
 Hernández, N., Eder, K., Magid, E., Savage, J., & Rosenblueth, D. A. (2015).
Marimba: A tool for verifying properties of hidden markov models. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). (Vol. 9364, pp.
201-206). (Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol.
9364). Springer Verlag. DOI: 10.1007/978-3-319-24953-7_14

Peer reviewed version

Link to published version (if available):
10.1007/978-3-319-24953-7_14

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at 10.1007/978-3-319-24953-7_14.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-319-24953-7_14
http://research-information.bristol.ac.uk/en/publications/marimba(1a013892-a4e6-4157-a3bd-49ecaad0a479).html
http://research-information.bristol.ac.uk/en/publications/marimba(1a013892-a4e6-4157-a3bd-49ecaad0a479).html

Marimba: A Tool for Verifying Properties of
Hidden Markov Models

Noé Hernández1, Kerstin Eder3,4, Evgeni Magid3,4, Jesús Savage2, and
David A. Rosenblueth1

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
2 Facultad de Ingenieŕıa

Universidad Nacional Autónoma de México, D.F., México
no hernan@ciencias.unam.mx,savage@servidor.unam.mx,drosenbl@unam.mx

3 Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK
4 Bristol Robotics Laboratory, Bristol, BS16 1QY, UK

{Kerstin.Eder,Evgeni.Magid}@bristol.ac.uk

Abstract. The formal verification of properties of Hidden Markov Mod-
els (HMMs) is highly desirable for gaining confidence in the correctness
of the model and the corresponding system. A significant step towards
HMM verification was the development by Zhang et al. of a family of
logics for verifying HMMs, called POCTL*, and its model checking algo-
rithm. As far as we know, the verification tool we present here is the first
one based on Zhang et al.’s approach. As an example of its effective appli-
cation, we verify properties of a handover task in the context of human-
robot interaction. Our tool was implemented in Haskell, and the ex-
perimental evaluation was performed using the humanoid robot Bert2.

1 Introduction

A Hidden Markov Model (HMM) is an extension of a Discrete Time Markov
Chain (DTMC) where the states of the model are hidden but the observations
are visible. Typically, an HMM is studied with respect to the three basic problems
examined by Rabiner in [1]. However, to the best of our knowledge, no actual
model checker exists for HMMs despite their broad range of applications, e.g.,
speech recognition, DNA sequence analysis, text recognition and robot control.
We describe in this paper a tool for verifying HMM properties written in the
Probabilistic Observation Computational Tree Logic* (POCTL* [2]), and use
this tool for verifying properties of a robot-to-human handover interaction.

POCTL* is a specification language for HMM properties. It is a probabilistic
version of CTL* where a set of observations is attached to the next operator.
Zhang et al. [2] sketched two model checking algorithms for POCTL*, an “au-
tomaton based” approach, and a “direct” approach. We opted for the direct
approach both for its lower time complexity and for its clarity, facilitating its
correctness proof and its implementation [3]. This approach produces a DTMC D
and a Linear Temporal Logic (LTL) formula φ. So the PRISM [4] model checker
could be used to verify φ on D. Such a model checker follows an approach whose

2 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

complexity is doubly exponential in |φ| and polynomial in |D|, whereas the di-
rect approach verifies φ on D with the method by Courcoubetis et al. [5] whose
complexity is singly exponential in |φ| and polynomial in |D|, which is also the
final complexity of our tool. This latter method repeatedly constructs a DTMC
and rewrites an LTL formula, such that one temporal operator is removed each
time while preserving the probability of satisfaction.

We have named our model checker Marimba. A marimba is a xylophone-like
musical instrument that is popular in south-east Mexico and Central America.
Marimba was implemented in Haskell and compiled with GHCi. Our tool is
available for download from https://github.com/nohernan/Marimba.

2 Tool Architecture and Implementation

Haskell was chosen to code this first version of Marimba since it allows us
to work in a high-level abstract layer, by providing useful mechanisms like lazy
evaluation and a pure functional paradigm. Furthermore, Haskell excels at
managing recursion; this is a valuable aspect because recursive calls are made
continuously throughout the execution.

