
 Martineau, M., McIntosh-Smith, S., & Gaudin, W. (2016). Evaluating
OpenMP 4.0's Effectiveness as a Heterogeneous Parallel Programming
Model. Paper presented at 21ST International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS),
Chicago, United States.DOI: 10.1109/IPDPSW.2016.70

Peer reviewed version

Link to published version (if available):
10.1109/IPDPSW.2016.70

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/7529889/?arnumber=7529889.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/IPDPSW.2016.70
http://research-information.bristol.ac.uk/en/publications/evaluating-openmp-40s-effectiveness-as-a-heterogeneous-parallel-programming-model(1ca3fc11-49f1-4fa4-a818-d742568c9a4d).html
http://research-information.bristol.ac.uk/en/publications/evaluating-openmp-40s-effectiveness-as-a-heterogeneous-parallel-programming-model(1ca3fc11-49f1-4fa4-a818-d742568c9a4d).html

Evaluating OpenMP 4.0’s Effectiveness as a

Heterogeneous Parallel Programming Model

Matt Martineau

HPC Group, University of Bristol

Bristol, United Kingdom

m.martineau@bristol.ac.uk

Simon McIntosh-Smith

HPC Group, University of Bristol

Bristol, United Kingdom

cssnmis@bristol.ac.uk

Wayne Gaudin

Atomic Weapons Establishment

Aldermaston, United Kingdom

wayne.gaudin@awe.co.uk

Abstract—Although the OpenMP 4.0 standard has been
available since 2013, support for GPUs has been absent up until
very recently, with only a handful of experimental compilers
available. In this work we evaluate the performance of Cray’s
new NVIDIA GPU targeting implementation of OpenMP 4.0,
with the mini-apps TeaLeaf, CloverLeaf and BUDE. We suc-
cessfully port each of the applications, using a simple and
consistent design throughout, and achieve performance on an
NVIDIA K20X that is comparable to Cray’s OpenACC in all
cases. BUDE, a compute bound code, required 2.2x the runtime
of an equivalently optimised CUDA code, which we believe
is caused by an inflated frequency of control flow operations
and less efficient arithmetic optimisation. Impressively, both
TeaLeaf and CloverLeaf, memory bandwidth bound codes,
only required 1.3x the runtime of hand-optimised CUDA
implementations. Overall, we find that OpenMP 4.0 is a highly
usable open standard capable of performant heterogeneous ex-
ecution, making it a promising option for scientific application
developers.

Keywords-high performance computing; parallel computing;
application programming interfaces; OpenMP; performance
portability

I. INTRODUCTION

Many of the world’s largest supercomputing facilities

either host heterogeneous architectures already, or plan to in

the near future. Many-core devices, in particular, are seeing

a surge in popularity because they boast high peak floating

point and high memory bandwidth, while generally being

more power efficient than traditional CPUs. Also, by design

they are suited to processing large regular sets of data, which

is a common requirement of modern scientific applications.

Such devices are typically more complicated to develop for

than when targeting CPUs, meaning that there is a strong

demand for consensus about the programming models that

should be used to target such devices [1].

The OpenMP 4.0 standard has introduced a number of

new directives designed to support heterogeneous computa-

tional offloading in order to target many-core devices [2].

The introduction of such features into this prominent open

standard demonstrates that there is an ever-increasing ac-

ceptance that such architectures will become a permanent

feature in modern supercomputing. Although the specifica-

tion has been in existence since the middle of 2013, compiler

support for the heterogeneous features has been limited to a

number of experimental open source implementations until

more recently [3], [4], [5]. Until now, the principal use

of OpenMP 4.0 has been for targeting the Intel Xeon Phi

Knights Corner (KNC) architecture, but future releases of

the Intel Xeon Phi architecture, such as the Knights Landing,

are going to self-host, removing the requirement for an

offloading model. In spite of this, the market for GPU co-

processing is growing rapidly, and there is a compelling need

for open, cross-platform programming models, shielding

application developers from using non-portable, low-level

APIs such as CUDA.

Prior research conducted by our group has shown that the

open standard, OpenCL, can be used to develop performance

portable HPC applications [6], [7]. We have also seen that

such low-level APIs expose significant levels of complexity

that may be off-putting for some application developers, and

as such recognise the demand for an open standard that

can provide performance portability with a lower barrier to

entry. Recently, we have shown that directive-based parallel

programming models can provide a highly usable interface

while balancing good performance, generally within 20% of

optimised low-level code, and significantly reduced devel-

opment complexity [8]. In particular, we demonstrated that

OpenMP 4.0 can perform well on CPUs and KNCs, and

OpenACC can perform well on NVIDIA GPUs. This paper

aims to show that OpenMP 4.0 is now capable achieving

good performance on NVIDIA GPUs, making it a promising

option for developers who want to target heterogeneous ar-

chitectures, without committing to the potential development

costs that come with other approaches.

II. THE OPENMP 4.0 STANDARD

OpenMP is undoubtedly one of the most adopted parallel

programming models, and represents a highly usable inter-

face for targeting multi-core CPU architectures. We present

the key new features of version 4.0 of the standard [2]

relevant to our porting exercises.

A. Offloading to a Device

The great majority of the changes in the OpenMP 4.0

standard specifically support offloading some amount of

computation to a target device. The most fundamental of

those is the introduction of the target directive, which

denotes a region of a code that will be directly mapped

onto the device for execution. This directive exposes an

important divergence between the two many-core targets,

the GPU and KNC, where performant KNC codes can be

written that include instructions inside target regions that

should not be issued to a GPU.

