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ABSTRACT

The synthesis of protein from messenger RNA during
translation is a highly dynamic process that plays a
key role in controlling the efficiency and fidelity of
genome-wide protein expression. The availability of
aminoacylated transfer RNA (tRNA) is a major factor
influencing the speed of ribosomal movement, which
depending on codon choices, varies considerably
along a transcript. Furthermore, it has been shown
experimentally that tRNA availability can vary signifi-
cantly under different growth and stress conditions,
offering the cell a way to adapt translational
dynamics across the genome. Existing models of
translation have neglected fluctuations of tRNA
pools, instead assuming fixed tRNA availabilities
over time. This has lead to an incomplete under-
standing of this process. Here, we show for the
entire Escherichia coli genome how and to what
extent translational speed profiles, which capture
local aspects of translational elongation, respond
to measured shifts in tRNA availability. We find that
translational profiles across the genome are affected
to differing degrees, with genes that are essential or
related to fundamental processes such as transla-
tion, being more robust than those linked to regula-
tion. Furthermore, we reveal how fluctuating tRNA
availability influences profiles of specific sequences
known to play a significant role in translational
control of gene expression.

INTRODUCTION

Although protein translation is one of the most important
cellular processes during bacterial replication and growth,
dynamics of this process are still barely understood. The
translational dynamics that take place when synthesizing
protein from a messenger RNA (mRNA) transcript have

been shown to highly influence the quantity and, in
some cases, the quality of the resultant protein (1–6).
Underlying mechanisms are as follows: (i) the speed of
initiation and complex formation of ribosomes at a tran-
script (7); (ii) sequence features of the mRNA like codon
usage, secondary structures, GC content (2–4,8–10); and
(iii) availability of resources such as transfer RNA (tRNA)
pools (11,12). In addition, there is growing realization that
post-transcriptional modifications of tRNAs by uridine
methyl-transferases at wobble position 34 also play an
important role in both the recognition and sensitivity of
particular codon-anticodon pairings (13,14). All of these
factors can affect the speed at which a ribosome can join
and move along a transcript. Furthermore, pausing and
premature termination of ribosomes owing to crowding,
rare codon usage (3) and the possible need for co-transla-
tional pausing to ensure correct folding of a resultant
protein (4–6,10,15) lead to variability in this process. A
better understanding of the contribution that these mech-
anisms have on protein expression is essential to provide a
clearer picture of how these features have evolved and
become used for regulation purposes by organisms and
additionally to enable the improved design of bioengin-
eered systems where protein synthesis plays an important
role, e.g. recombinant protein production.
To date, the majority of focus in this area has been on

the translational initiation step (7) and codon usage within
protein-coding regions (16). However, the transient nature
of translation, namely, the sequential concatenation of
amino acids, is known to result in a non-uniform
protein synthesis rate along an mRNA (15,17). Several
forms of model have been proposed to capture this
dynamic process. Two of the most common types are sto-
chastic models based on the Totally Asymmetric Simple
Exclusion Process (18,19) and deterministic models based
on codon adaptation to available tRNA pools (9,10,20).
For both type of models, two main assumptions are made:
(i) the rate of synthesis at a particular codon is propor-
tional to the concentration of its cognate tRNAs, taking
into consideration the sensitivity of possible wobble
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pairings, and (ii) tRNA concentrations, and therefore
codon translation rates, remain fixed throughout a simu-
lation. However, experimental measurements of tRNA
concentrations and their charged fractions under stressful
conditions have shown that tRNA availability can signifi-
cantly vary between conditions and over time (11,12),
calling into question the validity of these models under
such scenarios.
With the aim to understand the influence that such fluc-

tuations can have on translational dynamics, we developed
a generalized computational workflow (Figure 1) to
estimate the translational speed at individual codons and
generated translational speed profiles for every transcript in
the Escherichia coli genome. These were based on experi-
mentally measured tRNA concentrations and charging.
Unlike previous models, we relaxed the constraint of
fixed translation rates and allowed for observed changes
in tRNA availability under differing conditions to affect
translational speeds of codons.
Our model was based on that of Zhang et al. (10), which

can efficiently compute translational profiles owing to de-
terministic rates for each codon. This was essential, given
the large number of profiles that needed to be generated
for each of the different tRNA availabilities. Furthermore,
because our approach focused specifically on the local

translational rate along the mRNA, we did not require
additional information such as initiation and termination
rates not known for most transcripts yet necessary for
many alternative modeling approaches (9,19).

