade-off between 

bias and variance in mathematical modelling (Figure 8). 

The variance can be explained by the stability of transfer functions in the quantile mapping 

method. Each bias correction group has transfer function respectively as shown in Figure 9. 

One group with only one transfer function is too stable and 120 groups with 120 different 
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transfer functions are too unstable with high variance. This is the same when the change of 

transfer function across time is considered. Transfer functions have two Gamma distribution 

parameters (shape and scale parameter) and as we can see in Figure 10 parameters in one 

group are constant across time which are too stable, while 120 group’s parameters are too 

unstable across time. The more groups we divide, the more unstable the transfer functions 

become due to large variations. 

 

4.3 Digital filtering results  

To set the cut off-off frequency of the precipitation, spectral analysis of the observed flow has 

been done. Figure 11 presents the power spectrum of the observed flow and the observed 

precipitation data after the Fourier Transform. The amplitude of the flow spectrum decreases 

until the frequency is 0.05 and afterward it fluctuates. Hence, 0.05 has been set as the cut-off 

frequency for both the observation and RCM precipitation data. 

Figure 12 presents the signal of the 30 year mean observed precipitation and the signal of bias 

corrected precipitation (3-day bias correction and 360-day bias correction) after removing the 

noise. We can see that the time series of 3-day bias corrected precipitation is much closer to 

that of the observed precipitation than 360-day bias correction. However, it does not mean 

that more groups are better than fewer groups as mentioned in section 4.2. When we compare 

the residual sums of squares (RSS) between unfiltered data and filtered data in Figure 13, it is 

clear that RSS of the original precipitation is much bigger than that of the filtered 

precipitation because the original data has high frequencies in the rainfall. Figure 13 shows 

the trend of RSS across different bias correction groups and the comparison between using 

filter and without using filter. RSS becomes smaller when the bias correction groups are 

divided in larger numbers for both filtered and unfiltered cases since if the correction period 

become shorter even the noise of natural variation will be matched closer to the observed data, 
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although the magnitude and the slope of this decreasing trend is smaller when the noise is 

removed than using the unfiltered data. However, the trend of the value of n×ln(RSS/n) in 

Equation (4) is quite different to that of the RSS value. The more bias correction groups are 

divided, the faster the slope goes down when only signal is considered than both the signal 

and the noise being considered, which means that the value of n×ln(RSS/n) is very sensitive 

to the small RSS value. This is due to the feature of natural logarithm and this n×ln(RSS/n) 

shape affects the shape of the AIC value which is referred in the next section. 

 

4.4 Evaluation of the number of bias correction groups 

To explore the optimal number of bias correction groups the AIC method is used and to 

evaluate the performance of different bias correction groups leave-one-out cross validation is 

applied. Figure 14 presents the AIC values for three different low pass filters and one AIC 

value without using the filter. The results show that the optimal number for bias correction 

groups in this catchment is about 8 days (the lowest AIC) for all three cases when only the 

signal is considered. If both signal and noise are taken into account the AIC value is almost 

similar from 30-day bias correction period to 360-day bias correction period which is not 

reasonable. This is due to high frequencies of rainfall data (i.e., noise) which make the RSS 

value very significant as mentioned in section 4.3 and in Figure 13. Figure 15 shows the 

RMSE of validated data for three different low pass filters and the results showed that the 

optimal bias correction period is about 8-day which is the same as the AIC result. 

 

5. Discussion and Conclusions 

The purpose of this study is to explore the optimal number of bias correction groups for 

climate model simulations. From the intuition, the more groups we have, the smaller temporal 

error will be in the bias correction. However, we may come to meet the overfitting issue and 
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there is a question on the well-known trade-off between bias and variance. This is because 

smaller temporal error may not mean it is a good bias correction if bias correction fits to 

noise in the data instead of the underlying signal. Hence, we cannot judge by the temporal 

error alone. To resolve this issue and evaluate the performance of the models that have 

different numbers of bias correction groups the Akaike information criterion (AIC) and leave-

one-out cross validation method are used for choosing the optimal number of bias correction 

groups. The results showed that for the case study catchment with the regional climate model, 

about 45 groups (8 days bias correction) has shown the lowest AIC and RMSE value i.e., the 

best setting for bias correction. We would like to reiterate that the proposed methodology 

uses only one grid of the Exe catchment which is located in the southwest of England, one 

emission scenario (A1B) and one-member (Q0) among 11-members of HadRM3 RCM 

precipitation because the purpose of this study is mainly to illustrate the logic of finding the 

optimal window size for bias correction of daily precipitation. This is the first time that such 

a problem has been addressed systematically. However, it should be pointed out that this 

study is only a preliminary attempt to address such an important but largely ignored issue. 