This simple fact has an unfortunate consequence that

codes written to target KNC today can quite easily be

developed such that they would be reasonably challenging

to adapt to also target GPUs. For instance, on KNC, we

have found that reducing the number of target regions

can improve performance, as they incur significant implicit

synchronisation overheads, but might require extending the

scope of the regions such that they include instructions that

should be performed on the host for portability. Importantly,

the target synchronisation overhead will not be an issue

when targeting NVIDIA GPUs with OpenMP 4.0, as the

compiler implementations can leverage the performant asyn-

chronous queues provided by the CUDA runtime.

B. Managing Data Transfer

The specification incorporates a new conceptual model of

a device data environment, that distinguishes the memory

space local to a host processor and a target device, which

is necessary to support offloading. To transfer data to and

from the device, there are several new directives:

• target map(direction: variable[begin:end]) - this re-

quests that data is moved in the requested direction at

the beginning and end of the target offload scope. The

supported directions are: to, from, tofrom, and alloc, and

the integral values begin and end denote the bounds of

an array section.

• target data map - this expresses a data mapping scope

that is free of any particular target regions, allowing

data to be loaded onto the device prior to multiple

target offload sections, potentially greatly reducing the

number of data transactions. OpenMP 4.0 limits this to

a structured lexical scope, but version 4.5 does not.

• target update to / from - this directive will immedi-

ately copy an array section from the device to the host

or to the device from the host.

Another key directive included in the specification is the

target conditional clause, if(condition), which allows target

regions to deactivate depending upon the supplied condition.

This is an important mechanism to handle situations where

functions are not always offloaded during execution, so

that updates are made in the context of the correct data

environment.

Figure 1. Code snippet showing the data movement and computational
offloading in the context of two variables, ‘a’ and ‘b’.

C. Multiple Levels of Parallelism

The OpenMP 4.0 standard introduces additional levels of

parallelism with the teams and distribute directives, which

respectively allow the developer to describe a league of

thread teams, and then distribute them across the iterations

of a loop. Depending on the target, this could place threads

on the cores of a CPU, or block them onto the streaming

multiprocessors of a GPU.

Further to the thread-level parallelism exposed through

these new directives and the original parallel for clauses, the

new standard introduces the simd directive. This essentially

tells the compiler that a particular loop has independent

iterations that can be concurrently executed using SIMD

instructions, and is particularly useful for enabling vectori-

sation with minimal changes to a function. It is important

to note, however, that it is sometimes still necessary to use

directives like ivdep to ignore dependencies, in particular

when the compiler believes there are output dependencies.

Each level of parallelism can be parameterised to some

extent, where you can stipulate the number of teams

(num teams), threads (thread limit or num threads), vec-

tor lengths (safe len), adjust the size of the iteration

space (collapse), and alter the thread distribution schedule

(schedule and dist schedule). Ideally, compilers would be

able to choose optimal default values for those parameters

depending on the target, but it is likely that this parameter-

isation will become the key point for fine-tuning intra and

inter-vendor performance across heterogeneous devices.

III. OPENACC AND CUDA

OpenACC drew upon early ideas from the OpenMP

accelerator subcommittee and combined them with vendor-

specific efforts, enabling the first commercial compiler sup-

port to be introduced in 2012. An in-depth investigation per-

formed by Wienke et al. [9] analysed the differences between

OpenACC and OpenMP 4.0 and suggested that, while they

are similar, OpenACC was slightly ahead of OpenMP 4.0

in terms of features. For instance, OpenACC 2.0 offers the

tile and cache directives for optimisations, which are not

present in OpenMP 4.0, however it does not include support

for tasks or a mature implementation for targeting the CPU.

We expect the differences between the standards will reduce

over time, and later discuss some of the features introduced

in version 4.5 of the OpenMP specification.

Given how new the Cray Compiling Environment (CCE)

OpenMP 4.0 implementation is, we expected that the im-

plementation would perform poorly in comparison to Ope-

nACC. As part of our evaluation, we include performance

results for OpenACC to gauge a loose upper bound for the

performance that OpenMP 4.0 might be able to compete with

in the future. Although OpenACC already provides good

performance on GPUS, many users have existing codebases

targeting the CPU that are written using OpenMP, and we

expect that OpenMP 4.x is a good option for future-proofing

investment, given that it builds upon an open standard with

extensive vendor support.

CUDA was the first programming model capable of of-

floading compute to NVIDIA GPUs, and now encompasses

an entire platform of technologies for this purpose [10].

We have included results of hand-optimised CUDA im-

plementations of the mini-apps to represent a tight upper

bound on the performance achievable by the directive-based

implementations, as computational offloading to NVIDIA

GPUs can only be achieved by generating instructions that

are consumed by the CUDA runtime.

IV. MINI-APPS

In order to evaluate the performance attainable with the

CCE implementation of the OpenMP 4.0 standard, we have

ported three mini-apps. Mini-apps are miniaturised appli-

cations that represent the performance profile of genuine

scientific workloads and algorithms, and they are intended

to enable agile experimentation and benchmarking without

having to alter production scientific codes.

In particular, our porting exercise focused on three mini-

apps: TeaLeaf, CloverLeaf, and the BUDE benchmark. Each

of the applications exposes a different set of programming

requirements, and performance characteristics, and have

been chosen specifically because they represent an important

cross-section of modern scientific applications.