Using this tool, we investigated how features of the
translational profiles varied under differing conditions
and developed a method to assess the sensitivity of tran-
scripts to shifts in the tRNA availability.

MATERIALS AND METHODS

Sequence and tRNA availability data sets

We applied the described methods to all E. coli K-12
coding sequences (GenBank accession number:
NC_000913.2). Availability of tRNAs was obtained
from two experimental data sets: (i) tRNA concentrations
measured at different growth rates (12)—in this data set,
the concentrations for Gly1 and Gly2 as well as the con-
centrations for Ile1 and Ile2 are treated collectively, and to
obtain the individual concentrations, the values were split
according to the ratio of the gene copy numbers for the
two isoacceptors (Gly1:Gly2=1:1, Ile1:Ile2=3:1) and
(ii) tRNA charging values at different times after leucine
starvation (11)—absolute concentrations were obtained by
multiplying the charging values with the concentrations at
a growth rate of 2.5 doublings per hour, taken from (12).

Codon translation rates

Our method to estimate codon translation rates from
tRNA concentrations is based on the calculation of the
tRNA adaption index (21). The adaptiveness value Wi for
each codon i that is recognized by ni tRNA isoacceptors is
defined as

Wi ¼
Xni

j¼1

ð1� sijÞtRNAij, ð1Þ

where tRNAij denotes the concentration of the jth tRNA
that recognizes the ith codon, sij is a selective constraint on
the efficiency of the codon-anticodon coupling, with each
value adopted from (21) and related to one wobble pairing
(Supplementary Table S1). The codon-anticodon recogni-
tion pattern is defined according to Crick’s Wobble rules
(22), with codons grouped into blocks of four elements
reflecting all possible interactions (Supplementary
Figure S1). Formulas for the calculation of adaptiveness
values, Wi, for each element n in a block are defined in
Supplementary Table S2 and taken from (21). As an ex-
ception, the adaptiveness value for the AUA codon is
calculated as WAUA ¼ ð1� sL:AÞtRNALAU.

The s-value for recognition of the CGA codon by the
ACG anticodon is high resulting in a low rate for this
codon (about two orders of magnitude smaller than the
next highest rate). This rate is sensitive to this particular
s-value, and owing to its extremely low value, it dominates
the analysis. This has been recognized previously (10,20)
and therefore we set the s-value for this interaction to
0.9172 as used by (10), which better matches experimental
data.

Sc1c2

c1

rbfA ATGGCGAAAG...
ATGTCTCAGG...
ATGATTCAGT...
ATGCCAGTTT...

xapA
yeaI
abrB

Gene Sequences

Codon Translation Rates

tRNA Availability
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General Features

Leu1Leu2 Ala1 Ile1

R
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Figure 1. Overview of the workflow used to estimate translational
profiles and analyze general features and sensitivities. The main
inputs are tRNA availabilities (concentrations and charged fractions)
and the gene sequences to be analyzed. In this study, several different
sets of tRNA availabilities are used. From these, codon translation
rates are calculated and translational profiles generated for each
sequence. Profiles are then analyzed in isolation by looking at general
features that can be further explored in terms of genome-wide distri-
butions and by comparing changes to profile shapes owing to varying
tRNA availability under different conditions (sensitivity analysis).
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To obtain the rate ri for each type of codon i, the
adaptiveness values are normalized by the sum of the
values over all codon types, giving the probability for
the coupling of a matching tRNA (20). To account for
variations in total tRNA pool size between data sets,
this value is multiplied by the sum of all tRNA concen-
trations in the pools

ri ¼
Wi

P64

i¼1

Wi

X
tRNA: ð2Þ

Translational speed profiles

For the generation of a translational speed profile along a
coding sequence, each codon i within the sequence is
assigned a translation time ti. We assume that the trans-
lational rate of a codon is proportional to the available
charged cognate tRNA (10), which gives an expected
codon translation time of ti ¼ 1=ri (20). Smoothed trans-
lational profiles were then generated by averaging the
codon translation times over a centered sliding window
of 19 codons. This window size is adopted from (10) to
incorporate possible local effects of the mRNA sequence
and is based on the ribosomal footprint.