We hope it will stimulate more research activities to improve (or even falsify) the proposed 

methodology with different climatic conditions so that more experience and knowledge could 

be obtained. 

Here are some possible problems to be explored further. Firstly, more studies are needed 

about the methodology to find the patterns of the optimal bias correction period at different 

parts of the world for different application purposes. In this study, AIC and leave-one-out 

cross validation are used to find the optimal bias correction period and it is possible that this 

optimal bias correction period is related to local climate and the purpose of the data usage. 

We do not think that this study has completely solved this problem. Maybe there are some 

alternative methods other than AIC or cross validation such as Bayesian information criterion 
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(BIC), but we have not found a way to verify them yet. Secondly, it is still uncertain that how 

strong the filter should be. This study has been done from rainfall point of view. Rainfall data 

time series is made of signals of different frequencies (high frequency, low frequency, and 

others…). Depending on what is the purpose for the data, we should use digital filters of 

appropriate frequency bands to remove the high frequency signals and only keep the useful 

signals relevant to the purpose of the data usage. In this study, low pass digital filter is used to 

filter out high frequencies because fluctuations make it difficult to find out how long periods 

are the best for bias correction. The cut-off frequency of precipitation has been chosen on the 

basis of the power spectrum of the observed flow since the catchment can be considered as a 

low pass filter. We intended to try different filters to find out if the results are sensitive to 

filter settings but the results seem quite consistent with different filters. Thirdly, compared 

with rainfall, from water resources point of view the river flow generated by rainfall is 

important (e.g., for reservoir operations). However, the digital filter only emulates a 

catchment effect, but it is not a fully functional hydrological model. Hence, instead of using a 

digital filter to remove the high frequency rainfall signal, we should use a catchment model as 

a ‘low pass filter’ to smooth out the high frequency rainfall signal. Similar to rainfall data, the 

results may be different if different water balance periods are interested by the hydrologists 

(hence hydrological models with different time intervals may be used). If we are interested in 

monthly water balance in water resources management, the high frequency flow signal 

should be further smoothed by a digital filter (on the flow data instead of rainfall). On the 

other hand, urban stormwater management is interested in rainfall in hours or even minutes. 

An appropriate filter frequency band for an urban catchment would be different. Fourthly, the 

impact of different window sizes to water resources management is an important issue. The 

ultimate test is to check whether different window sizes could have a major impact to the 

final decision. However, it is extremely complex to solve it. The answer will depend on a 
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cascade of simulations and analyses including the rainfall-runoff modelling, water allocation 

modelling and the decision making process.  In addition, it might be different for different 

catchments, different climate conditions with different water resources availability and 

utilisation. Therefore it is quite a complex problem to work out the impact of window sizes 

and at this stage we cannot answer this question. Because of the complexity on assessing 

hydrological impacts, most hydrological modelling studies have just focused on improving 

the model accuracy judged by a few selected criterions such as RMSE, R2, etc. Few studies 

have been carried out to check if the improvements of the hydrological model have any real 

impact to the final decision making. Therefore, there are research gaps between the model 

accuracy and the real impact. Although we cannot illustrate the impact of different window 

sizes at this stage, it should pointed out that this study is a preliminary attempt to address the 

potentially important issue which has not been proposed before and suggested one possible 

methodology. We do not claim that our methodology is the only ‘true’ solution. The current 

practice is mainly ‘rule of thumb’ based on the ‘gut feeling’ of the researchers. A systematic 

method based on evidence is urgently needed. There are no doubts that this paper is likely to 

attract debate and discussion on this potentially important issue that has been largely 

unaddressed by the community. We hope it will stimulate more research activities to improve 

the proposed methodology (or to even falsify it) with different climatic and geophysical 

conditions so that more experience and knowledge could be obtained. It is possible that the 

real impacts of different bias correction window sizes could emerge after such an issue is 

addressed more widely by the community.  
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