A. TeaLeaf: Implicit Heat-Conduction

TeaLeaf implicitly solves the heat-conduction equation

using a number of matrix-free linear solvers: Conjugate

Gradient (CG), Chebyshev and Preconditioned Polynomial

CG (PPCG) [8]. The equation is solved over a spatially

decomposed grid, with cell-centred temperatures and face-

centred average densities. The structured grid can be de-

composed and distributed to processing elements, using halo

exchanges of a ghost-cell region to handle inter-process

dependencies. Prior research of our group has demonstrated

that this application can strong-scale and weak-scale well,

particularly using the PPCG solver [11].

Importantly, TeaLeaf is a memory bandwidth bound code,

and primarily represents the Sparse Linear Algebra dwarf of

High Performance Computing [12], making it likely that the

results are applicable to many other applications.

B. CloverLeaf: Explicit Hydrodynamics

CloverLeaf is an explicit Lagrangian-Eulerian hydrody-

namics application that solves Euler’s compressible fluid

dynamics equations, which conserve mass, energy and mo-

mentum [13]. The application uses an explicit finite-volume

approach, to second order accuracy, and time-marches across

a staggered grid. The grid can be iterated in any order, while

being passed through fourteen separate kernels, where each

forward step in time (1) allows the cells to deform as nodes

move into irregular spatial locations, and (2) advects the

nodes back to their original locations, calculating the flux

through each cell.

The mini-app has undergone extensive performance anal-

ysis, using a range of parallel programming models, and

has been shown to weak and strong-scale effectively up to a

high node count [13]. The application is memory bandwidth

bound, and has a grid that is decomposed and distributed

to individual processing elements, with halo exchanges be-

tween dependent patches, and as such represents a Structured

Grid dwarf application [12].

C. Bristol University Docking Engine (BUDE) Benchmark

The BUDE benchmark uses a genetic algorithm to min-

imise the binding energy between two molecules, a receptor

and ligand, by searching through successive generations of

poses mutated from the best poses of the prior iteration [6].

The algorithm is compute-bound and comprised of a single

large kernel with multiple nested loops, that is an example

of both the Monte Carlo and N-Body dwarfs [12], making

it quite distinct from TeaLeaf and CloverLeaf.

On top of a high frequency of arithmetic operations, the

application requires multiple calls to math functions, and has

a small memory footprint. Another important characteristic

of BUDE is that it exposes the potential for tuning multiple

parameters for performance on diverse devices, which we

will perform for each port independently.

V. DEVELOPMENT FINDINGS

The development process uncovered several insights into

the key issues that developers might face when developing

OpenMP 4.0 applications targeting heterogeneous architec-

tures. It is important to note that the following discussion

specifically relates to our experience using the CCE im-

plementation of OpenMP 4.0, and that it is a very new

implementation that will likely change and improve over

time. We also expect that there could be some divergence

between the approaches taken by different compiler vendors

in the long-term.

A. Development Complexity

Our impression of OpenMP 4.0 so far is that it is

expressive without exposing the levels of complexity seen

with CUDA and OpenCL. In particular, we have found that

it is relatively straightforward to describe parallelism within

an application, while only requiring basic consideration for

the separation between host and device memory spaces. It

is important to note, however, that introducing OpenMP 4.0

into a legacy codebase will require more effort than writing

OpenMP to just target CPUs. In particular, there is additional

complexity in describing the data mappings, which need

careful consideration in order to achieve good performance.

Targeting a single architecture will be the most straight-

forward, choosing the correct parallelisation at the thread

and vector level, and then minimising communication of

data between data-environments. The subtle complexity we

expect to reside within the development task is in ensuring

that large codebases can achieve performance portability

with a single codebase. As compilers improve their support

for OpenMP 4.0, it is likely that they will become more

proficient at obscuring this complexity from the developer,

but in the short term this problem is likely to get worse

before it is solved.

There are some other complexities that we have encoun-

tered while developing OpenMP 4.0 code, that are caused by

limitations in the specification. As discussed by Hart [14],

the map directive cannot currently handle deep copies of

structures, meaning that the developer is responsible for

providing individual pointers to arrays, which was quite

involved in the case of our mini-app ports. However, a nice

feature of the OpenMP 4.0 implementation is that once a

target data region was set up above the main timestep loop,

the mapping directives did not have to be repeated at the

loop-level.

There is some ambiguity in the use of the simd directive,

which the specification states should be placed above loops

with independent iterations that can be converted into SIMD

instructions. We are not sure how this fits into the GPU-

targeting model where SIMD instructions are not necessarily

available, but found that BUDE would only parallelise

once the simd directive was included alongside the teams

distribute above the main loop.

In spite of the additional considerations involved in using

the standard’s new features, we believe that application

developers wanting to write or port applications to target

heterogeneous architectures are likely to find OpenMP 4.0

hard to beat in terms of development cost.

B. Compiler-Specific Implementation Restrictions

Not only is the CCE implementation of OpenMP 4.0 new,

it actually represents the first commercially supported imple-

mentation. The documentation includes some limitations and

restrictions present in their compliance to the specification,

but it is of course important to note that these are liable

to change given that the implementation is under active

development.

The documentation for CCE 8.4.3 [15] states that user-

defined reductions are not supported within target regions,

and this makes sense given the additional complexity in-

herent with GPU reductions. Further to this, there is some

limitation on the set of OpenMP API calls that are al-

lowed within a target region, with a key exclusion being

omp get max threads, which you would expect to pro-

vide the maximum number of threads allowed within a

threadblock. We did not encounter any issues because of

this limitation while porting the mini-apps, but it may be

important for some cases of optimisation.

Another CCE restriction is that parallel statements are

limited to a single thread when declared inside target re-

gions. Unfortunately, we were not able to develop a code that

successfully accelerated while including a parallel region,

presumably because of an issue with the implementation.

