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Abstract—Random geometric networks are mathematical
structures consisting of a set of nodes placed randomly within
a bounded set V ⊆ Rd mutually coupled with a probability de-
pendent on their Euclidean separation, and are the classic model
used within the expanding field of ad hoc wireless networks. In
order to rank the importance of the network’s communicating
nodes, we consider the well established ‘betweenness’ centrality
measure (quantifying how often a node is on a shortest path of
links between any pair of nodes), providing an analytic treatment
of betweenness within a random graph model by deriving a
closed form expression for the expected betweenness of a node
placed within a dense random geometric network formed inside
a disk of radius R. We confirm this with numerical simulations,
and discuss the importance of the formula for mitigating the
‘boundary effect’ connectivity phenomenon, for cluster head
node election protocol design and for detecting the location of a
network’s ‘vulnerability backbone’.

I. INTRODUCTION

Betweenness centrality γ(κ) is a graph theoretic measure
of how often a node κ is on a shortest path of links between
any pair of nodes [1]. Ubiquitously

γ(κ) =
1

2

∑
i

∑
j

σij(κ)

σij
(1)

where the sum requires i 6= j 6= κ: σij is the total number
of shortest paths that join i and j and σij(κ) gives the
number of those geodesics that pass through κ. Intuitively,
nodes with high betweenness can be thought of as decisive
for the functionality of decentralized communication networks,
since they typically route more data packets (based on the
assumption that traffic tries to follow only the shortest avail-
able multi-hop paths). This notion of importance is in sharp
contrast to traditional methods, which simply enumerate node
degrees: a bridging node which connects two large clusters
is, for example, of crucial importance to the whole network,
even though it may only have two neighbours; this sort of
information is brought out by γ, but usually goes undetected.

In router-based communication networks, the router itself
has a normalised betweenness of unity, since all nodes connect
to it directly, while all other nodes have a centrality of zero.
A promising focus in physical layer network design today is,
however, on an entirely different network philosophy, where
there is no router [2]–[4]. These structures are known as wire-
less ad-hoc (or ‘relay’) networks, where packets of information

are routed in a multi-hop fashion between any two nodes that
wish to communicate, allowing much larger, more flexible
networks (due to the lack of pre-established infrastructure or
the need to be within range of a switch). Commercial ad hoc
networks are nowadays realised under Wi-Fi Direct standards,
enabling device-to-device (D2D) offloading in LTE cellular
networks [5].

This new diversity in machine betweenness needs to be
understood, and moreover can be harnessed in at least three
separate ways: historically, in 2005 Gupta et al. [6] used γ as
a criteria for electing cluster head nodes which communicate
to base-stations on behalf of all the cooperating machines,
and later, in 2010 Ercsey-Ravasz et al. [7] demonstrated
how betweenness can be used to delineate the ‘vulnerability
backbone’ of a network (a percolating cluster of the high-
est γ nodes), which is important for defense purposes [8],
[9]. Finally, in 2006, Wang et al. [10] researched the use
of betweenness for boundary detection (since at high node
density ρ the betweenness of machines exhibits a bi-modal
behaviour and can therefore elucidate boundary location).
Since the principal model for ad hoc networks has become the
random geometric graph [11], [12] (consisting of a set of nodes
placed randomly in some domain V ⊆ Rd, mutually coupled
using a connection law based on their Euclidean separation),
in this paper we begin to develop an understanding of how
the expected betweenness of a node at some domain location
changes with the parameters of the random graph model,
evaluating analytic formulas for γ as a function of domain
position.

We start our derivation with the disk domain D of radius
R (top left panel, Fig. 1), considering the limiting scenario of
infinite node density with a vanishing node-to-node connection
range. We will then argue that betweenness, a computationally
heavy operation with possibly high communication overheads,
can be well approximated by our analytical closed form
predictions and can therefore prove useful in practice.

This paper is structured as follows: in Section II we present
our basic network model and state our main assumptions. In
Section III we introduce an analytic formula for E(γ (ε)) in the
continuum limit (where the node density ρ→∞), which is our
main result. In Section IV we present Monte Carlo simulations
which validate our predictions, in Section V we discuss the



Fig. 1: (Colour Online) Four realisations of soft random geometric graphs and their betweenness centrality bounded within
various domains, including the disk D, square, right-angled triangle and square domain containing two circular obstacles: in
both the left and upper right figures the darker colour represents low centrality, whereas the lighter colour high centrality,
whereas in the obstructed square domain (lower right) the least central nodes are faded to grey and the most central are
highlighted in red. Note that the boundaries of the domains are locations where betweenness is at a minimum. All centralities
are normalised such that γ ∈ [0, 1] and the link colours are based on the average betweenness of the two connected nodes.

applicability of the derived betweenness centrality formula
within ad hoc wireless networks and conclude in section VI,
discussing the impact of our contribution and possible future
research directions.

