

Anagnostou, E., John, E., Edgar, K. M., Foster, G., Ridgwell, A. J., Inglis, G. N., ... Pearson, P. (2016). Changing atmospheric CO₂ concentration was the primary driver of early Cenozoic climate. *Nature*, *533*(7603), 380-384. https://doi.org/10.1038/nature17423

Peer reviewed version

Link to published version (if available): 10.1038/nature17423

Link to publication record in Explore Bristol Research PDF-document

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

1	Changing atmospheric CO ₂ concentration was the primary driver of early
2	Cenozoic climate
3	Eleni Anagnostou ¹ , Eleanor H. John ² , Kirsty M. Edgar ^{2,3} , Gavin L. Foster ¹ , Andy
4	Ridgwell ⁴ , Gordon N. Inglis ⁵ , Richard D. Pancost ⁵ , Daniel J. Lunt ⁴ , Paul N. Pearson ²
5	
6	¹ Ocean and Earth Science, National Oceanography Centre Southampton, University of
7	Southampton Waterfront Campus, Southampton SO14 3ZH, United Kingdom
8	² School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10
9	3AT, United Kingdom
10	[†] Present address: Earth Sciences and Environment, University of the South Pacific,
11	Fiji
12	³ School of Earth Sciences, Bristol University, BS8 1RJ, United Kingdom
13	⁴ School of Geographical Sciences, Bristol University, BS8 1SS, United Kingdom &
14	Department of Earth Sciences, University of California, Riverside,
15	California 92521, USA
16	⁵ Organic Geochemistry Unit, School of Chemistry, University of Bristol, Cantock's
17	Close, Bristol BS8 1TS & Cabot Institute, University of Bristol, Bristol, BS8 1UJ,
18	United Kingdom
19	
20	The Early Eocene Climate Optimum (EECO; ~51-53 million years ago (Ma)) ¹ ,
21	was the warmest interval of the last 65 million years with mean annual surface
22	air temperature over 10 °C warmer than pre-industrial ²⁻⁴ . Subsequent global
23	cooling in the middle and late Eocene, especially at high latitudes, eventually led
24	to continental ice sheet development in Antarctica in the early Oligocene (~ 33.6
25	Ma). However, existing estimates place atmospheric carbon dioxide (CO2) levels

26	during the Eocene at 500-3000 ppm ⁵⁻⁷ , and in the absence of tighter constraints
27	carbon-climate interactions over this interval remain uncertain. Here we utilise
28	recent analytical and methodological developments ⁸⁻¹¹ to generate a new high-
29	fidelity record of CO ₂ concentrations using the boron isotope ($\delta^{11}B$) composition
30	of well-preserved planktonic foraminifera from the Tanzania Drilling Project,
31	revising previous estimates ⁶ . Although species-level uncertainties make absolute
32	values difficult to firmly constrain, CO ₂ concentrations during the EECO were
33	~1400 ppm. The relative decline in CO_2 through the Eocene is more robustly
34	constrained at ~50%, with further decline into the Oligocene ¹² . Provided the
35	latitudinal dependency of sea-surface temperature change for a given climate
36	forcing was similar in the Eocene to the late Quaternary ¹³ , this CO ₂ decline was
37	sufficient to drive the well documented high and low latitude cooling that
38	occurred through the Eocene ¹⁴ . Once the change in global temperature between
39	the pre-industrial and Eocene due to the action of all known slow feedbacks
40	(apart from those associated with the carbon cycle) are removed ²⁻⁴ , both the
41	EECO and late Eocene exhibit Equilibrium Climate Sensitivity relative to pre-
42	industrial of 2.1-4.6 °C per CO ₂ doubling (66% confidence), which is similar to
43	the canonical range (1.5-4.5 $^{\circ}C^{15}$), indicating that a large fraction of the warmth
44	of the early Eocene greenhouse was driven by elevated CO ₂ concentrations, and
45	that climate sensitivity was relatively constant through this period.
46	

Throughout the last ~540 My climate has oscillated between a globally warm and
humid "greenhouse state" and an "icehouse state" with significant continental
glaciation¹⁶. The most recent of these transitions occurred between the warmest time
interval of the last 65 million years, the Early Eocene Climatic Optimum (EECO) ~51-

51	53 Ma (~14 \pm 3 °C warmer than pre-industrial ²) and the rapid growth of ice on
52	Antarctica in the earliest icehouse Oligocene (~33.6 Ma ¹). It has been suggested that
53	variations in the concentration of the greenhouse gas CO ₂ were responsible for both
54	the overall warmth of the Eocene and the subsequent cooling ¹⁷ . Recent studies have
55	documented the importance of CO ₂ decline for the final step into the icehouse across
56	the Eocene-Oligocene transition 12,18 . Despite this, the few available CO ₂
57	reconstructions vary markedly between different proxy systems obscuring
58	relationships with the global cooling trend ^{1,5,19,20} and therefore preventing a robust test
59	of this hypothesis (Fig. 1). Furthermore, fully coupled climate models require CO_2
60	concentrations ranging from 2x to 16x preindustrial (560-6500 ppm; e.g. Ref. 21) in
61	order to replicate reconstructed early Eocene Sea Surface and Mean Annual Air
62	Temperatures (SSTs and MATs). Clearly in order to use past warm climate states like
63	the early Eocene to evaluate models and our understanding of the climate system, new
64	and more accurate CO ₂ reconstructions are needed.
65	
66	Boron isotopes (δ^{11} B) in marine carbonates is a well understood proxy of seawater pH
67	allowing for high-fidelity reconstructions of atmospheric CO ₂ in locations where
68	surface seawater is in near equilibrium with the atmosphere regarding CO ₂ (e.g. Ref.
69	9,22). Recently the isotopic fractionation factor of boron in seawater was
70	experimentally determined ¹⁰ , our understanding of the evolution of the ocean
71	carbonate system through time has improved ^{23,24} , and it has become apparent through
72	inter-laboratory comparison studies ⁸ that a potential bias relating to sample B/Ca ratio

may exist in the earlier studies, suggesting published Eocene $\delta^{11}B$ -CO₂ estimates^{6,7} 73

need revisiting. Here we resolve these issues by measuring the $\delta^{11}B$ of well-preserved 74

75 Eocene planktonic foraminifera from the Kilwa group from Tanzania using Multi 76 Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS)⁹, utilising a 77 greater array of species to more clearly resolve the potential for species-specific and 78 depth habitat related biases in δ^{11} B.

79

The approach we follow to determine atmospheric CO_2 from for aminiferal $\delta^{11}B$ 80 $(\delta^{11}B_c)$ is detailed in full in the Methods section. We analysed for a from five 81 discrete timeslices between 36.9 and 53.2 Ma recovered by the Tanzania Drilling 82 Project (Extended Data Fig. 1), and the oxygen isotopic composition (δ^{18} O) of up to 83 84 17 different foraminifera species occupying a range of depth habitats was quantified to 85 derive the calcification temperature and hence the relative habitat depth of the $taxa^{25}$. In each case we find a consistent decrease of $\delta^{11}B_c$ with increasing depth consistent 86 with modern ocean $\delta^{11}B_{\text{borate}}$ profiles (Fig. 2) and a clustering of the warmest species 87 with a similar δ^{11} B_c. By applying species-specific δ^{11} B-pH calibrations. δ^{11} B_c 88 89 measurements can be converted to pH reconstructions with depth. However, we lack such calibrations for these extinct taxa. The δ^{11} B vital effects which are a result of 90 91 foraminiferal physiology (Methods) appear reduced in Eocene foraminifera compared 92 to modern taxa for both shallow symbiont-bearing and deeper non-symbiotic planktonic foraminifera. We therefore calculate pH from $\delta^{11}B_c$ using two different 93 approaches to bracket the likely magnitude of δ^{11} B-pH vital effects: (i) we assume 94 $\delta^{11}B_c = \delta^{11}B_{borate}$ (hereafter the "borate" calibration), and (ii) we assume the shallower 95 for a minifera in each time-slice has the δ^{11} B-pH calibration of the modern mixed layer 96 dwelling foraminifera Trilobatus sacculifer²². 97

98

99 The boron isotopic composition of seawater ($\delta^{11}B_{sw}$) is also required to calculate pH, 100 constrained here by two methods both based on the observation that the reconstructed 101 pH gradient from shallow to deep for a given $\delta^{11}B_{borate}$ gradient in the water column is 102 a function of $\delta^{11}B_{sw}$ because of the non-linearity of the $\delta^{11}B$ -pH proxy (Extended Data 103 Fig. 2, Methods). If we assume $\delta^{11}B_c = \delta^{11}B_{borate}$ we calculate $\delta^{11}B_{sw}$ to be in the range 104 38.2 to 38.7 ‰. This is slightly increased to 38.6-38.9 ‰ if we use the $\delta^{11}B$ -pH 105 calibration of *T. sacculifer* (Methods). 106

Given the strong positive relationship between δ^{11} B and pH, it is evident from our 107 108 $\delta^{11}B_c$ data alone that surface water pH increased through the Eocene (Figure 3a). However, having determined both $\delta^{11}B_{sw}$ and calcification temperature, we can 109 110 generate quantitative estimates of upper ocean pH, and here we propagated a 111 conservative estimate of the relevant uncertainties using a Monte Carlo approach 112 (Methods). Based on these upper water column reconstructions and the borate (or T. 113 *sacculifer*) calibration we estimate that surface water pH increased from 7.66 ± 0.06 (7.59 ± 0.06) at 53.2 Ma, to 7.80 ± 0.07 (7.76 ± 0.06) by 36.9 Ma. By extending our 114 knowledge of species depth habitat and $\delta^{11}B_{sw}$ to the $\delta^{11}B_c$ data set of Ref. 12 115 116 (Methods), it is apparent that surface water pH continued to increase in the early 117 Oligocene reaching 7.88 ± 0.05 (7.84 ± 0.05) by ~33 Ma. Notably, our Eocene surface 118 water pH estimates are lower than any others reported in the Cenozoic, including during the middle Miocene and Pliocene warmth (minimum pH: 7.83 Ref. 22 and 7.99 119 120 Ref. 26 respectively). 121