Translational sensitivity

To investigate the sensitivity of profiles to shifts in tRNA
availability, comparisons were made between profiles
before and after a shift. For each data set, we designated
a reference profile, ‘c1’, to capture the profile under
standard conditions: either 2.5 doublings per hour for
growth rate data or t=0min for leucine starvation.
Profiles for comparison, ‘c2’, were then generated for the
remaining conditions (growth rates of 0.4, 0.7, 1.07, 1.6
doublings per hour and t=2, 7, 17, 32min after leucine
starvation). A sensitivity measure was defined Sc1c2 as the
sum of the absolute differences between the translation
times of each codon j within the smoothed profiles ‘c1’
and ‘c2’. The resulting absolute sensitivity was then
normalized by the length l of the profile to facilitate com-
parisons between genes of differing lengths

Sc1c2 ¼

Pl

j¼1

j tc1j � tc2j j

l
: ð3Þ

Threshold calculation

To analyze general features of a translational profile in
relation to characteristics of the entire genome, we used
a threshold that captured the average codon speed of all
smoothed translational profiles under the corresponding
reference condition. A single threshold was used for each
data set to enable a fair comparison between conditions.
This threshold enabled us to identify regions in a profile
that displayed slower translational rates than the rest of
the genome, with deep minima highlighting possible
points at which translational pausing might occur (10).
The threshold for the growth rate data set was 0.2191

(from 2.5 doublings per hour), and for leucine starvation,
it was 0.2577 (from t=0min).

General profile features

To capture general features of the translational profiles,
we calculated (i) the average speed at which a sequence is
translated, corresponding to the arithmetic mean across
the smoothed profile; (ii) the slowest point, defined as
the longest translation time within the smoothed profile;
(iii) the drop count, given by the number of times the
smoothed profile drops below the threshold (if the entire
profile is below the threshold, the drop count is set to 1);
and (iv) the maximal drop length, calculated as the width
(in numbers of codons) of a profiles longest region below
the threshold (profiles that entirely lie below the threshold
are not included in the analysis of this feature).

Functional enrichment analysis

Lists of UniProt accession numbers were generated for the
10% most and 10% least sensitive gene sequences under
each condition of interest. Pseudo genes and nucleotide
sequences were excluded from these lists. Functional en-
richment was then performed using the AmiGO term
enrichment tool (23). All protein-coding sequences from
E. coli were selected as the background set for com-
parison, and other parameters took default values: ‘use
IAEs in calculation’=yes, ‘maximum p-value’=0.01,
‘minimum number of gene products’=2.

Genome-wide visualization

Features of the E. coli-coding sequences were visualized
for the whole genome using the Circos tool (24). Pseudo
genes were excluded from this analysis. To capture general
features of genes clustered on the genome (e.g. owing to
operon structures), the genome was divided into 200
stretches of 23 198 bp and a heat map produced of
averages over these stretches.

RESULTS

Codon translational speeds vary between conditions

To investigate how known changes in tRNA availability
influence translational elongation in E. coli, we used two
published experimental data sets (‘Materials and
Methods’ section). The first data set provides tRNA con-
centrations in E. coli growing at rates of 2.5 (standard),
1.6, 1.07, 0.7 and 0.4 doublings per hour (12). The second
data set records tRNA concentrations and charging levels
in E. coli before (t=0min) and at four time points (t=2,
7, 17, 32min) after leucine starvation (11). From these
concentrations and charged fractions, we were able to
estimate codon translation rates using a method based
on the tRNA adaptation index (21). This approach was
chosen because it has been shown to fit reasonably well to
experimental data (9). It also provides a standardized way
of applying our approach to alternative organisms where
experimentally measured tRNA concentrations may not
yet be available (i.e. only tRNA gene copy numbers are
required to estimate standard rates).