II. OUR MODEL

Consider N nodes placed inside a bounded, convex subset
V ⊆ Rd of volume V (using the Lebesgue measure) according
to a uniform point process of density ρ = N/V at positions
ri, i ∈ {1 . . . N}. Nodes i and j (at ri and rj) possess

Euclidean separation rij and are connected (through a ‘link’)
with probability H(rij) = e−βr

η
ij (where β is a constant

determining the typical node-to-node connection range [13]).
This connection function helps to model the fact that over a
wireless channel with Rayleigh fading [14], the complement
of the information outage probability between nodes i and
j decays exponentially with the distance rij raised to some
power, the path loss exponent, which we set here equal to
2 since we consider only free-space propagation [13]. The
resulting random graph is called ‘soft’ due to the probabilistic



connection law [15], a generalisation of the more common
‘hard’ unit disk graphs where the connection function is the
indicator of a ball centred at the origin [16], [17]. In the
following, we will be interested in the expected betweenness
centrality of some node κ found at position rκ in a network
formed under the above assumptions inside a disk domain D.

III. A CONTINUUM LIMIT

For the sake of mathematical tractability and in order to
approximate a dense network, we consider only the continuum
limit ρ→∞, where the connection range vanishes (which is
realistic in the dense regime) such that β →∞; this scenario
mimics a connected graph where all nodes on any straight line
between any two points lie on the shortest path that links the
two respective endpoint nodes.

We therefore seek the continuum analogue of Eq. (1).
Considering the probability 1

V dri that some node is placed
at position ri in V , we have the probability 1

V 2 dridrjχij(κ)
that (any) node pair will simultaneously be placed at {ri, rj}
and construct between itself a shortest path which passes
through κ, since the characteristic function χij(κ) equates
to unity whenever κ lies on the path i → j (given by the
straight line segment rij that joins ri and rj), and is otherwise
zero. Summing this up over all possible {ri, rj} pair locations
within the domain gives the expected betweenness centrality
of κ for a random node configuration in V as ρ→∞:

g(κ) =
1

2V 2

∫
V
dri

∫
V
drj χij(κ) (2)

where we take V = D and thus V = πR2. Note also that due
to the symmetry of D, we describe the position of the node κ
by its Euclidean distance ε from the disk’s centre.

Now consider Fig. 2, where we define the scalar κ⊥ as the
distance of κ from the straight line rij . Defining the delta
function δ (κ⊥ (ri, rj)), we then suggest that∫

D
dri

∫
D
drj χij =

∫
D
dri

∫
D
drj δ (κ⊥) (3)

The delta function will only contribute to the integral of Eq.
(3) when its argument κ⊥ is a zero of δ (κ⊥). As such, if we
then describe κ⊥ such that it has a unique zero whenever κ
lies on the path i → j, integrating δ (κ⊥) over the space of
all node pairs {ri, rj} should return g(κ) as required.

An Expression for κ⊥
Fig. 2 shows κ located a distance ε from the centre of D,

with the coordinate system centred on κ and orientated such
that the disk centre is at (−ε, 0). Considering nodes i and j
at distances ri and rj from κ respectively, we have that the
internal angles φi, φj and (θj−θi) sum to π. The perpendicular
distance κ⊥ from κ to the line rij then satisfies both

κ⊥
ri

= sin(φi) (4)

and
κ⊥
rj

= sin(φj) (5)

Fig. 2: (Colour Online) If we consider the three general
positions ri, rj and rκ (corresponding to the positions of
the respective nodes i, j and κ), we have the scalar κ⊥
representing the distance of κ to the line joining i and j. The
axis are centred on the node κ, while the circle is centred at
(−ε, 0).

Adding the above and taking small angle approximations
(since we are interested in the case where κ⊥ � 1) we have
that

φi + φj = π − θj + θi = κ⊥

(
1

ri
+

1

rj

)
(6)

whenever κ⊥ � 1. This approximation presents a unique zero
of κ⊥ whenever θi − θj + π = 0, allowing

δ (κ⊥) = δ

(
θi − θj + π

1
ri

+ 1
rj

)

= δ (θi − θj + π)

(
1

ri
+

1

rj

)
(7)

due to the trivial scaling laws of the delta function. Eq. (3), a
double volume integral, becomes a quadruple integral

g(ε) =
1

2V 2

∫
D
dri

∫
D
drj χij (κ)