Ocean pH, like seawater CO₂ ([CO₂]_{aq}), is largely determined by the ratio of total
alkalinity to total dissolved inorganic carbon. Hence, to a first order, our pH estimates

124	also indicate that $[CO_2]_{aq}$ declined through the Eocene. Given the oligotrophic setting
125	of our site, this further implies that atmospheric CO ₂ declined through the study
126	interval. However, quantitative constraints on early Cenozoic CO ₂ evolution require a
127	second carbonate system parameter. Here we assume that the surface seawater
128	saturation state for calcite (Ω_{calc}) at our site remained between 5.5 and 7.5, a
129	conservative range that encompasses geochemical model estimates ²⁷ (Methods;
130	Extended Data Fig. 3). Uncertainty was again fully propagated (details in Methods)
131	and as expected given the raw $\delta^{11}B_c$ values and calculated pH, we find that CO_2
132	decreased (Fig. 3b) for the borate (or <i>T. sacculifer</i> in Extended Data Fig. 4) calibration
133	from $1400 \pm 470 (1900 \pm 600)$ ppm during the EECO to $\leq 770 (920)$ ppm from 40.3
134	Ma onwards, reaching a minimum of 550 ± 190 (670 ± 210) ppm in the early
135	Oligocene. Our new data confirm that CO ₂ was most likely >1000 ppm (at 95% CI)
136	during the EECO consistent with the recently revised estimates using sodium
137	carbonate mineral nahcolite ¹¹ . Although our younger timeslices are in good agreement
138	with alkenone based CO ₂ reconstructions (Extended Data Fig. 4), our early Eocene
139	CO ₂ reconstructions are clearly unprecedented in the Cenozoic. At 5-7x pre-industrial,
140	our reconstructed EECO CO_2 can provide tighter constraints on models than those that
141	have been previously available. Critically, our CO2 reconstructions are not consistent
142	with the concentrations required by a number of coupled ocean-atmosphere climate
143	models in order to achieve a good match with Eocene temperature data ²¹ .
144	
145	Using our new CO ₂ record, the possible role of CO ₂ in driving Eocene cooling can be
146	quantitatively examined. The relative change in climate forcing attributable to CO_2

147 change (ΔF_{CO2}) through the Eocene can be estimated²⁸ as:

148

149
$$\Delta F_{CO2} = 5.32 * \ln (C_t/C_{EECO}) + 0.39 * (\ln (C_t/C_{EECO}))^2 (1)$$

150

where C_{EECO} is the CO₂ at the EECO, and C_t refers to the CO₂ reconstruction at a 151 152 particular time in the Eocene. The CO₂ forcing based on our reconstructions for the 153 Eocene is well correlated with the contemporaneous proxy derived sea surface 154 cooling, albeit with considerably larger cooling at high latitudes (Fig. 4a, Extended Data Fig. 5a, $R^2 = 0.8$ at low latitudes and 0.9 at high latitudes). The apparent 155 156 latitudinal dependency of SST change for a given change in radiative forcing has recently been determined for the last 520 kyr¹³, using CO₂, ice-sheet albedo (slow-157 feedbacks), dust and mean annual insolation as forcing terms²⁹. Assuming that this 158 latitudinal dependency for a given forcing (Fig. 4b and Methods)¹³ is also appropriate 159 160 for the Eocene, we can calculate the expected SST change as a result of the climate 161 forcing, ΔF_{CO2} (Eq. (1)), for each target timeslice in our study, for high (60 °North and 162 South; blue lines on Fig 4b) and low latitudes (30 °N to 30 °S, red box on Fig. 4b; see Methods) and compare these to a recent SST compilation¹⁴. The calculated SST 163 164 change from our CO₂ reconstructions is within error of the observed, proxy-derived 165 SST evolution of both high and low latitudes through the Eocene (Fig. 4c, Extended Data Fig. 5c) regardless of which δ^{11} B-pH calibration is used. This supports CO₂ as 166 167 the principal driver of long-term Eocene cooling, although feedback processes 168 involved in causing the observed polar amplification in Fig. 4a and Extended Data 169 Fig. 5a must also play a vital role in determining its pattern. 170 171 Our CO₂ reconstructions also allow us to examine the sensitivity of the Earth system

172 (i.e. temperature) to changes in radiative forcing. This is often discussed in terms of

173 Equilibrium Climate Sensitivity (ECS): the global mean surface air temperature

174 change for a doubling of CO_2 on the timescales of about a century after all the "fast" 175 feedbacks have had time to operate but before longer-timescale feedbacks act²⁹, and 176 can be calculated for the Eocene using:

177

178 ECS (°C) =
$$\Delta T / \Delta F_{CO2} * 3.87$$
 (2)

179

190

180 where ΔT is the global mean air temperature change compared to the pre-industrial,

181 corrected for slow-feedbacks (Fig. 4d, Extended Data Fig. 5d); ΔF_{CO2} is calculated as

in Eq. (1), replacing C_{EECO} with pre-industrial CO₂ (C₀ = 278 ppm) as we are

183 interested in forcing change relative to the pre-industrial (Fig. 4e, Extended Data Fig.

184 5e); and 3.87 is the climate forcing of a CO_2 doubling in W*m⁻² calculated using Eq.

185 (1). The global mean annual temperature for the EECO is thought to be $\sim 14 \pm 3$ °C

186 warmer than the pre-industrial, and ~ 5 °C warmer than the late Eocene (35 Ma; Ref.

187 2,29). Recent climate modelling studies have ascribed between 4 to 6 °C of Eocene

188 warmth to changes in boundary conditions (e.g. paleotopography and continental

189 configuration) and the action of the slow climate feedbacks, principally the lack of a

continental ice sheet on Antarctica and vegetation change²⁻⁴. If CO₂ was the principal

driving mechanism for the relative warmth of the EECO and late Eocene, we would

expect an Eocene-ECS within the range reported by the Intergovernmental Panel on

193 Climate Change (IPCC¹⁵) based on climate modelling and observations of the (paleo-)

194 climate system. However, if other climate feedbacks were important we have not

accounted for in our correction of the "slow" feedbacks²⁻⁴, or if the forcing is not due

- to CO₂ alone, then the calculated ECS would be different from that reported by the
- 197 IPCC. Full details of how the uncertainties in these various parameters are propagated
- 198 can be found in the Methods, but from Fig. 4f and Extended Data Fig. 5f it is clear that

199	the ave	erage ECS we calculate for the Eocene lies for the borate (<i>T. sacculifer</i>)
200	approa	ch in the range 2.6 to 4.6 °C (2.1 to 3.6 °C) per CO ₂ doubling (66% confidence)
201	with m	aximum probability for the EECO of 3.8 $^{\circ}$ C (3.3 $^{\circ}$ C). This range (2.1 to 4.6 $^{\circ}$ C
202	per CC	D_2 doubling) is similar to the IPCC range (1.5 to 4.5 °C at 66% confidence ¹⁵).
203	Theref	fore, the 65% of early and late Eocene warmth attributed to fast feedbacks ^{2-4,29} is
204	consist	ent with it being driven by higher atmospheric CO ₂ . This supports the likely
205	import	ance of atmospheric CO ₂ variability in determining both the warmth of the
206	early E	Cocene and the cooling that ultimately led to the establishment of the Late
207	Cenoz	pic icehouse.
208		
209	1	Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on
210		greenhouse warming and carbon-cycle dynamics. Nature 451, 279-283,
211		doi:10.1038/nature06588 (2008).
212	2	Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm
213		climates and its implications for future climate projections. Proc Natl Acad
214		Sci, doi:10.1073/pnas.1303365110 (2013).
215	3	Lunt, D. J. et al. CO2-driven ocean circulation changes as an amplifier of
216		Paleocene-Eocene thermal maximum hydrate destabilization. Geology 38, 875-
217		878 (2010).
218	4	Loptson, C. A., Lunt, D. J. & Francis, J. E. Investigating vegetation-climate
219		feedbacks during the early Eocene. Clim. Past 10, 419-436, doi:10.5194/cp-
220		10-419-2014 (2014).
221	5	Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nat Geosci
222		4 , 418-420 (2011).

223	6	Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations
224		over the past 60 million years. Nature 406, 695-699 (2000).
225	7	Pearson, P. N. & Palmer, M. R. Middle Eocene seawater pH and atmospheric
226		carbon dioxide concentrations. Science 284, 1824-1826,
227		doi:10.1126/science.284.5421.1824 (1999).
228	8	Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of
229		boric acid, seawater and marine CaCO ₃ by MC-ICPMS and NTIMS. Chem
230		<i>Geol</i> 358 , 1-14 (2013).
231	9	Foster, G. L. Seawater pH, pCO_2 and $[CO_3^{2-}]$ variations in the Caribbean Sea
232		over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera.
233		Earth Plan. Sci. Lett. 271, 254-266, doi:210.1016/j.epsl.2008.1004.1015
234		(2008).
235	10	Klochko, K. et al. Experimental measurement of boron isotope fractionation in
236		seawater. Earth Plan. Sci. Lett. 248, 261-270 (2006).
237	11	Jagniecki, E. A., Lowenstein, T. K., Jenkins, D. M. & Demicco, R. V. Eocene
238		atmospheric CO2 from the nahcolite proxy. Geology, doi:10.1130/g36886.1
239		(2015).
240	12	Pearson, P. N., Foster, G. L. & Wade, B. S. Atmospheric carbon dioxide
241		through the Eocene-Oligocene climate transition. Nature 461, 1110-1113
242		(2009).
243	13	Rohling, E. J. et al. Sea surface and high-latitude temperature sensitivity to
244		radiative forcing of climate over several glacial cycles. J. Climate 25, 1635-
245		1656, doi:10.1175/2011jcli4078.1 (2011).