Nucleic Acids Research, 2013, Vol. 41, No. 17 8023
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The speed at which a particular codon is translated
depends on the availability of the cognate tRNAs. Thus,
the described shifts in tRNA abundance mean that local
translation rates of codons can vary under different con-
ditions (Figure 2).
For the growth rate data set, as the growth rate de-

creases from 2.5 to 0.4 doublings per hour, a decrease in
the concentration of most tRNAs leads to a slowdown of
translational speed for nearly all codons (up to 2-fold,
sustained response with major shift occurring between
growth rates of 1.6 and 1.07 doublings per hour;
Figure 2a). This data set does not include charged frac-
tions of the entire pool, and therefore the influence of
partial charging on codon rates is not captured here.
In contrast to the effectively uniform changes across all

tRNAs for differing growth rates, the charging pattern
during leucine starvation leads to differential rate
changes that includes both slowing down and speeding
up of codon rates (Figure 2b). The codons showing a
pronounced speed up at all times are those coding for
alanine, histidine and proline (up to 3.5-fold for Ala).
As expected during leucine starvation, the largest
decrease in availability is observed for the tRNALeu

isoacceptors. This change is observed for all times, and
the translational speed of all leucine codons decreases
(up to 24-fold for the codons read by tRNALeu1,2,3 and
up to 5-fold for the codons read by tRNALeu4,5).
In addition to these sustained responses, temporal

changes were also observed during leucine starvation for
some codons. Specifically, owing to the large decrease in
charged fraction of most tRNAs measured at time point
t=17min, the translation rates of the corresponding
codons are temporarily slowed down (e.g. for Glu, Phe,
Lys, Ile, Gln, Asn, Arg, and up to 4-fold for the Ile codon
AUA).

General features of the translational profiles

In addition to investigating the translational rates for in-
dividual codons, we attempted to capture the speed of
ribosomal movement along an mRNA transcript. This
depends on the choice and ordering of codons. To this
end, we used a similar approach as in (10) and calculated
averaged (smoothed) translational speed profiles for all
E. coli genes under each growth and starvation condition
(‘Materials and Methods’ section). These were then
analyzed in terms of four general features as summarized
in Figure 3a. As we find many profiles sensitive to the
previously discussed changes in codon translation rates,
the distributions of these features across the E. coli
genome vary between different conditions (Figure 3b
and c).

For the growth rate data, owing to translational profiles
slowing down as the growth rate decreases, the distribu-
tions of average translation time and slowest translation
time are shifted to higher values, and the skew toward
longer times becomes more pronounced. If average time
is regarded as a proxy for translational efficiency and the
slowest point as a presumed rate limiting pausing site,
these findings imply that under low growth conditions, a
larger number of genes are translated less effectively.

The slowest points could, however, also link to attenu-
ation sites required for co-translational folding. If minima
below the threshold relate to the latter, we would expect a
limited number of pronounced drops possibly correspond-
ing to protein domains (10). However, as many profiles
fluctuate close to the threshold, crossing it several times,
we find a broad distribution of this feature. As the growth
rate decreases, the number of drops gets concentrated
and limited to lower values. At growth rates of 1.07, 0.7
and 0.4, there are almost no profiles that show >15, 10 or
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Figure 2. Estimated codon translation rates vary owing to differences in tRNA concentrations and charging. For both (a) growth rate data and
(b) leucine starvation data, the absolute values of the codon translation rates at standard reference conditions are shown on the bottom subplots
(growth rate of 2.5 doublings per hour and t=0 for leucine starvation). Codons are colored according to the amino acid they code for. The top four
subplots show the fold change in the rates, r, under each condition compared with the reference condition, log2ðr=rrefÞ. During leucine starvation,
both decreases and increases in codon rates are observed (e.g. codons for proline, histidine, alanine).
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5 drops, respectively. This is due to the general slowdown
resulting in neighboring drops caused by small fluctu-
ations near the threshold combining into single drops.
As a consequence, the distribution of the maximal drop
length becomes broadened toward higher values. We

associate wider minima with an increased chance of a
slowdown to actually occur during the stochastic elong-
ation process. A similar effect we attribute to large
numbers of neighboring drops and particularly deep
minima. In addition, at lower growth rates, many

Growth

Average Time Slowest Point Drop Count Max Drop Length

translation time translation time count codons

translation time translation time count codons

Starvation

(b)

(a)

2.5

1.6

1.07

0.7

0.4

t0

t2

t7

t17

t32

(c)