The OpenMP 4.0 specification set out a restriction that

threads other than the master thread of a team would only

execute once a parallel region was encountered, but version

4.5 of the standard doesn’t include this restriction. The CCE

implementation adheres to version 4.5 in this case, allowing

for loops to be decorated with a target teams distribute

and no parallel for. This point is quite subtle, and caused

no issues for our performance evaluation, but might have

implications for the long-term performance portability of

codes, where applications could be written biased towards

GPUs, without consideration for parallel regions.

C. Outcomes

We had originally planned to include results for a port of

another mini-app, which contains a sweep-style algorithm,

but we were not able to successfully parallelise the main

loop with the CCE implementation. The root cause of the

problem stemmed from the use of indirection arrays for

indexing inside the loop, and affected the CCE OpenACC

implementation as well. The loop does parallelise with other

programming models, including OpenACC with PGI, and so

we expect the problem is resolvable, whether it lies in our

implementation or CCE.

Porting TeaLeaf, CloverLeaf and the BUDE benchmark

turned out to be reasonably straightforward and following

optimisation, discussed in the next section, the final design

for each port was very simple. The difference between the

Intel and CCE interpretations of the OpenMP 4.0 specifica-

tion meant that it was necessary to change the common set

of directives at each loop, as shown in Figure 2.

Figure 2. Demonstrating the subtle difference between OpenMP 4.0
targeting KNC with Intel icc and NVIDIA GPUs with CCE.

Although the device clause could not be placed on the

target regions, it can still be set using the OpenMP API

calls, and so we cannot see any issues with this.

VI. OPTIMISATIONS

In order to present the fairest results possible, we per-

formed extensive performance optimisation of each applica-

tion. Importantly, each of the applications already has mul-

tiple optimised versions for targeting different architectures,

and we concentrated on tuning our new ports specifically

for GPU and CPU, where relevant. Of course, there is less

opportunity for optimisation with the high-level directive-

based models than with low-level APIs such as CUDA

or OpenCL, but it was definitely possible to support the

compiler to generate efficient code.

A. The Three Pillars of Many-Core Optimisation

When programming for GPUs, we believe that the best

performance gains can be achieved with the three pillars of

many-core optimisation:

• Minimise Data Communication: Communicating

across PCI-express is very expensive and should be

minimised as a priority, where the aim is generally to

persist as much data as possible on the target device

and only synchronise data when strictly necessary.

• Maximise Utilisation: The parallelisation scheme for

each performance critical loop should be considered

to ensure that the iteration space is large enough to

saturate the target device with work.

• Chase the Bound: In the case of compute-bound

functions, this entails reducing the number of arithmetic

operations and utilising features such as fast intrinsic

maths and Fused-Multiply-Add wherever possible. For

memory-bound functions, the frequency of non-cached

loads and stores must be minimised, coalescence en-

abled with contiguous memory layouts, and the number

of non-redundant arithmetic operations maximised to

support memory access latency hiding, perhaps through

kernel fusion.

Although OpenMP 4.0 appears to be less flexible than

APIs like CUDA and OpenCL, it is still possible to perform

significant optimisations tackling each of the three key

pillars.

B. Experience

Prior to optimisation, data was copied to and from the

device for each target offload region, and the applications

were an order of magnitude slower than the best-case

CUDA implementations. However, for all applications it was

possible to place target data regions surrounding the main

timestep loops, persisting the majority of data on the device

for the extent of the solve without synchronisation, minimis-

ing the amount of expensive data transfer. This optimisation

has by far the biggest impact on performance and brought

the applications significantly closer to the performance of

our CUDA implementations.

In order to ensure the device is saturated with work,

several techniques exist, such as re-arranging the paralleli-

sation schemes, fusing kernels, and collapsing nested loops

to increase the iteration space. For TeaLeaf and CloverLeaf,

significant work is exposed at the loop-level and collapsing

the nested loops proved detrimental to performance, so we

advise careful consideration is given to whether collapsing

is required when porting such codes. We are not currently

sure whether loop collapsing will be necessary between

devices, or whether compilers will be able to perform this

optimisation automatically. If collapsing cannot be handled

satisfactorily by the compiler, it could become an important

parameter for heterogeneous performance portability.

The chosen mini-apps are already highly optimised in

terms of their memory access patterns, and so no additional

memory optimisation was required. In general, this step

would include fusing kernels and recognising redundant

memory accesses at the loop-level. Another concern might

be developing optimal reductions, a reasonably complicated

albeit re-usable step, but with OpenMP 4.0 this problem

can be deferred to the compiler. We did consider that

scheduling the threads correctly could improve the potential

for memory coalescence, and hypothesised that utilising

dist schedule(static,1) would lay out the threads contigu-

ously to support this. Upon introducing the scheduling to

some critical loops we saw no change in performance, which

suggests that this layout is being chosen by the compiler as

a default.

The BUDE benchmark includes a higher ratio of arith-

metic operations than the other applications, and uses an

optimisation technique where work can be oversubscribed

to threads, in order to exploit some repetitive computations.

As a consequence, it was necessary to restrict the number

of registers used by passing the CUDA compiler parameter

--maxrregcount via the Cray compiler, to avoid reducing po-

tential occupancy. We also found that the CCE OpenMP 4.0

implementation achieved marginally better performance with

for loops rather than equivalent while loops.