- 246 14 Inglis, G. N. *et al.* Descent towards the Icehouse: Eocene sea surface cooling
- 247 inferred from GDGT distributions. *Paleoceanography*,
- 248 doi:10.1002/2014PA002723 (2015).
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of
 Working Group I to the Fifth Assessment Report of the Intergovermental Panel
 on Climate Change. 1-1535 (2013).
- 252 16 Crowell, J. C. & Frakes, L. A. Phanerozoic glaciation and the causes of ice
 253 ages. *Am J Sci* 268, 193-224, doi:10.2475/ajs.268.3.193 (1970).
- Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. *Nature* 359, 117-122 (1992).
- 256 18 Pagani, M. *et al.* The role of carbon dioxide during the onset of Antarctic
- 257 glaciation. *Science* **334**, 1261-1264, doi:10.1126/science.1203909 (2011).
- 258 19 Zhang, Y. G. *et al.* A 40-million-year history of atmospheric CO2. *Phil Trans*
- 259 *Royal Soc A: Math, Phys, Eng Sci* **371**, doi:10.1098/rsta.2013.0096 (2013).
- 260 20 Franks, P. J. *et al.* New constraints on atmospheric CO₂ concentration for the
- 261 Phanerozoic. Geophys. Res. Lett. 41, 2014GL060457,
- doi:10.1002/2014gl060457 (2014).
- Lunt, D. J. *et al.* Warm climates of the past a lesson for the future? *Phil Trans Royal Soc A: Math, Phys, Eng Sci* 371, doi:10.1098/rsta.2013.0146 (2013).
- $204 Koyu \ soc A. \ mun, Phys, Eng \ sci \$ **5** $/1, \ doi:10.1098/18ta.2015.0140 (2015).$
- 26522Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume
- and climate during the middle Miocene. *Earth Plan. Sci. Lett.* **341-344**, 243-
- 267 254, doi:10.1016/j.epsl.2012.06.007 (2012).
- 268 23 Hönisch, B. *et al.* The geological record of ocean acidification. *Science* 335, 1058-1063, doi:10.1126/science.1208277 (2012).

270	24	Demicco, R. V., Lowenstein, T. K. & Hardie, L. A. Atmospheric pCO ₂ since
271		60 Ma from records of seawater pH, calcium, and primary carbonate
272		mineralogy. Geology 31, 793-796, doi:10.1130/g19727.1 (2003).
273	25	John, E. H. et al. Warm ocean processes and carbon cycling in the Eocene.
274		Phil Trans Royal Soc A: Math, Phys, Eng Sci 371, doi:10.1098/rsta.2013.0099
275		(2013).
276	26	Martinez-Boti, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using
277		high-resolution CO ₂ records. <i>Nature</i> 518 , 49-54, doi:10.1038/nature14145
278		(2015).
279	27	Ridgwell, A. & Schmidt, D. N. Past constraints on the vulnerability of marine
280		calcifiers to massive carbon dioxide release. Nature Geosci 3, 196-200 (2010).
281	28	Byrne, B. & Goldblatt, C. Radiative forcing at high concentrations of well-
282		mixed greenhouse gases. Geophys. Res. Lett. 41, 152-160,
283		doi:10.1002/2013gl058456 (2014).
284	29	PALAEOSENS, P. M. Making sense of palaeoclimate sensitivity. <i>Nature</i> 491 ,
285		683-691, doi:10.1038/nature11574 (2012).
286	30	Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. Coupled
287		greenhouse warming and deep-sea acidification in the middle Eocene.
288		Paleoceanography 24, PA2207 (2009).
289		
290	Supple	ementary Information and Extended Data Figures are linked to the online
291	version	n of the paper at <u>www.nature.com/nature</u>
292		
293	Ackno	wledgements Financial support was provided by NERC grants NE/H017356/1
294	and NI	E/I005595/1 to G.L.F and P.N.P., and NERC Post Doctoral Research

Fellowship (NE/H016457/1) to K.M.E. G.N.I. thanks the UK NERC for supporting

his PhD studentship (via NE/I005595/1) and R.D.P. acknowledges the Royal Society

297 Wolfson Research Merit Award. We thank the Tanzania Petroleum Development

298 Corporation, the Tanzania Commission for Science and Technology and the Tanzania

- 299 Drilling Project field team for support. We also acknowledge Andy Milton and Sandra
- 300 Nederbraght for technical assistance, and we are grateful to Matthew Huber for
- 301 discussions on drivers of Eocene warmth.
- 302

```
303 Author contributions E.A. conducted all boron isotope and trace element analyses,
```

304 calculations, and drafted the manuscript. E.H.J. and K.M.E. prepared foraminifer

305 samples and conducted the stable isotope analysis. P.N.P. led the fieldwork, taxonomy

and prepared foraminifer samples. A.R. provided cGENIE model results. P.N.P and

307 G.L.F. designed the study and all authors discussed the results and contributed to the

308 final text.

- 309
- 310 Author information Reprints and permissions information is available at

311 <u>www.nature.com/reprints</u>. Correspondence and requests for materials should be

312 addressed to E.A. (<u>e.anagnostou@noc.soton.ac.uk</u>).

313 The authors declare no competing financial interests.

314

Figure 1. Currently available Eocene atmospheric CO₂ records and benthic

for a miniferal δ^{18} **O values. a.** CO₂ reconstructions with the 2 s.d. uncertainties. **b.**

- 317 Benthic foraminiferal δ^{18} O¹. Line shows five point moving average, with data age
- 318 modified to account for the revised timing of the MECO³⁰. Lower benthic δ^{18} O values

319 denote warmer bottom water temperatures (or less ice volume, which is assumed to be 320 minimal in the Eocene). Error bars on δ^{18} O are smaller than the symbols (Methods).

rectangles of Fig. 2). Blue squares and orange circles represent the warmest species

used in panel b. Ref. 12 data are offset (Supplementary Table 2, Methods). b.

335 Atmospheric CO₂ assuming $\delta^{11}B_c = \delta^{11}B_{borate}$ using the warmest species of each

timeslice. **c.** Benthic foraminiferal $\delta^{18}O^1$ (as in Fig. 1b). Age error bars (panel b) are

337 based on the ages of the nearest datums, $\delta^{11}B$ errors as in Fig. 2, and CO₂ uncertainty

is based on 95% confidence of Monte Carlo error propagation (Methods).

339

340 Figure 4. CO₂ as a driver of latitudinal cooling in the Eocene, and Equilibrium

341 Climate sensitivity (ECS) analyses of the EECO and late Eocene timeslices. a.

342 Evolving relationship between SST^{14} for high and low latitudes and the CO₂ forcing of

343 each of our timeslices relative to the EECO, with linear regression fits and coefficients

of determination (\mathbb{R}^2). **b.** Apparent latitudinal SST sensitivity for the last 520 kyr¹³. 344 345 Dashed line is second order polynomial through the SST sensitivity data (grey 346 crosses) of Ref. 13. Red rectangle surrounds the SST sensitivity estimates averaged as 347 a low-latitude mean, and blue line for the high latitude mean. c. Reconstructed (lines) 348 and estimated (symbols) SST relative to 53.2 Ma. Symbols are estimated using the 349 respective CO₂ reconstructions and the average low and high latitude SST sensitivities 350 of b. Bold lines show the reconstructed long-term mean TEX₈₆ SST estimates at high (blue $>55^{\circ}$) and low (red $<30^{\circ}$) latitudes¹⁴ relative to ~53 Ma SST. Error bars represent 351 352 full propagation of errors at 95% confidence. **d.** Mean Air Temperature range for early and late Eocene corrected for changes due to slow feedbacks^{2,4,21,29}. e. Forcing 353 354 compared to pre-industrial calculated using our CO₂ reconstructions for the 53.2 Ma (early Eocene) and 36.9 Ma (late Eocene) timeslice. f. Probability density functions of 355 356 ECS for the early and late Eocene compared to IPCC estimates. Shaded bands around 357 lines throughout show 95% confidence intervals.

358

359 <u>METHODS</u>

Site information. To obtain optimal records of oxygen, carbon, and boron isotopes,

361 we used well-preserved 'glassy' carbonate microfossils from the Paleogene of the

362 Kilwa Group material drilled by the Tanzanian Drilling Project (TDP)^{31,32}. The core

363 sites were located on the outer shelf-upper continental slope approximately 50-70 km

offshore³³, at a paleolatitude of 19 $^{\circ}$ S, and bathyal paleowater depths of >300 m³¹.