Marimba features a command-line interface. Moreover, instead of working
with a command window, a more user friendly and preferable execution is ac-
complished through the Emacs text editor extended with the Haskell-mode.

2.1 Marimba’s Input and Modules

The first input is a .hmm file with the six elements of an HMM H, namely a finite
set of states S, a state transition probability matrix A, a finite set of observations
Θ, an observation probability matrix B, a function L that maps states to sets
of atomic propositions from a set APH, and an initial probability distribution π
over S. The second input is a POCTL* state formula Φ typed in the command
window according to the syntactic rules:

Φ ::= true | false | a | (¬Φ) | (Φ ∨ Φ) | (Φ ∧ Φ) | (P./ p(φ)),

φ ::= Φ | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (Xoφ) | (φU≤nφ) | (φUφ),

where a ∈ APH, o ∈ Θ, n ∈ N, p ∈ [0, 1], and ./∈ {≤, <,≥, >}. In addition, we
define XΩφ as a shorthand for

∨
o∈ΩXoφ provided Ω ⊆ Θ. We examine below

the six Haskell modules that constitute Marimba.
ModelChecker.hs performs the initial computations of the model checker for

POCTL*. It recursively finds a most nested state subformula of Φ, not being
a propositional variable, and the states of H that satisfy it. Finding the states
that satisfy a state subformula is straightforward when such a subformula is
propositional. If, however, the state subformula is probabilistic, the module Di-
rectApproach.hs obtains the states satisfying this subformula. Next, we extend
the labels of such states with a new atomic proposition a. In Φ, the state sub-
formula being addressed is replaced by a. The base case occurs when we reach
a propositional variable, so we return the states that have it in their label.

https://github.com/nohernan/Marimba

Marimba: A Tool for Verifying Properties of Hidden Markov Models 3

DirectApproach.hs transforms the HMM H into a DTMC D, and removes
from the specification the observation set attached to the next operator X by
generating a conjunction of the observation-free X with a new propositional
variable. Thus, we obtain an LTL formula that is passed, together with D, to
the module Courcoubetis.hs. The new propositional variables are drawn from
the power set of observations. Remarkably, it is not necessary to compute such
a power set since the label of a state in D is easily calculated.

Courcoubetis.hs implements a modified version of the method by Courcou-
betis et al. to find the probability that an LTL formula is satisfied in a DTMC.
In this module, when dealing with the U and U≤n operators, we apply ideas from
[6] for computing a partition of states of D. Moreover, to handle the U operator
we have to solve a linear equation system. To that end, we use the linearEqSolver
library [7], which in turn executes the Z3 theorem prover [8].

Lexer.hs and Parser.hs are in charge of the syntactic analysis of the input.
Finally, Main.hs is loaded to start Marimba. This module manages the interaction
with the user, and starts the computation by passing control to ModelChecker.hs.

In a typical execution, Marimba prompts the user to enter a .hmm file path.
Next, our tool asks whether or not the user wants to take into account the
initial distribution in the computation of the probability of satisfaction. This
choice corresponds to opposite ideas presented in [5] and [2], i.e., the method
by Courcoubetis et al. uses the initial distribution to define their probability
measure, contrary to that defined by Zhang et al. Afterwards, a POCTL* formula
has to be entered. Marimba returns the list of states satisfying this formula, and
asks the user whether there are more formulas to be verified on the same model.

The .hmm file is simply a text file where the elements of an HMM are defined,
e.g., the set of states is defined by the reserved word States, and if the model
consists of five states, we write States=5. Likewise, POCTL* formulas have a
natural writing, for example, P<0.1(X{o1}a) is typed as P[<0.1](X_{1}a).

Our implementation of Marimba in Haskell makes extensive use of ordinary
arrays, which are known for a lack of efficiency in this programming language [9].
Thus, Marimba presents limitations in practice when considering large models. To
better deal with this situation, a future work would consist in coding Marimba
in a language like Java and make it a symbolic model checker. Nevertheless,
with a high degree of confidence, we can say that this current implementation
correctly performs the steps dictated by our version of Zhang et al.’s algorithm,
mostly because Haskell provides an abstract and formal coding framework.