VII. PERFORMANCE RESULTS

In order to demonstrate the potential performance that

can be attained with the CCE GPU implementation of

OpenMP 4.0, we have conducted a number of performance

evaluations. All of the testing is performed on Cray Inc.’s

XC40 supercomputer, Swan, and uses the following devices:

• Intel Xeon Haswell CPU (E5-2698 v3 @ 2.30 GHz):

We target a single socket (16 cores) using optimised

OpenMP code compiled with both CCE 8.4.3 and

Intel 15.0.3.

• NVIDIA K20X GPU: We target a single GPU as this

is sufficient to demonstrate how well the OpenMP 4.0

GPU-targeting offload code performs. Our results in-

clude CUDA (version 7.0), OpenACC (PGI 15.10 and

CCE 8.4.3) and OpenMP 4.0 (CCE 8.4.3).

From our perspective, the devices chosen represent pop-

ular modern HPC devices, and should offer a representative

view of the performance of each model.

A. CloverLeaf

The CloverLeaf mini-app was fully parallelised using

OpenMP 4.0 and OpenACC, and optimised as far as possible

for the available compilers. We have chosen to use a problem

size of 38402 for 87 steps, because it represents a large data

processing task that is particularly suited to GPUs.

Figure 3. Results for CloverLeaf - 87 steps of 38402 problem.

When comparing the CPU and GPU results, shown in

Figure 3, it is evident that all of the GPU results are at least

2x faster than the CPU for this particular problem. Further,

the wallclock results demonstrate that OpenMP 4.0 offers

nearly identical performance to the equivalently optimised

OpenACC code compiled with CCE. This is an impressive

result that exceeded our expectations, given that the CCE

implementation of the OpenMP 4.0 specification is so new.

Compared to the hand-optimised CUDA implementation, the

OpenMP 4.0 port only required 1.3x the runtime, which

represents a highly competitive result given the reduced

development complexity.

Interestingly, we observe a significant difference between

the OpenACC results, where CCE is 1.3x slower than

CUDA, and PGI is only 1.15x slower. The 15% performance

difference compared to CUDA is negligible, and demon-

strates the extent to which OpenMP 4.0 could be optimised

in the future.

B. BUDE

The BUDE benchmark was parallelised with OpenMP 4.0

and OpenACC, however, when compiling with PGI the port

output incorrect checking values, and so PGI results have

been excluded. In all performance experimentation we chose

a problem size of N=57344, which was determined as an

ideal problem size for the K20X GPU because it is a multiple

of the 14 compute units, running 128 wide threadblocks.

Figure 4. Results for the BUDE benchmark - 100 iterations of N = 57344

problem.

The results in Figure 4 show that the CPU implementation

required roughly 18x the runtime of our most optimised

CUDA implementation, while the OpenMP 4.0 implemen-

tation was able to achieve identical performance to the

OpenACC port. The CUDA (no shared) port represents the

performance attained without a specific optimisation, where

some memory from DRAM is transferred to shared memory,

overlapping the copy with computation. The OpenMP 4.0

implementation requires 2.2x the runtime of this version,

which is significantly higher than seen with the other appli-

cations, but still good performance given the simplicity of

the port. The most optimised CUDA port increases this gap

to nearly 3.5x, and we think that this problem exposes a sig-

nificant limitation of the existing specification. We propose

that it would be beneficial to incorporate an independent

directive to copy an array section from DRAM into shared

memory, restricting synchronisation to the latest possible

opportunity. OpenACC 2.0 provides the cache directive,

which we expected could provide this functionality, but is

restricted to innermost loops meaning it was not capable of

performing this particular optimisation.

C. TeaLeaf

As with CloverLeaf, the TeaLeaf mini-app was success-

fully parallelised with OpenMP 4.0 and OpenACC, and this

includes the three main solvers offered by the application.

The chosen 4096
2 problem represents the point of mesh

convergence and therefore the largest problem that we could

choose to evaluate performance on the GPU. We include

results for all three of the solvers as this extends the range

of different linear algebra kernels that are offloaded.

Figure 5. Results for TeaLeaf - single step of 40962 problem.

Figure 5 demonstrates that, as with CloverLeaf, the per-

formance on the GPU is at least 2x better than the CPU,

giving us greater confidence in the overall result. We can also

see that CCE’s OpenACC and OpenMP 4.0 exhibit identical

performance. This would seem to suggest that the actual

code generated by the two implementations could even be

identical, however analysis of the PTX outputs suggested

that this was not the case. The OpenACC code compiled

with PGI has a faster Chebyshev solver, and we have not

been able to determine why this occurs, or achieve the same

level of performance for the CG and PPCG solvers.

Most importantly, the OpenMP 4.0 port is on average

only 1.3x slower than the hand optimised CUDA code,

which again demonstrates impressive performance for the

low cost of development. Interestingly, in previous research

we have seen some instability in the results between solvers

for TeaLeaf [8], however the results here are quite stable,

which we believe is a reasonable predictor that other linear

algebra codes could achieve similar results.

VIII. ANALYSIS

So that we can understand the causes and implications

of the results, we present some analysis of the different

ports and our expectations of the standard’s ability to achieve

performance portability.

A. Analysis of the Generated PTX

It was not possible to collect exact statistics through man-

ual analysis of the PTX outputs because of their extensive

use of conditional blocks. However, we did observe that

the OpenMP 4.0 PTX outputs for each of the applications

contained significantly more lines of code than the CUDA

PTX outputs, and appeared to contain a higher frequency of

arithmetic and control flow instructions. We expected that

the memory-bound application’s outputs would suffer from

inflated loads and stores, but this was not the case.