365 Seismic data, sedimentary facies, nannofossil and planktic foraminiferal assemblages

366 as well as low concentration of dinoflagellates and lack of marine biomarkers

367 indicative of high export productivity confirm that these sediments were deposited

368 under open-ocean conditions with waters derived from the Indian Ocean subtropical

369 gyre³⁴⁻³⁶, supporting the assumption that $[CO_2]_{aq}$ offshore Tanzania was in (near) 370 equilibrium with the atmosphere with respect to CO₂. This is supported by cGENIE 371 estimates with Eocene boundary conditions for offshore Tanzania (Extended Data Fig. 372 6)³⁷, nevertheless, to include the uncertainty of potential disequilibrium with the 373 atmosphere we added ± 40 ppm CO₂ uncertainty into our estimates of atmospheric 374 CO₂ using δ^{11} B.

375

Sample preparation. Approximately 3-4 mg of mono-specific foraminiferal material 376 of a narrow size fraction (e.g. ~300 individuals from the 212-250 µm sieve size 377 378 fraction) were separated from ~10 cm of core material (24 cm for the 53.2 Ma timeslice) for tandem analyses of all isotopes (δ^{18} O, δ^{13} C, and δ^{11} B) and trace element 379 380 composition. Identification of planktonic foraminifera followed Ref. 35. Each sample was gently crushed and divided into two parts: one for δ^{11} B and elemental analyses 381 and another for δ^{18} O and δ^{13} C measurements (~100 ug, ~3% per weight). For the 53.2 382 383 Ma and 40.3 Ma timeslices, *Cibicidoides* sp. were also picked for analyses (~1 mg). Splits for elemental and $\delta^{11}B$ analyses were cleaned following established methods³⁸⁻ 384 385 ⁴⁰. Trace element ratios were determined as in Ref. 9 and in all cases Al/Ca ratios were <120 µmol/mol (typically <100 µmol/mol) evidencing efficient foraminiferal 386 cleaning^{9,40}. 387

388

389 δ^{18} O and δ^{13} C analyses, temperature reconstructions and relative habitat depth

390 assignments. For all δ^{18} O and δ^{13} C analyses, we followed the analytical approach

described elsewhere⁴¹, and values are reported relative to the Vienna Pee Dee

392 Belemnite (VPDB) standard, with 1 s.d. standard external precision of ± 0.06 ‰ and

 ± 0.07 % respectively. All temperature reconstructions are based on the equation of

394	Ref. 42, corrected for changes in global ice volume of $-0.8 ^{43}$ and paleolatitude of
395	+0.83 \%^{44} (following Ref. 45). Any further secular trends in seawater δ^{18} O, regional
396	variations in the oxygen isotope ratio of seawater, or differing carbonate ion
397	concentrations are not known with sufficient confidence, therefore no additional
398	corrections were applied. The lowest δ^{18} O value in each multi-species depth profile
399	was used to calculate the maximum SST for each timeslice with a conservative
400	uncertainty of ± 2 °C that encompasses the differences among variable carbonate $\delta^{18}O$
401	equations (Ref. 45), and includes potential uncertainties in $\delta^{18}O_{sw}$ (Ref. 43,46).
402	
403	Identification of foraminiferal depth habitats is based on δ^{18} O following Ref. 25,35.
404	This method could carry large uncertainties in the absolute depth reconstructions, but
405	the relative depth habitats of surface and deep taxa are clearly distinguishable from the
406	$\delta^{13}C$ vs. $\delta^{18}O$ cross-plots (e.g. Ref. 25,47,48-50,45,51-54), and supported by
407	comparison of δ^{11} B vs. δ^{18} O profiles (Fig. 2). Further support for our approach is
408	given by the depth assignment of benthic for aminifera Cibicidoides based on $\delta^{18}O$
409	values at 53.2 and 40.3 Ma, which at 300-320 m agrees well with the site's paleowater
410	depth ³¹ . Any uncertainty in the absolute depth assignment of foraminifera as a result
411	of the 4 °C range (\pm 2 °C) contributes < 0.1% uncertainty to the carbonate system
412	calculations and thus is not included, although the temperature uncertainty is fully
413	propagated into our carbonate system estimates (see below).
414	
415	Boron isotope proxy and analyses. Boron isotopes in planktonic foraminifera
416	residing close to the seawater surface have been used extensively to reconstruct past
417	ocean pH and thus CO ₂ concentrations ^{9,22,55-57} . External reproducibility of $\delta^{11}B_c$

418 analyses is calculated using the approach of Ref. 40 and the relationship of Ref. 41.

419

420 To reconstruct seawater pH and thus CO₂ concentrations on million year timescales using foraminiferal δ^{11} B values, we must take some necessary steps that include: 421 correcting for any vital effects in extinct species; constraining the $\delta^{11}B_{sw}$, which, given 422 423 the 10-20 Ma residence time for boron in the ocean is likely different from modern $(39.61 \ \text{\%})^{58,59}$; and estimating a second carbonate system parameter to infer aqueous 424 CO_2 concentration ([CO_2]_{aq}) from pH. Other necessary steps include reconstructing 425 426 the calcification temperature and relative habitat depth of foraminifera; knowing the 427 CO₂ disequilibrium between surface waters and atmosphere at the study site; and that primary $\delta^{11}B$ values are not altered by diagenesis (mitigated here by using 'glassy' 428 429 foraminifera).

430

431 Vital effects corrections associated with the boron isotope proxy. Offsets between the boron isotopic composition of ambient seawater borate ion ($\delta^{11}B_{borate}$) and that of 432 for a miniferal calcite ($\delta^{11}B_c$) are known as vital effects. Such vital effects develop in 433 434 response to respiration, calcification and photosynthesis generating a pH gradient 435 within the micro-environment (the diffusive boundary layer, DBL) around foraminifera^{60,61}. For extant species these effects can be accounted for using species-436 specific δ^{11} B-pH calibrations (e.g. Ref. 9,62-64). However, all Eocene foraminifera 437 438 species are extinct and thus vital effects can only be assessed indirectly. To supplement our existing understanding of modern vital effects^{22,26,62,64,65} we generated 439 core top (Holocene) planktonic foraminiferal δ^{11} B, δ^{18} O, and δ^{13} C values (Extended 440 441 Data Fig. 7c and Supplementary Table 1) from offshore Tanzania (Glow 15, Ref. 66). 442 Modern foraminifera from offshore Tanzania show a significantly less coherent relationship with δ^{18} O than our Eocene samples (Extended Data Fig. 7 and Fig. 2). 443

444	This increased spread is at least partly due to the known large vital effects of modern
445	for aminifera, where offsets of 0 to 4 ‰ are required for the $\delta^{11}B$ of our modern
446	species to match the δ^{11} B of seawater borate (Extended Data Fig. 7c).
447	
448	If we apply published modern symbiont-bearing planktonic for aminifera $\delta^{11}\text{B-pH}$
449	calibrations ^{22,62,64} for the shallower Eocene species, and symbiont-barren $\delta^{11}B$ -pH
450	calibrations of modern planktonic foraminifera ^{26,65} for the Eocene deep dwellers, an
451	unrealistic picture emerges (Extended Data Fig. 8). Specifically, there is increased
452	scatter between the shallowest and deepest planktonic foraminifera and inversion in
453	pH gradients with depth. Additionally, there is clear disagreement between
454	<i>Cibicidoides</i> , that we know exhibits minimal vital effect for $\delta^{18}O$, $\delta^{11}B$ and $\delta^{13}C^{40,67}$,
455	and deeper planktonic foraminifera of similar depth (Extended Data Fig. 8), which are
456	otherwise overlapping in $\delta^{11}B_c$ (for the 53.2 Ma timeslice, <i>S. rosnaesensis</i> $\delta^{11}B =$
457	12.96 ± 0.38 ‰ is in agreement with <i>Cibicidoides</i> which average 13.15 ± 0.53 ‰, and
458	for the 40.3 Ma timeslice, average <i>Subbotina</i> $\delta^{11}B = 12.63 \pm 0.38\%$ is within
459	uncertainty of the <i>Cibicidoides</i> $\delta^{11}B = 12.71 \pm 0.30$ ‰). This suggests that modern
460	vital effects are likely not applicable to Eocene planktonic foraminifera. Given that
461	modern vital effects appear to be unsuitable for the Eocene as explained above, we
462	argue by extension that the reduced scatter in the Eocene, and notably the agreement
463	in δ^{11} B among the mixed layer species targeted in the Eocene (which is in stark

464 contrast with the modern, Extended Data Fig. 7c), suggests a more minor role for vital 465 effects in determining $\delta^{11}B_c$, and thereby that the targeted Eocene foraminifera must

466 more closely reflect the δ^{11} B of borate ion. Furthermore, different size fractions of the

467 Eocene foraminifera belonging to the genus *Acarinina* from this study (Supplementary

468 Table 1), and for Early Eocene/Paleocene *Morozovella velascoensis* and *A*.

469 *soldadoensis* in Ref. 68 have $\delta^{11}B_c$ compositions within analytical uncertainty. This 470 contrasts with the modern symbiont-bearing planktonic foraminifera *T. sacculifer* and 471 *G. ruber* that exhibit large changes in $\delta^{11}B$ with size (1 ‰ to 2.3 ‰ Ref. 64,69), again 472 supporting our assertion that vital effects are reduced in the Eocene foraminifera. 473

Although we do not yet have a full mechanistic understanding of the causes of δ^{11} B-474 475 vital effects in planktonic foraminifera a reduction in vital effects for the Eocene 476 foraminifera would most likely result from a reduction in the relative magnitude of 477 one or more of the following physiological processes: calcification, photosynthesis, 478 respiration. For instance, for smaller modern foraminifera the magnitude of the 479 influence of symbiont photosynthesis on the pH of the DBL is reduced, with smaller size fraction for a recording $\delta^{11}B_c$ closer to that of seawater borate^{64,69}. Here, 480 the size of our shallower Eocene for a minifera is mostly within 212-250 µm, which is 481 reduced compared to the modern foraminifera analysed here (300-355 µm) and 482 elsewhere (e.g. \geq 425 µm Ref. 70). Also, vital effect offsets are pH dependent (e.g. 483 Extended Data Fig. 9) for symbiont bearing foraminifera^{62-64,71}. Eocene symbiotic 484 485 planktonic foraminiferal composition is 15.5-14.5 ‰, and for this range the Trilobatus 486 sacculifer (300-355 µm, Ref. 22) calibration has a minimal effect on pH estimates, as it requires only 0.1-0.3 % correction on $\delta^{11}B_c$ for deriving $\delta^{11}B_{borate}$. 487 488 Importantly, whilst the modern symbiont bearing foraminifera calibrated to date have 489

490 $\delta^{11}B$ composition offset from the seawater borate curve, only $\delta^{11}B$ -pH calibrations for

three dinoflagellate hosting species have so far been published^{9,62-64}. Our new depth

492 profile for the modern Indian Ocean shown in Extended Data Fig. 7c shows that some

493 extant species (*Globigerinella siphonifera* and *Globorotalia menardii*) have minimal

494 $\delta^{11}B_c$ offsets from seawater borate $\delta^{11}B$.