3 Verification of a Human-Robot Interaction

We applied Marimba to a real-world example, namely the verification of the
robot-to-human handover task [10] using the robot Bert2 [11] at the Bristol
Robotics Laboratory (BRL). The robot’s decision to release the object during
the handover task is determined by an HMM [10]. Figure 1 presents the state
diagram of the HMM corresponding to the basic handover interaction, where the
label L(s) is defined for each state s.

4 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

Robot
not hold

State 1

L(1)={rnh}

Robot
pick up

State 2

L(2)={rpu}

User
grab

State 4

L(4)={ug}

Robot
hold

State 3

L(3)={rh}

Fig. 1. The labelled states in-
volved in the basic handover
process.

We initialise A, B and π of the HMM for later
training as follows. Since the first state of the han-
dover process is Robot not hold, the initial distribu-
tion π favours this state above the others. The ini-
tialisation of matrix A must encourage the transi-
tions shown in Figure 1. To initialise B, we consider
as observations the ordered pairs whose first and
second components are the index and middle fin-
ger metacarpophalangeal joint motor current val-
ues, respectively. By the Cartesian product of these
values, we obtain 56,404 observations. Since these
observations are merged with the states to gener-
ate the DTMC passed to Courcoubetis.hs, and the
size of a formula could grow considerably by asso-
ciating the next operator with up to 56,404 obser-
vations, Marimba’s execution is not practical under these circumstances. Vector
quantisation [12] was used to reduce the number of observations to just 13. This
method eliminates redundancy by grouping similar pairs in regions. So, we ob-
tained 13 regions of the plane, which were regarded as the observations of the
HMM and taken to initialise matrix B. Applying vector quantisation causes a
loss in accuracy, as indicated by the computation of the root mean square error.
However, we can effectively find observations that are likely to characterise each
of the four states of this HMM (see first liveness property below, for example).

To make reliable estimates, we collected observations from 50 handover ex-
periments on Bert2. These observations were used to train the initial HMM
with the reestimation method found in the solution of Rabiner’s Problem 3 [1].

Liveness properties. A liveness property requires that a good thing happens
during the execution of a system. For example, we would like to know whether
the model generates the sequence of observations O = o1, o2, o3, o4 where o1, o2 ∈
{3, 4, 6} and o3, o4 ∈ {3, 4, 11}, with probability greater than 0.88, that is,
P>0.88(X{3,4,6}(X{3,4,6}(X{3,4,11}(X{3,4,11}true)))). Interestingly, this property
is a generalisation of Rabiner’s Problem 1 [1]. Marimba’s execution for this
property is found in Figure 2. The inputs are the trained HMM, defined in
ModelBert2.hmm, and the previous formula. The output returned by Marimba is
State 4. Hence, the model starting at state User grab is likely to generate O.

A second liveness property states that with probability at least 0.9, Bert2
releases the object when the user grabs it. The POCTL* formula for this property
is P≥0.9(rh ∧ (rh U (ug ∧ ug U rnh))). Marimba outputs State 3, i.e., the speci-
fication is satisfied when the starting state is Robot hold. So, we expect Bert2
to hold the object, and let it go when the user grabs it.

Safety properties. A safety property establishes that a bad thing does not
occur during the execution of a system. For instance, with probability less than
0.05, Bert2 abandons its serving position with the user not grabbing the object,
that is, P<0.05(rh ∧ XΘ(rnh ∨ rpu)), where Θ is the set of observations. Our

Marimba: A Tool for Verifying Properties of Hidden Markov Models 5

Main> main

Enter the file name where the HMM is located.

examples/ModelBert2.hmm

Would you like to consider each state as if it were the initial

state, i.e., as if it had initial distribution value equal to 1? y/n: y

Enter the POCTL* formula we are interested in.