=
1

2V 2

∫ 2π

0

dθi

∫ 2π

0

dθj∫ r(θi)

0

ridri

∫ r(θj)

0

rjdrjδ (κ⊥) (8)

Taking r(θ) =
√
R2 − ε2 sin2(θ) − ε cos (θ), the polar equa-

tion of the circle bounding D, we have

g(ε) =
1

2V 2

∫ 2π

0

dθi

∫ 2π

0

dθjδ (θi − θj + π)∫ r(θi)

0

rjdrj

∫ r(θj)

0

(
1

ri
+

1

rj

)
ridri

=
1

2V 2

∫ 2π

0

dθi

∫ 2π

0

dθjδ (θi − θj + π)(
r(θi)

r2(θj)

2
+ r(θj)

r2(θi)

2

)
(9)



Fig. 3: (Colour Online) Monte Carlo simulations: A plot of the
normalised expected betweenness centrality of a node in D as
a function of its distance ε from the centre for ρ = 10, 50 and
500 (bottom to second top curves respectively) with Eq. (13)
the thicker line at the top (taking R = 1). The finite density
curves approach the limit g? as ρ → ∞. We sample 5000
random graphs.

Integrating the delta function, we have

g(ε) =
1

4V 2

∫ 2π

0

dθir(θi)r(θi + π) (r(θi) + r(θi + π))

=
1

2V 2

∫ 2π

0

dθi
(
R2 − ε2

)√
R2 − ε2 sin2 (θi) (10)

leaving

g(ε) =
2
(
R2 − ε2

)
π2R3

E
( ε
R

)
(11)

where

E (k) =

∫ π/2

0

dθ

√
1− k2 sin2 (θ) (12)

is the complete elliptic integral of the second kind (which is
related to the perimeter of an ellipse [18]). We normalise this
to g?(ε) by dividing Eq. (11) by its maximum value (such that
g?(ε)g (0) = g (ε)) to obtain our main result

g?(ε) =
2

π

(
1− ε2

R2

)
E
( ε
R

)
(13)

such that the betweenness is an element of the unit interval.
Elliptic integrals cannot be swiftly visualised, so for clar-

ification we can expand Eq. (13) near the origin (i.e. when
ε� 1) to obtain

g?(ε� 1) = 1− 5ε2

R2
+

13ε4

64R4
+O(ε6) (14)

while near the boundary (i.e. when ε ≈ R)

g?(ε ≈ R) = 4(R− ε)
πR

+O((R− ε)2) (15)

which implies a quadratic scaling of betweenness near the
centre, and a linear scaling near the periphery.

IV. MONTE CARLO SIMULATIONS

The top left panel of Fig. 1 shows that the betweenness γ(κ)
of nodes situated in the bulk of disk is typically high. Binning
the centrality in small increments of displacement from the
centre of D and averaging over many network realizations, we
can plot the expectation E(γ (ε)), and the result is shown in
Fig. 3, demonstrating how E(γ) at finite densities approaches
the infinite density prediction of (11). In these simulations
we take β to be the largest value required for full network
connectivity [2], [13], [19], [20], and increase ρ from 10 to
500, each time evaluating the betweenness using Brandes’
algorithm [21].

We observe that the continuum prediction is slowly reached
by our numerical simulations, with only small discrepancies.
Quantifying the rate of convergence as well as the nature of
these discrepancies is beyond the scope of this paper and is
deferred to future work.

V. DISCUSSION

By estimating betweenness based on domain location using
Eq. (13), nodes avoid the costly operation of repeated cen-
trality computation throughout the network’s battery-limited
lifetime. At the moment, single or two-hop neighbourhood
information is used in place of betweenness metrics, entirely
due to the impracticality of its computation [21]. This allows a
range of novel, sophisticated features to be employed in future
dense ad hoc networks, which we now discuss in more detail.

A. Cluster Head Node Election

In order to minimise energy consumption, ad hoc networks
commonly group nodes into local clusters (usually defined
by their inter-cluster hop distance) and elect a ‘cluster head
node’ for each partition [22]. The cluster head node (CH)
then transmits to the distant base station (BS) on behalf of
its cluster, which reportedly reduces total energy consumption
by (up to) a factor of 8 [23].

The betweenness measure has been used for these purposes
[6], and a number of cluster routing protocols are usually
implemented. For example, the basic LEACH (Low Energy
Adaptive Clustering Hierarchy [23]) protocol uses a random
selection of cluster heads at each ‘round’ or time-step, the
nodes each taking turns in bearing the burden of cloud-
access (or backhaul gateway) status, or, alternatively, EECS
(Energy Efficient Clustering Scheme [22]), which requires
nodes to broadcast their remaining power to their first-degree
neighbours, asking machines that find themselves with the
most battery power amongst their one-hop partners to then
elect themselves to CH status.