495

496 Additional support for minimal vital effects in Eocene foraminifera is also given by the relative agreement with independently calculated Eocene $CO_2^{5,11,19}$ when the 497 borate δ^{11} B-pH calibration is used (Extended Data Fig. 4). Nonetheless, we also apply 498 499 the modern T. sacculifer calibration as this provides an upper limit on the likely extent 500 of δ^{11} B vital effects in Eocene foraminifera. Notably, our calculated pH and CO₂ 501 estimates for both approaches are largely within uncertainty (Extended Data Fig. 4), 502 highlighting that such assumptions have little influence on the conclusions drawn (Fig. 503 4 and Extended Data Fig. 5). 504 **Constraints on** δ^{11} **B**_{sw}. Geochemical box models⁵⁸ and existing records of benthic 505 for a for a miniferal $\delta^{11}B_c$, coupled with assumptions regarding deep water pH evolution⁷², 506 indicate $\delta^{11}B_{sw}$ is unlikely to have changed from its modern value by more than 2.5 % 507 since the EECO (with a likely maximum rate of change of 0.1 ‰/Ma)⁵⁸. Here, we use 508 new, empirically constrained, upper and lower bounds on Eocene $\delta^{11}B_{sw}$ from several 509 510 independent approaches. The underlying methodology for quantifying a maximum and minimum $\delta^{11}B_{sw}$ is based on the observation that the $\delta^{11}B$ vs. pH is non-linear 511 (Extended Data Fig. 2), and its curvature is affected by $\delta^{11}B_{sw}$; when $\delta^{11}B_{sw}$ is higher, 512 for any given $\delta^{11}B_c$ gradient the reconstructed pH change is larger than when $\delta^{11}B_{sw}$ is 513 lower. Furthermore, the curvature in the δ^{11} B-pH relationship results in there being a 514 pH below which the δ^{11} B system becomes unresponsive, the lowest foraminiferal 515

516 $\delta^{11}B_c$ recorded in this study therefore provides the first constraint on the $\delta^{11}B_{sw}$, which

517 then places an additional upper bound on $\delta^{11}B_{sw}$. The lowest $\delta^{11}B_c$ values we

recovered are for *Subbotina crociapertura* of 11.54 ± 0.29 ‰ at 45.6 Ma, and *S*.

519 *eocaena* of 11.97 ± 0.22 ‰ at 40.3 Ma. If $\delta^{11}B_{sw} \ge 39.5$ ‰, these samples do not give

520 a valid mathematical solution for the $\delta^{11}B$ vs. pH relationship, therefore Eocene $\delta^{11}B_{sw}$

- 521 must be lower than the modern $(39.6 \%^{59})$.
- 522

The lower bound for $\delta^{11}B_{sw}$ is constrained using the modern pH gradient (corrected for 523 524 anthropogenic DIC) within the top ~300 m of the water column in the tropics and 525 assuming that this represents the likely minimum pH gradient in Eocene. This assumption is justified by 1) a positive linear relationship between δ^{13} C and pH in 526 $modern^{22}$ and Eocene seawater (Extended Data Fig. 10 based on cGENIE output⁷³), 527 and 2) larger δ^{13} C gradients between surface and deep dwelling Eocene planktonic 528 529 foraminifera than in the modern because of enhanced metabolic rates due to warmer ocean temperatures²⁵. As a result, Eocene pH gradients were most likely larger than 530 531 modern equivalent and therefore our approach is conservative. Modern tropics, in non-532 upwelling regions, have an average pH gradient of the first 300 m equal to 0.17 (Ref. 533 74) with an anthropogenic CO_2 correction resulting in an uncertainty of 0.003 pH 534 units (GLODAP v1.1). The 53.2 Ma timeslice is used for this treatment because it has full upper water column depth coverage and the smallest $\delta^{11}B_c$ gradient (hence it will 535 provide the smallest pH difference and thus the minimum $\delta^{11}B_{sw}$ value). A Monte 536 537 Carlo propagation of uncertainties in pH, temperature, and composition of seawater results in the pH difference (assuming $\delta^{11}B_c = \delta^{11}B_{\text{horate}}$) between the shallowest and 538 539 the deepest planktonic dwellers (ΔpH) at 53.2 Ma falling below 0.17 (the modern equivalent) when $\delta^{11}B_{sw} < 38.2$ ‰ (with 86% of simulations resulting in $\ge 0.17 \Delta pH$). 540 Therefore the minimum $\delta^{11}B_{sw}$ is calculated at 38.2 % for the whole Eocene. This 541 exercise was repeated using the alternative methodology for dealing with δ^{11} B-vital 542

543 effects (assuming $\delta^{11}B_c = \delta^{11}B_{borate}$ for the deeper dwelling non symbiotic 544 foraminifera, which have $\delta^{11}B_c$ within error of co-occuring *Cibicicoides*, and 545 assuming that the shallowest foraminifera has the $\delta^{11}B$ -pH calibration of modern *T*. 546 *sacculifer*). The minimum constraint from 86% of potential Monte Carlo solutions is 547 then 38.6 ‰.

548

To further constrain the maximum Eocene $\delta^{11}B_{sw}$ we used restrictions offered by 549 550 estimates of Apparent Oxygen Utilization (AOU), adapted from previous approaches⁷. 551 AOU describes the amount of dissolved oxygen consumed by the remineralisation of 552 sinking organic carbon between a selected depth and saturated surface waters. The surface seawater oxygen concentration ([O2-sw]sat) depends on SST as a result of 553 Henry's law. Here, δ^{18} O derived SSTs are ~30-33 °C (Supplementary Table 1), 554 therefore corresponding $[O_{2-sw}]_{sat}$ are ~191-182 µmol/kg⁷⁵, with potential mean 555 oversaturation of ~13 μ mol/kg (low latitude maximum: 0.2-0.4 ml/L^{76,77}). To calculate 556 the upper estimate of $\delta^{11}B_{sw}$, the minimum SST of the Eocene timeslices is selected, 557 558 and thus maximum [O_{2-sw}]_{sat} is calculated at 204 µmol/kg. Additionally, we assume 559 Eocene planktonic foraminifera have an oxygen minimum tolerance threshold of 44.7 umol/kg, analogous to the low oxygen accustomed *Hastigerinella digitata*⁷⁸ in the 560 modern Monterey Bay (California). Therefore, we assume Eocene deeper dwelling 561 562 planktonic foraminifera were bathed in waters with oxygen concentrations equal to or 563 higher than the minimum oxygen level of *H. digitata* (AOU = 204-44.7 = 159.3 μ mol/kg). To calculate AOU for each studied timeslice, we modified $\delta^{11}B_{sw}$ (similarly 564 565 following the Monte Carlo approach explained above) from the minimum constraint of 38.2 % to modern seawater (39.6 $\%^{59}$). We then first calculate the difference 566 between the calculated (initially assuming that $\delta^{11}B_c = \delta^{11}B_{borate}$) dissolved inorganic 567

568 carbon (DIC) at the depth occupied by our deepest dwelling foraminifera (average), 569 and compare this to the DIC of the shallowest ~50 m averaged dwelling planktonic 570 foraminifera. The difference in DIC is then transformed into AOU using Redfield ratios (106:138, CO₂:O₂). The AOU is < 159.3 μ mol/kg when $\delta^{11}B_{sw}$ is at maximum 571 38.5 ‰ for the 45.6 Ma timeslice and 38.7 ‰ for the 40.3 Ma timeslice, resulting in 572 573 86% of potential solutions with our Monte Carlo approach satisfying the AOU 574 constrain. The same approach was used applying the *T. sacculifer* calibration for the shallowest planktonic foraminifera, resulting in a maximum $\delta^{11}B_{sw}$ of 38.8 % and 575 38.9 ‰ for the 45.6 and 40.3 Ma timeslice respectively. To be conservative, we use 576 577 the maximum of the two estimates for each calibration method. In summary, although we are calculating the lower $\delta^{11}B_{sw}$ bound at 53.2 Ma and the upper at 40.3 and 45.6 578 579 Ma, we apply this range across the whole of the study interval (53.2-36.9 Ma).