P[>0.88] (X_{3,4,6}(X_{3,4,6}(X_{3,4,11}(X_{3,4,11}T))))
The states that satisfy it are:

(Probability of satisfaction of each state:[4.998198505964186e-10,

4.08659792160621e-6,7.508994137303159e-3,0.8915357419467848])

[4]

Do you want to continue checking more specifications? y/n: n

Fig. 2. Verifying a property with Marimba.

model checker returns {1, 2, 3, 4} as the set of states satisfying this property. We
conclude that it is unlikely that the model, being at state Robot hold, reaches a
state other than User grab, that is, Robot not hold or Robot pick up.

The satisfaction of the previous three specifications provides us with confi-
dence that Bert2 reliably performs the handover interaction specified above.

On an Intel R© CoreTM i3 1.70GHz computer with 4GB in memory, Marimba
takes 28.55s to compute the states satisfying the first liveness formula. The time
required for checking the other two properties studied here is around 0.06s.

Further examples are given in the examples folder and user’s manual that
come with Marimba’s source code.

4 Conclusions

Since the automatic verification of properties of HMMs seems to be an unat-
tended problem, we present here Marimba, a Haskell implementation of the
model checking algorithm for POCTL* [2]. This model checking algorithm was
slightly modified to carry out its computations in a real program. Marimba’s
calculation is basically broken out in three stages that are coded in the modules
ModelChecker.hs, DirectApproach.hs and Courcoubetis.hs, such that the involved
components, steps and transformations are well arranged throughout the im-
plementation. Finally, we have successfully applied Marimba to verify relevant
properties of a handover interaction from the robot Bert2 to a human.

Acknowledgements. We gratefully acknowledge support from grants PAPIIT
IN113013 and Conacyt 221341, and especially thank the BRL staff for their
assistance operating the robot Bert2. E. Magid and K. Eder have been sup-
ported, in full and in part, respectively, by the UK EPSRC grant EP/K006320/1
ROBOSAFE: “Trustworthy Robotic Assistants”.

References

1. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77 (1989) 257–286

6 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

2. Zhang, L., Hermanns, H., Jansen, D.N.: Logic and model checking for hidden
Markov models. In: Formal Techniques for Networked and Distributed Systems,
FORTE 2005. Volume 3731 of LNCS., Springer (2005) 98–112

3. Hernández, N.: Model checking based on the hidden Markov model and its
application to human-robot interaction. Master’s thesis, Universidad Nacional
Autónoma de México, México (2014) Available from http://132.248.9.195/

ptd2014/noviembre/303087692/Index.html.
4. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Proc. 23rd International Conference on Computer Aided
Verification (CAV ’11). Volume 6806 of LNCS., Springer (2011) 585–591

5. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4) (July 1995) 857–907

6. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilistic Systems. Volume 23 of CRM Mono-
graph Series. American Mathematical Society (2004)

7. Erkok, L.: linearEqSolver: a library to solve systems of linear equations, using
SMT solvers. https://github.com/LeventErkok/linearEqSolver

8. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the
Theory and Practice of Software (TACAS ’08). LNCS, Springer (2008) 337–340

9. Chakravarty, M.M.T., Keller, G.: An Approach to Fast Arrays in Haskell. In:
Lecture notes for The Summer School and Workshop on Advanced Functional
Programming 2002. Volume 2638 of LNCS. (2003) 27–58

10. Grigore, E.C., Eder, K., Pipe, A.G., Melhuish, C., Leonards, U.: Joint action under-
standing improves robot-to-human object handover. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE (2013) 4622–4629

11. Lenz, A., Skachek, S., Hamann, K., Steinwender, J., Pipe, A.G., Melhuish, C.:
The BERT2 infrastructure: An integrated system for the study of human-robot
interaction. In: 10th IEEE-RAS International Conference on Humanoid Robots,
IEEE (2010) 346–351

12. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE
Transactions on Communications 28 (1980) 84–95

http://132.248.9.195/ptd2014/noviembre/303087692/Index.html
http://132.248.9.195/ptd2014/noviembre/303087692/Index.html
https://github.com/LeventErkok/linearEqSolver

	Marimba: A Tool for Verifying Properties of Hidden Markov Models
	Introduction
	Tool Architecture and Implementation
	Marimba's Input and Modules

	Verification of a Human-Robot Interaction
	Conclusions