However, in large networks using a vanishing transmitter
range these protocols don’t work: far too many cluster heads
get elected due to the huge node numbers and the efficiency
problem that this technique is trying to mitigate re-arises.
Potentially increasing transmitter range could resolve the prob-
lem (since the usual techniques are based on one-hop access to
the head node), though this introduces interference problems,
forcing the search for another solution.



Betweenness is a possible alternative election criteria (where
the network is considered a single connected cluster) since it
is proportional to power consumption (due to the expected in-
crease in routing load, unlike most other centrality measures),
allowing idle boundary nodes to act as cluster heads when-
ever power minimisation is preferred, or busy domain-center
nodes whenever optimisation of node-to-node communication
overheads is tasked. Knowledge of betweenness as a function
of position helps in the selection of positions which, when
occupied by nodes, results in CH election. In static networks
this requires increasing battery resources for these stations;
in mobile networks this allows nodes to use their position to
trigger BS contact (perhaps at for ε� 1), perhaps using GPS
facilities or even through measuring there current routing load.

Note also that, based on the intuition ”central nodes are eas-
ier to reach”, communication-based resource consumption is
minimised whenever high-betweenness nodes are, in general,
used as cluster heads.

B. Boundary Detection

Eq. (13) gives a surface whose minimum points indicate
corners, edges (and potentially faces) of the domain (see Fig.
3, where γ is plotted within various geometries). Boundary
detection is an important field in ad hoc network engineering,
with various applications [10], [24], [25]. One potential use of
betweenness as a boundary detector is for mitigation of the so
called boundary effect phenomenon [13], where high-density
network connectivity is hampered through nodes becoming
isolated near the domain peripheries due to a loss of the usually
available full solid angle for transmission in the relevant
domain dimension. One potential mitigation technique is to
increase the node transmit power at the domain boundary: by
potentially using a typical node-to-node connection range r0

r0 =
1√
β

(16)

where β is a function of ε

β (ε) = f (g? (ε)) (17)

we can harness some spare power in the relatively idle
boundary nodes (detected using Eq. (13)), increasing machine
transmit power appropriately with betweenness. This does not
require the sharing of routing tables or other connectivity
information, since betweenness is directly proportional to the
node’s current routing tasks. Finding the optimal function
of the betweenness (or perhaps other centrality measures) is
beyond the scope of this paper, and we defer its treatment to
a later study.

C. Detecting the Network’s ‘Vulnerability Backbone’

Though (in the case of the disk) Eq. (13) indicates that
nodes near the origin need to be defended for the sake of
ensuring continually efficient routing performance, note the
bottom right panel of Fig. 1, where betweenness is plotted
over a square domain containing two circular obstacles which
restrict line-of-sight connections between nodes [19]. Here,

the ‘vulnerability backbone’ (the smallest fraction of high-
est betweenness nodes forming a percolating cluster through
the network) forms around the circular obstacles and passes
through the thin ‘corridor’ or ‘bottleneck’ between them. By
evaluating further formulas for these more complex, non-
convex domains, we can quantify the size and importance of
this backbone and develop techniques to protect it, given we
have a good measure of its significance.

VI. CONCLUSION

As wireless devices and sensors become smarter, statis-
tical methods involving low communication overheads are
increasingly being developed and implemented to improve
network performance. In this paper we have revisited the
graph theoretic concept of betweenness centrality, a measure
of how many shortest paths run through a given node, and
have evaluated it in closed form in an infinitely dense ran-
dom geometric network bounded inside a disk. Of course,
nodes near the centre of the domain typically have more
shortest paths running though them, and hence display a
higher betweenness centrality, while nodes near the edge of
the domain are typically used less and hence have a lower
betweenness. The quantitative formula (13) presented herein,
however, not only described in detail this behaviour but can
also be used inter alia for cluster head election, boundary
detection and vulnerability backbone delineation of a network
operating in a stochastic environment (as discussed in the
text). The above motivates further investigations into the use
of betweenness centrality in smart wireless communications
under relaxed limits e.g. finite density and/or other connection
models e.g. the unit disk scenario. Significantly, we next intend
to focus on understanding features unique in non-convex
domains, illustrated (for example) in the bottom right panel
of Fig. 1, where shortest paths typically route round central
obstacles: this would constitute a move toward a complete
analytic understanding of betweenness centrality in random
geometric graph-structures, of importance to the engineering
and mathematics communities alike.
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