580

Second carbonate parameter. After calculating seawater pH using $\delta^{11}B_{sw}$ and $\delta^{11}B_{c}$, 581 an additional carbonate parameter is required to calculate CO₂ concentrations at any 582 583 given seawater salinity and temperature. Here the second parameter we use is the saturation state of calcium carbonate (surface $\Omega_{calc} = [CO_3^{2-}]/[CO_3^{2-}]_{saturation}$). Typically 584 for the pre-industrial tropical surface ocean Ω_{calc} is ~6, while for Eocene Tanzania 585 waters it is \sim 7 (Ref. 27; Extended Data Fig. 3). In support of the narrow range of 586 potential Ω_{calc} , a variety of modelling studies of the early Cenozoic show that surface 587 588 water Ω_{calc} remains within ±1, essentially constant in the early Cenozoic independent of model boundary conditions^{23,79-81}. Therefore here we assume surface Ω_{calc} was 589 equal to 6.5 ± 1 throughout the Eocene. 590

591

592	Monte Carlo pH-CO ₂ estimates from planktonic foraminiferal $\delta^{11}B_{c}$. Atmospheric
593	CO ₂ was calculated using a Monte Carlo approach to solving the relevant carbonate
594	system equations with 10,000 iterations, deriving mean, upper and lower bounds of
595	95% of the simulations. We use the following constraints for our calculations: The
596	average seawater composition for $[Ca]_{sw} = 17 \text{ mmol/kg}^{82-86}$, $[Mg]_{sw} = 38 \pm 3 \text{ mmol/kg}^{82-86}$
597	kg^{83} (see also Supplementary Table 2), salinity = 35 ± 2, and temperature (derived
598	from δ^{18} O of the shallowest dwelling species ± 2 °C). All simulations are iterated
599	assuming Gaussian distribution of these parameters within the stated 2 s.d A similar
600	distribution is also applied to the $\delta^{11}B_c$ of the warmest and thus shallowest dwelling
601	species for each timeslice (Supplementary Table 2). We did not have sufficient
602	shallow dwellers in the 36.9 Ma timeslice for boron isotope work. Thus, the
603	intermediate dweller Turborotalia cerroazulensis was used. T. cerroazulensis was also
604	analyzed in the 40.3 Ma timeslice, and its $\delta^{11}B_c$ and $\delta^{18}O$ offset (and uncertainty) from
605	M. lehneri, (the shallowest dweller in the same timeslice) was applied to estimate the
606	shallowest temperature at 36.9 Ma (Supplementary Table 2). The temperature offsets
607	between species beyond the \pm 2 °C uncertainty applied to our calculations are
608	considered unlikely. Note that a Gaussian distribution is not applicable to $\delta^{11}B_{sw}$
609	because there is equal likelihood that it laid between the minimum and maximum
610	constraints; we therefore applied a uniform "flat" probability $\delta^{11}B_{sw}$ for the Monte
611	Carlo simulations. The relative magnitude of each component of our error propagation
612	is shown in Extended Data Fig. 4.
613	

614 Correction to pH-CO₂ estimates from *Turborotalia ampliapertura* δ^{11} B_c in

615 **published** $\delta^{11}B_c$ -CO₂ records for the EOT¹². We compared $\delta^{18}O$ measurements of

616 the surface dwellers *Planoglobanomalina* and *Pseudohastigerina* in the Eocene and

early Oligocene^{12,87} with that of *T. ampliapertura* used in Ref. 12, and confirmed that 617 618 T. ampliapertura gives a slightly cooler temperature than Pseudohastigerina. On 619 average, when contemporaneous shallow dwelling planktonic foraminifera are available, *T. ampliapertura* are offset by ~ +0.3 % in δ^{18} O and therefore occupy a 620 shallower water depth than *T. cerroazulensis* (whose δ^{18} O value is consistently ~0.53 621 622 ‰ higher than contemporaneous Eocene shallow dwelling planktonic foraminifera). 623 Further, considering the δ^{11} B offset between *T. cerroazulensis* and the shallow dwelling *Morozovelloides lehneri* in the 40.3 Ma timeslice, we apply a +1 ‰ 624 correction to *T. ampliapertura* δ^{11} B values of Ref. 11 to estimate surface seawater 625 626 values.

627

628 Climate sensitivity calculations

629 Our new CO₂ reconstructions allow us to examine their role in driving long-term 630 Eccene cooling. Climate forcing compared to the early Eccene timeslice at 53.2 Ma is calculated from Eq. $(1)^{28}$ for our two CO₂ scenarios. We then assume that the apparent 631 latitudinal SST sensitivity for the Eocene was similar to that of the last $\sim 520 \text{ ky}^{13}$. 632 Estimates of SST change per W*m⁻² forcing for each degree latitude were generated 633 634 using the second order polynomial fit through the data of Ref. 13 (dotted line Fig. 4b, 635 Extended Data Fig. 5b); as a high latitude SST sensitivity we used the average of estimates for 60° North and South (1.63 K/W*m²), and as low latitude estimates the 636 average of values between 30 °S and 30 °N (0.36 K/W*m²). We use the ratio of high 637 638 or low latitude SST sensitivity and forcing for each timeslice to calculate the SST 639 change expected as a result of our reconstructed CO₂ forcing. The product gives the 640 estimated SST change of Fig. 4c and Extended Data Fig. 5c for high (blue symbols) 641 and low latitudes (red symbols) driven by CO₂. The uncertainties (Fig. 4c, Extended

Data Fig. 5c) are the product of 1,000 realizations of each CO₂ estimate within its
uncertainty envelope (95% confidence intervals).

644

645	To test the importance of CO ₂ to early and late Eocene warmth, we calculated the		
646	sensitivity of the Earth system to radiative forcing, the Equilibrium Climate		
647	Sensitivity (ECS). For ΔT we use MAT for the EECO and late Eocene, where EECO-		
648	MAT is thought to be $\sim 14 \pm 3$ °C warmer than the pre-industrial, and ~ 5 °C warmer		
649	than the late Eocene $(35 \text{ Ma})^{2,29}$. Of this ΔT , 4 to 6 °C is attributed to changes in		
650	boundary conditions (paleotopography and continental configuration of the Eocene)		
651	and the action of the slow climate feedbacks (mainly the lack of a continental ice sheet		
652	on Antarctica and vegetation change ²⁻⁴), for both the early and late Eocene. The		
653	uncertainties in Fig. 4d to 4f (and Extended Data Fig. 5d to 5f) are the products of		
654	1,000 realizations of the 53.2 Ma and 36.9 Ma CO_2 and MAT estimate based on		
655	randomly sampling each variable within its 95% CI uncertainty envelope. The		
656	uncertainty for the CO ₂ and MAT estimates follows a Gaussian distribution, and for		
657	the slow feedbacks correction on MAT follows a uniform "flat" probability.		
658			
659	Data. The underlying data of this manuscript may be found in the Supplementary		
660	Tables 1 and 2.		
661			
662	31 Nicholas, C. J. <i>et al.</i> Stratigraphy and sedimentology of the Upper Cretaceous		
663	to Paleogene Kilwa Group, southern coastal Tanzania. J Afr Earth Sci 45, 431-		

664 466 (2006).

665	32	Pearson, P. N. et al. Further Paleogene and Cretaceous sediment cores from
666		the Kilwa area of coastal Tanzania: Tanzania Drilling Project Sites 6-10. J Afr
667		Earth Sci 45, 279-317 (2006).
668	33	Kent, P. E., Hunt, J. A. & Johnstone, D. W. The geology and geophysics of
669		coastal Tanzania. Institute of Geology and Geophysical Paper No. 6, H.M.S.O,
670		London. (1971).
671	34	Bown, P. R. et al. A Paleogene calcareous microfossil Konservat-Lagerstätte
672		from the Kilwa Group of coastal Tanzania. Geol Soc Amer Bull 120, 3-12
673		(2008).
674	35	Pearson, P. N. et al. Stable warm tropical climate through the Eocene Epoch.
675		<i>Geology</i> 35 , 211-214 (2007).
676	36	van Dongen, B. E. et al. Well preserved Palaeogene and Cretaceous
677		biomarkers from the Kilwa area, Tanzania. Org Geochem 37, 539-557 (2006).
678	37	Takahashi, T. et al. Climatological mean and decadal change in surface ocean
679		pCO ₂ , and net sea-air CO ₂ flux over the global oceans. <i>Deep Sea Res. II</i> 56,
680		554 (2009).
681	38	Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used
682		for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4,
683		8407 (2003).
684	39	Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic
685		foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys.
686		<i>Geosys.</i> 8 , Q06016 (2007).
687	40	Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and
688		B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system.
689		Earth Plan. Sci. Lett. 302, 403-413 (2011).