B. NVIDIA Profiler (nvprof)

As the CCE implementations of OpenMP 4.0 and Ope-

nACC are built on top of the CUDA platform, they can be

profiled using the NVIDIA profiler nvprof, which enables

the collection of an extensive set of performance counters

from the GPU. We present pertinent counters relevant to

each application, in order to uncover potential reasons for

their different performance profiles.

Table I
PROFILING STATISTICS FOR THE CALCULATE U AND R KERNEL OF THE

TEALEAF CG SOLVER.

Type CUDA OpenACC OpenMP

Multiprocessor Activity (%) 99.8 99.4 99.4

Instructions Per Cycle 1.06 0.37 0.39

G.Memory Replay Overhead (%) 5 19 18

Control Flow Inst. (mil.) 5.0 4.7 4.8

Floating Point Ops. (mil.) 100 102 102

DRAM Read Transactions (mil.) 20.0 22.4 22.4

DRAM Write Transactions (mil.) 10.1 11.7 11.7

Runtime(s) 14.0 17.7 17.8

1) TeaLeaf Profiling Metrics: In Table I we demonstrate

some of the key profiling results that we obtained for this

analysis. Notably, OpenMP 4.0 and OpenACC have almost

identical performance metrics, indicating the similarities in

the two implementations. In all cases the multiprocessor ac-

tivity demonstrates full utilisation of the streaming multipro-

cessors on the device, and supports our earlier observation

that the collapse statement was unnecessary because of the

amount of work exposed by the applications. The instruc-

tions per cycle shows a significant divergence between the

models, with OpenACC and OpenMP 4.0 achieving only

40% compared to CUDA, which we believe is indicative of

increased impact of memory latencies, potentially correlated

by the increased overhead of global memory cache-miss

replays.

The number of floating point operations is very consistent

between the three models, which is unsurprising given that

the kernel contains only 6 arithmetic operations in total. The

access to DRAM, which is typically the major bottleneck for

memory bandwidth bound codes, was significantly different

between the models, where the number of read and write

transactions are 12% and 16% higher than CUDA, respec-

tively. We expect that this increased memory requirement

can explain a significant portion of the 27% additional

runtime, but could not uncover the reasons for this additional

DRAM utilisation.

Table II
PROFILING STATISTICS FOR THE SET OF CELL ADVECTION KERNELS

IN CLOVERLEAF.

Type CUDA OpenACC OpenMP

Multiprocessor Activity (%) 99.8 99.8 99.7

Instructions Per Cycle 1.72 1.55 0.99

Control Flow Inst. (mil.) 59.5 68.6 67.1

Floating Point Ops. (bil.) 2.5 3.5 3.5

DRAM Read Transactions (mil.) 112 116 133

DRAM Write Transactions (mil.) 53 54 60

Runtime(s) 2.4 2.8 3.5

2) CloverLeaf Profiling Metrics: Table II demonstrates

a quite different scenario to the one seen with TeaLeaf,

where the runtime is markedly different between the three

implementations. Again, the multiprocessor activity is at

maximum, which gives confidence in the quantity of work

available to the GPU, but this is the only consistent metric.

The kernels are far more complicated and arithmetically

intensive than the kernel analysed for TeaLeaf, and we can

see that the amount of control flow instructions and floating

point operations is much higher in both OpenACC and

OpenMP 4.0. This suggests that there is some inefficiency in

the code generation for both implementations, and that they

likely follow similar arithmetic generation and optimisation

paths.

The memory transactions for OpenACC are only around

2-4% higher than CUDA, which leads us to believe that the

majority of the performance difference resides in the greater

frequency of control flow and floating point operations.

Most importantly we can see that, compared to OpenACC,

OpenMP 4.0’s read transactions are around 15% higher and

write transactions are around 11% higher, likely accounting

for a significant proportion of the 25% difference in runtime.

3) BUDE Profiling Metrics: In Table III, we compare

the OpenMP 4.0 and OpenACC results to that of the CUDA

(no shared) port (seen in Figure 4), so that the comparison

is less skewed by the shared memory optimisation. We

can see that there are some significant differences between

the implementations, where they are only similar in their

efficient utilisation of the available multiprocessors and the

number of instructions executed per cycle.

Table III
PROFILING STATISTICS FOR THE BUDE COMPUTATION KERNEL.

Type CUDA OpenACC OpenMP

Multiprocessor Activity (%) 97.1 99.9 99.9

Control Flow Inst. (mil.) 6 324 324

Floating Point Ops. (bil.) 35.3 43.4 43.4

Instructions Per Cycle 3.6 3.7 3.6

Instruction Issued (bil.) 1.7 4.3 4.3

Instruction Replay Overhead (%) 13 17 17

DRAM Read Transactions (mil.) 1.5 3.0 3.1

DRAM Write Transactions (mil.) 0.08 1.8 1.8

Runtime(s) 4.4 9.7 9.8

The number of control flow instructions executed is so

divergent we did not initially believe the results, and still

cannot find a reason as to why this number is so inflated,

but we do expect it is having a significant impact on the

performance of the ports. The volume of floating point

operations is 23% higher for OpenACC and OpenMP 4.0,

suggesting some inefficiency in the arithmetic optimisation.

The number of instructions executed per cycle is consistent

between the models, but the number of instructions issued is

significantly higher for OpenMP 4.0 and OpenACC, which

also suffer from a marginally higher proportion of replays.

The number of read transactions that had to be fulfilled

from DRAM is 2x that of CUDA, and the number of writes

is over 20x higher. While this difference is significant, the

scheduling built into NVIDIA GPUs is likely to hide the

performance degradation of the latency by overlapping the

memory access with the dominant compute. We expect that

the increased control flow, instruction count, and arithmetic

intensity combined were responsible for the majority of the

performance degradation, given that BUDE is a compute

bound code.