690	41	Edgar, K. M., Anagnostou, E., Pearson, P. N. & Foster, G. L. Assessing the
691		impact of diagenesis on δ^{11} B, δ^{13} C, δ^{18} O, Sr/Ca and B/Ca values in fossil
692		planktic foraminiferal calcite. Geochim. Cosmochim. Acta 166, 189-209,
693		doi:10.1016/j.gca.2015.06.018 (2015).
694	42	Kim, ST. & O'Neil, J. R. Equilibrium and non-equilibrium oxygen isotope
695		effects in synthetic carbonates. Geochim. Cosmochim. Acta 61, 3461-3475
696		(1997).
697	43	Cramer, B. S., Miller, K. G., Barrett, P. J. & Wright, J. D. Late Cretaceous-
698		Neogene trends in deep ocean temperature and continental ice volume:
699		Reconciling records of benthic for aminiferal geochemistry (δ^{18} O and Mg/Ca)
700		with sea level history. J Geophys Res: Oceans 116, C12023,
701		doi:10.1029/2011jc007255 (2011).
702	44	Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic
703		marine temperatures. Paleoceanography 9, 353-387 (1994).
704	45	Pearson, P. N. in Reconstructing Earth's deep time climate - The state of the
705		art in 2012 Vol. 18 (eds Linda C. Ivany & B.T. Huber) 1-38 (The
706		Paleontological Society, 2012).
707	46	LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen
708		isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).
709	47	Sexton, P. F., Wilson, P. A. & Pearson, P. N. Palaeoecology of late middle
710		Eocene planktic foraminifera and evolutionary implications. Mar
711		<i>Micropaleontol</i> 60 , 1-16 (2006).
712	48	Pearson, P. N., Shackleton, N. J. & Hall, M. A. Stable isotope paleoecology of
713		middle Eocene planktonic foraminifera and multi-species isotope stratigraphy,
714		DSDP Site 523, South Atlantic. J. Foram. Res. 23, 123-140 (1993).

715	49	Pearson, P. N. et al. Warm tropical sea surface temperatures in the Late
716		Cretaceous and Eocene epochs. <i>Nature</i> 413 , 481-487, doi:10.1038/35097000
717		(2001).
718	50	Edgar, K. M. et al. Symbiont 'bleaching' in planktic foraminifera during the
719		Middle Eocene Climatic Optimum. Geology 41, 15-18 (2013).
720	51	Birch, H. et al. Planktonic foraminifera stable isotopes and water column
721		structure: Disentangling ecological signals. Mar Micropaleo 101, 127-145
722		(2013).
723	52	Fairbanks, R. G., Wiere, P., H & Be, A., W. H. Vertical Distribution and
724		Isotopic Copmosition of Living Planktonic Foraminifera in the Western North
725		Aylantic. Science 207, 61-63 (1980).
726	53	Spero, H. & Williams, D. F. Extracting environmental information from
727		planktonic foraminiferal δ^{13} C data. <i>Nature</i> 335 , 717-719 (1988).
728	54	Berger, W. H., Killingley, J. S. & Vincent, E. Stable isotopes in deep-sea
729		carbonates: Box Core ERDC-92, West Equatorial Pacific. Oceanologica Acta
730		1, 203-216 (1978).
731	55	Seki, O. et al. Alkenone and boron-based Pliocene pCO ₂ records. Earth Plan.
732		Sci. Lett. 292, 201-211 (2010).
733	56	Hönisch, B. et al. Atmospheric carbon dioxide concentration across the Mid-
734		Pleistocene transition. <i>Science</i> 324 , 1551-1554, doi:10.1126/science.1171477
735		(2009).
736	57	Sanyal, A. & Bijma, J. A comparative study of the northwest Africa and
737		eastern equatorial Pacific upwelling zones as sources of CO ₂ during glacial
738		periods based on boron isotope paleo-pH estimation. Paleoceanography 14,
739		753-759 (1999).

740	58	Lemarchand, D., Gaillardet, J., Lewin, E. & Allegre, C. J. The influence of
741		rivers on marine boron isotopes and implications for reconstructing past ocean
742		pH. Nature 408, 951-954 (2000).
743	59	Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and
744		magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11,
745		Q08015 (2010).
746	60	Rink, S., Kühl, M., Bijma, J. & Spero, H. J. Microsensor studies of
747		photosynthesis and respiration in the symbiotic foraminifer Orbulina universa.
748		<i>Mar Biol</i> 131 , 583-595 (1998).
749	61	Zeebe, R. E., Wolf-Gladrow, D. A., Bijma, J. & Hönisch, B. Vital effects in
750		for a not compromise the use of $\delta^{11}B$ as a paleo-pH indicator:
751		Evidence from modelling. Paleoceanography 18, 1043 (2003).
752	62	Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of
753		foraminifera: Evidence from culture experiments. Paleoceanography 11, 513-
754		517 (1996).
755	63	Sanyal, A., Bijma, J., Spero, H. & Lea, D. W. Empirical relationship between
756		pH and the boron isotopic composition of <i>Globigerinoides sacculifer</i> :
757		Implications for the boron isotope paleo-pH proxy. Paleoceanography 16,
758		515-519 (2001).
759	64	Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic
760		foraminifera Globigerinoides ruber for use in palaeo-CO ₂ reconstruction. Earth
761		Plan. Sci. Lett. 364, 111-122 (2013).
762	65	Yu, J., Thornalley, D. J. R., Rae, J. W. B. & McCave, N. I. Calibration and
763		application of B/Ca, Cd/Ca, and δ^{11} B in <i>Neogloboquadrina pachyderma</i>

764		(sinistral) to constrain CO ₂ uptake in the subpolar North Atlantic during the
765		last deglaciation. Paleoceanography 28, 1-16 (2013).
766	66	Kroon, D., the Shipboard Scientific Party. Tropical temperature history during
767		Paleogene Global Warming (GLOW) events (NIOZ Site Survey Cruise
768		Report (R.V. Pelagia cruise number 64PE303) (151 pp.). 2010).
769	67	McCorkle, D., Corliss, B. & Farnham, C. Vertical distributions and stable
770		isotopic compositions of live (stained) benthic foraminifera from the North
771		Carolina and California continental margins. Deep Sea Res. 144, 983-1024
772		(1997).
773	68	Penman, D. E. et al. Rapid and sustained surface ocean acidification during the
774		Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 2014PA002621
775		(2014).
776	69	Hönisch, B. & Hemming, N. G. Ground-truthing the boron isotope-paleo-pH
777		proxy in planktonic foraminifera shells: Partial dissolution and shell size
778		effects. Paleoceanography 19 (2004).
779	70	Martinez-Boti, M. A. et al. Boron isotope evidence for oceanic carbon dioxide
780		leakage during the last deglaciation. Nature 518, 219-222,
781		doi:10.1038/nature14155 (2015).
782	71	Hönisch, B. et al. The influence of symbiont photosynthesis on the boron
783		isotopic composition of foraminifera shells. Mar. Micropaleontol 49, 87-96
784		(2003).
785	72	Raitzsch, M. & Hönisch, B. Cenozoic boron isotope variations in benthic
786		foraminifers. Geology 41, 591-594 (2013).

787	73	John, E. H., Wilson, D. J., Ridgwell, A. & Pearson, P. N. Temperature-
788		dependent remineralization and carbon cycling in the warm Eocene oceans.
789		Palaeogeo Palaeoclim Palaeoecol 413, 158-166 (2014).
790	74	Goyet, C., R. J. Healy & Ryan, J. P. Global distribution of total inorganic
791		carbon and total alkalinity below the deepest winter mixed layer depths.
792		ORNL/CDIAC-127, NDP-076 (Carbon Dioxide Information Analysis
793		Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak
794		Ridge, Tennessee., 2000).
795	75	Battino, R., Rettich, T. R. & Tominaga, T. The solubility of oxygen and ozone
796		in liquids. J. Phys. Chem. Ref. Data 12, 163-178 (1983).
797	76	Jenkins, W. J. & Goldman, J. C. Seasonal oxygen cycling and primary
798		production in the Sargasso Sea. J. Mar. Res. 43, 465-491 (1985).
799	77	Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics. Vol. 0 691
800		01707 7 (Woodstock: Princeton University Press, 2006).
801	78	Hull, P. M., Osborn, K. J., Norris, R. D. & Robinson, B. H. Seasonality and
802		depth distribution of a mesopelagic foraminifer, Hastigerinella digitata, in
803		Monterey Bay, California. Limnol. Oceanogr. 56, 562-576,
804		doi:10.4319/lo.2011.56.2.0562 (2011).
805	79	Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate
806		compensation depth. Nature 488, 609-614, doi:10.1038/nature11360 (2012).
807	80	Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the
808		regulation and evolution of the Earth system. Earth Plan. Sci. Lett. 234, 299-
809		315 (2005).
810	81	Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last
811		100 million years. Geochim. Cosmochim. Acta 68, 3521-3530 (2004).

- 812 82 Coggon, R. M. *et al.* Reconstructing past seawater Mg/Ca and Sr/Ca from mid813 ocean ridge flank calcium carbonate veins. *Science* 327, 1114-1117 (2010).
- 814 83 Horita, J., Zimmermann, H. & Holland, H., D,. Chemical evolution of seawater
- 815 during the Phanerozoic: Implications for the record of marine evaporites.
- 816 *Geochim. Cosmochim. Acta* **66**, 3733-3756 (2002).
- 817 84 Dickson, A. J. Fossil echinoderms as monitor of the Mg/Ca ratio of
- 818 Phanerozoic Oceans. *Science* **298**, 1222-1224 (2002).
- 819 85 Lowenstein, T. K. *et al.* Oscillations in the Phanerozoic seawater chemistry:

Evidence from fluid inclusions. *Science* **294**, 1086-1088 (2001).

- 821 86 Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures
 822 and global ice volumes from Mg/Ca in benthic foraminiferal calcite. *Science*823 287, 269-272 (2000).
- 824 87 Wade, B. S. & Pearson, P. N. Planktonic foraminiferal turnover, diversity
- fluctuations and geochemical signals across the Eocene/Oligocene boundary in
 Tanzania. *Mar Micropaleontol* (2008).
- 827 88 Huber, M. & Caballero, R. The early Eocene equable climate problem
 828 revisited. *Clim. Past* 7, 603-633 (2011).
- 829 89 Tindall, J. *et al.* Modelling the oxygen isotope distribution of ancient seawater
 830 using a coupled ocean-atmosphere GCM: Implications for reconstructing early
 831 Eocene climate. *Earth Plan. Sci. Lett.* 292, 265-273 (2010).
- 832 90 Wade, B.S., Pearson, P.N., Berggren, W.A., Pälike, H. Review and revision of
- 833 Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to
- the geomagnetic polarity and astronomical time scale. *Earth Sci. Rev.* **104**,
- 835 111-142 (2011).

836	91	Ben-Yaakov, S. & Goldhaber, M. B. The influence of sea water composition
837		on the apparent constants of the carbonate system. Deep-Sea Res. 20, 87-99
838		(1973).

- 839 92 Millero, F. J. & Pierrot, D. A chemical equilibrium model for natural waters.
 840 *Aquat. Geochem.* 4, 153-199 (1998).
- 841 93 Hershey, J. P., Fernandez, M., Milne, P. J. & Millero, F. J. The ionization of
 842 boric acid in NaCl, Na-Ca-Cl and Na-Mg-Cl solutions at 25°C. *Geochim*.

843 *Cosmochim. Acta* **50**, 143-148, doi:10.1016/0016-7037(86)90059-1 (1986).

844

845 Extended Data Figure Legends

846 Extended Data Figure 1:Paleogeography and δ^{18} O - derived temperature against

847 **foraminiferal calcification depth. a.** Approximate paleoposition of TDP sites studied

here (map generated from www.odsn.de). **b.** Reconstructed temperature and relative

849 depth of each foraminifera within each time slice. Pale blue line represents the output

850 of a General Circulation Model (GCM) simulation run with Eocene boundary

851 conditions^{88,89}, while the other coloured lines show the GCM output offset to intersect

with the warmest temperature at depth "0" for each timeslice. Note that depth

assignments are approximate (see Methods). Also shown are the reconstructed

temperatures from core top planktonic foraminiferal δ^{18} O (Supplementary Table 1),

where *G. ruber* is assigned a depth "0" and the rest of the planktonic foraminifera are

856 offset to reproduce the CTD temperature profile of GLOW $15^{51,66}$. For Holocene

temperature reconstructions we used the modern site latitude of 9 °S, and δ^{18} Osw

858 (SMOW) of 0 ‰.

859

860	Extended Data Figure 2: δ^{11} B vs. pH as a function of δ^{11} B _{sw} . Increasing δ^{11} B _{sw}
861	results in lower pH for the same $\delta^{11}B$. However for the same $\delta^{11}B$ range, the
862	reconstructed pH range is larger for higher $\delta^{11}B_{sw}$ (see brown shaded regions).
863	
864	Extended Data Figure 3: cGENIE estimates of calcite saturation (Ω_{calc}) in surface
865	waters. Comparison for pre-industrial times (PI; blue) and 55 Ma (red) at different
866	latitudes.
867	
868	Extended Data Figure 4: Compilation of several CO ₂ records for the Eocene in
869	comparison to this study. The contribution of different parameters to the uncertainty
870	on our CO ₂ reconstructions is colour-coded; sequentially from bottom to top, red is
871	from $\delta^{11}B_{sw}$, blue is from Ω_{calc} uncertainty, green is from $\delta^{11}B_c$ error, black is 40ppm
872	uncertainty in the event of disequilibrium with the atmosphere. Other parameters
873	contribute $< 10\%$ uncertainty to the CO ₂ calculations and are not shown. Note data
874	from Pearson et al. ¹² (orange circles) are corrected as in Fig. 3, and there are two
875	scenarios included for the Tanzania records of Ref. 12 and this study: one with $\delta^{11}B_c =$
876	$\delta^{11}B_{borate}$ (closed blue and orange symbols) and the other applying <i>T. sacculifer</i> (open
877	blue and orange symbols) corrections to the shallowest symbiotic planktonic
878	foraminifera (Methods). Y-axis is in log-scale. Error bars are representative of each
879	proxy's reconstruction uncertainty (typically at 95% confidence). For the $\delta^{11}B$
880	reconstructions in this study, the errors are based on Monte Carlo propagation of
881	relevant errors (Methods).

882

883 Extended Data Figure 5. CO₂ as a driver of latitudinal cooling in the Eocene, and
884 Equilibrium Climate sensitivity (ECS) analyses of the EECO and late Eocene

885	timeslices: case for the T. sacculifer calibration applied to shallowest planktonic
886	foraminifera. a. Evolving relationship between SST ¹⁴ for high (blue) and low (red)
887	latitudes and the CO ₂ forcing of each of our timeslices relative to the EECO. Linear
888	regression fits and coefficients of determination (R^2) are also shown, with the 95%
889	confidence interval (shaded bands). b. Apparent latitudinal SST sensitivity for the last
890	520 kyr ¹³ . Dashed line is second order polynomial through the SST sensitivity data
891	(grey crosses) of Ref. 13, and grey lines show 95% confidence interval. Red rectangle
892	surrounds the SST sensitivity estimates averaged as a low-latitude mean, and blue line
893	for the high latitude mean (see text and Methods). c. Reconstructed (lines) and
894	estimated (symbols) SST relative to 53.2 Ma. Symbols show each of our timeslices,
895	and calculated using the respective CO_2 reconstructions and the average low (red) and
896	high (blue) latitude SST sensitivities of b. Bold lines and shaded uncertainty band (at
897	95% confidence) show the reconstructed long-term mean TEX_{86} SST estimates at high
898	(blue color $>55^{\circ}$) and low (red color $<30^{\circ}$) latitudes ¹⁴ relative to ~53 Ma SST. Error
899	bars represent full propagation of errors at 95% confidence ¹⁴ . d. Mean Air
900	Temperature range for early (green) and late (black) Eocene corrected for changes due
901	to slow feedbacks ^{2,4,21,29} . e. Forcing compared to pre-industrial calculated using our
902	CO ₂ reconstructions for the 53.2 Ma (early Eocene) and 36.9 Ma (late Eocene)
903	timeslice (Methods). f. Probability density functions of ECS for the early (green) and
904	late (black) Eocene compared to IPCC estimates (dashed lines show the 95%
905	confidence interval (solid pink line)).
906	
907	Extended Data Figure 6. cGENIE estimates of air-seawater CO ₂ disequilibrium.

908 The model uses Eocene boundary conditions and positive values mean seawater is a

source of CO_2 (in ppm).

910

911	Extended Data Figure 7. Comparison of Eocene and Modern planktonic
912	for a miniferal δ^{11} B and δ^{13} C with δ^{18} O. a. and b. Analyses from the 53.2 Ma and
913	40.3 Ma timeslices respectively (as in Fig. 2 and Supplementary Table 1).
914	Cibicidoides sp. are shaded. c. Core-top (Holocene) offshore Tanzania foraminiferal
915	measurements. Seawater $\delta^{11}B_{\text{borate}}$ and $\delta^{18}O$ was calculated from temperature,
916	Alkalinity and Dissolved Inorganic Carbon measurements (GLODAP Cruise 18 and
917	23, Station 17742 and 23037, 1995-07-24 and 1986-4-13, 53.959 °E -7.04 °N and
918	52.367 °E -6.33 °N respectively), correcting for anthropogenic carbon input. Black
919	line in panel c. represents seawater derived $\delta^{18}O$ and $\delta^{11}B_{borate}$ data (Methods).
920	Symbols key for the 53.2 and 40.3 Ma timeslices as in Fig. 2. Note the change in
921	scales for the x-axis between the Eocene and Holocene panels. Errors in $\delta^{11} \mathbf{B}$
922	represent 2 s.d. of long-term precision (Methods).
923	
924	Extended Data Figure 8. Reconstructed pH using different combinations of
925	published symbiont-bearing and non-symbiotic foraminiferal vital effect
926	calibrations for the two most complete with depth timeslices. Panel a shows the
927	case where no vital effect corrections were applied for comparison. The vital effect

- 928 corrections for deeper asymbiotic planktonic foraminifera are based on either
- 929 *Globigerina bulloides*²⁶ (panels **b** and **d**) and *Neogloboquadrina pachyderma*⁶⁵ (panels
- 930 **c** and **e**) calibrations. For shallow symbiont bearing planktonics we used calibrations
- 931 specific to modern shallow, symbiont-bearing *Trilobatus sacculifer*²² (panels **b** and **c**)
- 932 and *Orbulina universa*⁶² (panels **d** and **e**) (as recalculated by Ref. 64 and offset by -3
- 933 % to account for analytical differences between NTIMS and MC-ICPMS

934 instrumentation^{8,9}). For comparison we also show the pH reconstructions if we assume 935 $\delta^{11}B_c = \delta^{11}B_{borate}$.

936

937 Extended Data Figure 9. The effect of seawater composition on boron isotope

938 calibrations in foraminifera. The example of *T. sacculifer* calibration²² and seawater

borate curve ("borate" calibration: $\delta^{11}B_c = \delta^{11}B_{borate}$) for modern and Eocene seawater

940 composition as in Methods and furthered detailed in Supplementary Table 2.

941

942 Extended Data Figure 10: cGENIE output of seawater pH vs. δ^{13} C for the top

943 ~300 m of the ocean. The scenarios explored are from offshore Tanzania (triangles),

944 Walvis Ridge (crosses), and the Global Ocean (circles) at three different atmospheric

945 CO₂ concentrations (modern, 3x pre-industrial and 16x pre-industrial). An additional

scenario showing 3x pre-industrial CO₂ but considering the temperature effect on

947 remineralisation is also shown as blue squares and triangles.