C. Performance Portability

We have clearly shown that OpenMP 4.0 is now a

competitive option for performance on CPUs and GPUs, and

have demonstrated separately that it can achieve good per-

formance offloading to the Knights Corner architecture [8].

It will be an important future concern to understand how

performance will be achieved on all architectures from

within a single code base.

Our research suggests that satisfactory performance porta-

bility will only be achievable for production codes if the pro-

gramming model can support a single source representation

of the domain logic. Further to this, it will be essential that

portability work-arounds, such as adding conditional pre-

processor directives, can be avoided or minimised in favour

of expressing multiple parallelisation schemes at the loop

level and allowing the compiler to select the optimal scheme

depending on the architecture. The difference between those

two paradigms is subtle but should greatly reduce the need

for codes to be re-written as target architectures evolve.

Throughout the development of the OpenMP 4.0 ports,

we have been able to assess the potential for performance

portability exposed by the framework. The current specifi-

cation appears to expose the necessary loop-level control

such that parallelism can be expressed for CPUs, GPUs

and KNCs, and we expect that the directives necessary

to target those architectures can co-exist at the loop-level.

Essentially, it should be possible to place directives above all

functional loops that parallelise the work into teams, threads

and vectors, allowing the compiler to choose which are

relevant and then parameterising the widths for fine-tuned

optimisation.

D. OpenMP 4.5

It is important to recognise that the OpenMP standard is

being actively improved, with a focus on heterogeneous ar-

chitectures, and we now introduce some of the new features

that are included in the recently released version 4.5 of the

specification [16].

As previously mentioned, the mini-apps that we have

chosen for this research are well structured and benefit from

being able to maintain the majority of data on a target

device for the full duration of the solve. However, there

are applications where persisting data across a structured

lexical scope may not be possible because of conditionality

inherent in structural or controlling code, which could make

it difficult or even impossible to persist the data optimally

on the device for all branches. The new unstructured data

regions included in OpenMP 4.5 support this conditionality

with independent target data enter and target data exit

clauses. This feature is going to be particularly important

when introducing OpenMP 4.0 into large multi-functional

applications containing complex controlling code.

While testing OpenMP 4.0 on the KNC architecture,

we encountered significant overheads, which we hypoth-

esised were caused by target regions having no queuing

mechanism, and as such being offloaded one at a time,

synchronising with the host at both ends of the call. The

new specification introduces the nowait directive for target

regions, which potentially allows multiple kernels to be

queued onto a device, reducing the synchronisation over-

heads. Of course, this functionality is already exposed by the

CUDA runtime and so does not have significant influence

for NVIDIA GPU targets, but may be important for future

performance portability.

Finally, we have encountered a situation where it is

impossible to express the same reduction functionality using

the OpenMP 4.0 specification as we had in CUDA. In

particular, we use a mini-app that contains a function that

loops over two arrays and accumulates multiple values

into each element, which can be partially reduced using

shared memory in CUDA, and that we believe can be

expressed within OpenMP 4.5 using array sections inside

the reduction directive.

The new features in version 4.5 are likely to take time to

be implemented, given that there is a dearth of mainstream

implementations of OpenMP 4.0, but these changes will be

useful for large applications, and demonstrate an important

commitment to the heterogeneous features of the standard.

IX. RELATED WORK

Acknowledging the lack of OpenMP 4.0 implementations

targeting GPUs, Liao et al [5] developed a prototype im-

plementation using the ROSE compiler that could target

NVIDIA GPUs, and Lin et al. [17] used that implementation

to demonstrate that the model is capable of targeting accel-

erators. Ozen et al. [4] partially implemented OpenMP 4.0

in the OmpSs compiler and performed a performance eval-

uation with three kernels. Bertolli et al. [3] and Bercea

et al. [18] implemented GPU support for Clang using

the OpenMP 4.0 specification, and presented performance

results for a representative set of kernels in LULESH.

McIntosh-Smith et al. [6], Martineau et al. [8] and

Mallinson et al. [13] investigated the performance of the

BUDE, TeaLeaf and CloverLeaf mini-apps, respectively,

across multiple architectures and programming models.

Hart [14] ported the NekBone mini-app to use OpenMP 4.0

and target GPUs via the Cray Compilation Environment,

proposing some best practices for porting existing applica-

tions to use OpenMP 4.0. Dietrich et al. [19] implemented a

performance measurement library that allowed measurement

of OpenMP 4.0 code running on the KNC architecture.

Wienke et al. [9] compared OpenMP 4.0 and OpenACC, pre-

dicting that OpenMP 4.0 would likely achieve best adoption

in the long-term because it is such a prominent standard,

and proposing performance evaluations as important future

work.

X. FUTURE WORK

Throughout this investigation, it has become apparent that

there is some ambiguity in OpenMP 4.0’s support for ex-

pressing parallelism, for instance, where should reductions

be placed for performance portability? Importantly, this will

have an influence on the ability for a particular code to com-

pile with different compilers or target different architectures

without code changes. As previously discussed, we believe

that tuning the parameters exposed by OpenMP 4.0 may be

necessary on a per-device basis to achieve the best possible

performance, but hope to find a way that the directives can

be written once and work on the majority of architectures.

We propose this as an essential area for future research,

as scientific codes being developed or ported must have

flexibility to new high performance architecture.

It will also be important to track the improvement of

the CCE implementation of OpenMP 4.0, and eventually

investigate the performance achieved by different compilers.

XI. CONCLUSION

This research has utilised the CCE implementation of

OpenMP 4.0 to gather preliminary performance results for

mini-apps running on NVIDIA GPUs. All of the presented

mini-apps were successfully ported, and achieved perfor-

mance comparable to OpenACC, while requiring 2.2x the

runtime of an equivalent CUDA implementation for the

compute-bound code, BUDE, and 1.3x for the memory

bandwidth bound codes, TeaLeaf and CloverLeaf. The gap

between the OpenMP 4.0 and CUDA implementations of

BUDE could be increased to over 3.5x if some data stored in

DRAM was cached into shared memory and overlapped with

compute, and we believe it would be useful if the OpenMP

specification could be extended to support this optimisation.

We carefully analysed the performance profiles of each

of the ports and inferred some potential causes of the

performance difference, including increased DRAM access

and floating point operations. While we do believe that there

is room for improvement with the performance offered by

the CCE implementation, the results are very promising,

with OpenMP 4.0 now balancing performance and reduced

development costs whilst targeting the most popular HPC

devices. We conclude that, as compiler support improves,

and awareness of the capabilities of OpenMP 4.x spreads,

the model has the potential to become the defacto standard

for targeting heterogeneous architectures.

ACKNOWLEDGMENT

This work was funded by an EPSRC CASE studentship

supported by the UK Atomic Weapons Establishment

(AWE). We would like to thank the AWE for their support of

this research, and Cray Inc. for their support and provision

of the XC40 supercomputer Swan.

REFERENCES

[1] J. Dongarra et al., “The International Exascale Software
Project roadmap,” International Journal of High Performance
Computing Applications, 2011.

[2] OpenMP Architecture Review Board, “OpenMP Application
Program Interface v4.0,” 2013.

[3] C. Bertolli, S. Antao, G. Bercea et al., “Integrating GPU
support for OpenMP offloading directives into Clang,” in
Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC. ACM, 2015, p. 5.

[4] E. L. J. Ozen, G. Ayguadé, “On the Roles of the Programmer,
the Compiler and the Runtime System When Programming
Accelerators in OpenMP,” in Using and Improving OpenMP
for Devices, Tasks, and More. Springer, 2014, pp. 215–229.

[5] C. Liao, Y. Yan, B. de Supinski et al., “Early Experiences with
the OpenMP Accelerator Model,” in OpenMP in the Era of
Low Power Devices and Accelerators. Springer, 2013, pp.
84–98.

[6] S. McIntosh-Smith, J. Price, R. Sessions, and A. Ibarra, “High
Performance in Silico Virtual Drug Screening on Many-
Core Processors,” International Journal of High Performance
Computing Applications, pp. 119–134, 2014.

[7] S. McIntosh-Smith and D. Curran, “Evaluation of a Perfor-
mance Portable Lattice Boltzmann Code Using OpenCL,” in
Proceedings of the International Workshop on OpenCL 2013
& 2014, ser. IWOCL ’14. New York, NY, USA.: ACM,
2014, pp. 2:1–2:12.

[8] M. Martineau, S. McIntosh-Smith, M. Boulton, and
W. Gaudin, “An Evaluation of Emerging Many-Core Par-
allel Programming Models,” Accepted to 7th International
Workshop on Programming Models and Applications for
Multicores and Manycores, 2016.

[9] S. Wienke, C. Terboven, J. C. Beyer, and M. Müller, “A
Pattern-Based Comparison of OpenACC and OpenMP for Ac-
celerator Computing,” in Euro-Par 2014 Parallel Processing.
Springer, 2014, pp. 812–823.

[10] N. Corporation, “CUDA C Programming Guide v7.0,” 2016.

[11] S. McIntosh-Smith, M. Boulton, W. Gaudin, and P. Garrett,
“Optimising sparse iterative solvers for many–core computer
architectures,” Presentation at SUBWOG 2015, 2015.

[12] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis et al.,
“The Landscape of Parallel Computing Research: A View
from Berkeley,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[13] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman, and
S. Jarvis, “Towards Portable Performance for Explicit Hydro-
dynamics Codes,” in The International Workshop on OpenCL
(IWOCL), 2013.

[14] A. Hart, “First Experiences Porting a Parallel Application to a
Hybrid Supercomputer with OpenMP 4.0 Device Constructs,”
in OpenMP: Heterogenous Execution and Data Movements:
11th International Workshop on OpenMP, IWOMP 2015,
Proceedings, 2015, pp. 73–85.

[15] Cray Inc., “C and C++ Reference Manual (S-2179-84),” 2016.

[16] OpenMP Architecture Review Board, “OpenMP Application
Program Interface v4.5,” 2015.

[17] P. Lin, C. Liao, D. Quinlan et al., “Experiences of Using the
OpenMP Accelerator Model to Port DOE Stencil Applica-
tions,” in OpenMP: Heterogenous Execution and Data Move-
ments: 11th International Workshop on OpenMP, IWOMP
2015, Proceedings, 2015, pp. 45–59.

[18] G. Bercea, C. Bertolli, S. Antao et al., “Performance Analysis
of OpenMP on a GPU Using a Coral Proxy Application,”
in Proceedings of the 6th International Workshop on Per-
formance Modeling, Benchmarking, and Simulation of High
Performance Computing Systems. ACM, 2015, p. 2.

[19] R. Dietrich, F. Schmitt, A. Grund, and D. Schmidl, “Perfor-
mance Measurement for the OpenMP 4.0 Offloading Model,”
in Euro-Par 2014: Parallel Processing Workshops. Springer,
2014, pp. 291–301.