Figure 3. General features of translational profiles under differing conditions. (a) the four features that we analyzed for all profiles. Distributions of
the features across the entire E. coli genome for (b) growth rate and (c) leucine starvation data sets. Red vertical lines and labels denote the median
values of the distributions.
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profiles are slowed down so much that they remain
entirely below the threshold. This leads to their exclusion
from the analysis of the maximal drop length and explains
the large increase in the bin counting profiles with a single
drop.
For the leucine starvation data, when compared with

time point t=0min, the distributions of average trans-
lation time and slowest point are broadened and shifted
to higher values. Unlike under low growth rate condi-
tions, these features remain more symmetrically
distributed about their median value. For the drop
count and maximal drop length, we observe a temporal
response similar to the behavior described earlier in the
text at time point t=17min, where several rates see a
temporal decrease. In the distribution of the maximal
drop length, a single bin is found with a high frequency.
This corresponds to the window size used in profile
smoothing and is the result of a single slow codon
being able to pull the speed profile below the threshold
for the entire window length. This peak is not present at
time point t=17min where broader regions are shifted
below the threshold.
Further analysis of the drop count and maximum drop

length statistics was performed using thresholds
calculated for each condition separately (Supplementary
Figure S2). Although this did not allow for comparison
between conditions (owing to a drop having a different
minimum depth for each condition), it did enable us to
see how general profile shapes, in terms of drops, varied
in accordance with the average speed for that condition.
For the growth rate data, we found that drop-related
features were maintained across all growth rates
(Supplementary Figure S2a). This is due to the fairly
uniform rate changes ensuring that profiles maintain
similar shapes (although at a lower overall average
speed). In contrast, for the leucine starvation data,
temporal changes are seen in the distributions that high-
light large shifts in the drops present within the profiles
(Supplementary Figure S2b). This is the result of the less
uniform rate changes observed.
Under normal conditions, translational initiation is

thought to be the rate-limiting step for expression of
most natural genes (7). However, the shift toward
slower translation times that we see under some condi-
tions raises the possibility that some codons may become
sufficiently slow to further limit translation. Under this
scenario, there is the potential for ribosome queues to
form. The susceptibility of a gene to this type of event
is captured by the slowest point statistic (Figure 3). In
terms of the genome distributions, we find that ribo-
somes queuing is more likely under leucine starvation,
where larger rate changes enable particularly slow
points to form. To investigate this potential further, we
produced ranked lists of profiles in terms of their slowest
point and analysed the functional enrichment of the 10%
of genes containing the slowest points (Supplementary
Data S3). We found significant enrichment of only a
few common terms relating to the cell membrane and
transport processes, with the number of enriched terms
increasing for non-standard conditions.

Sensitivity of translational profiles

In addition to analyzing general profile features, we also
investigated to what extent individual profiles are sensitive
to changes in tRNA availability. To do this, we compared
profiles generated based on tRNA abundance under all
growth and starvation conditions to a respective reference
profile under standard conditions for each data set:
growth rate of 2.5 doublings per hour and time point
t=0min. A sensitivity value was then defined as the
gene length normalized absolute differences between
these two profiles (‘Materials and Methods’ section).
Sensitivity analysis across the entire E. coli genome
allowed for a ranking of the profiles to be performed,
highlighting genes that were particularly sensitive or
robust to fluctuating tRNA availability (Supplementary
Data Set S1).

Depending on codon choices, the sensitivity to changes
in tRNA abundance varies among E. coli genes. As the
expected time on a codon is calculated assuming an expo-
nential distribution, codons with tRNAs at low concen-
trations find that relatively small absolute fluctuations
have a particular large effect on their speed. This is espe-
cially evident in the analysis of the different growth rates,
which reveals that sequences containing several slow
codons, and in particular the very slow AUA codon,
have highly sensitive profiles. Hence, avoiding slow
codons seems to be one way to render a profile more
robust to translational rate variations (Figure 4 and
Supplementary Figure S3).

Possibly in relation to this finding, sequences coding for
essential genes were found to be more robust to variations
in tRNA availability and generally avoided slow
translating codons. In particular, the sensitivities of non-
essential genes were found to be significantly higher when
compared with essential genes under all conditions
(P� 4.6� 10�12; Supplementary Table S3). This might
be a partial effect of evolutionary pressure to efficiently
produce essential genes, where avoiding slow codons leads
to shorter average translation times. However, the import-
ance of maintaining a robust profile shape has been
recently demonstrated in experiments (5,6), where
removal of possible translational pausing sites through
overexpression of rare tRNAs leads to a decrease in
protein solubility. Therefore, both overall speed and the
need to maintain a profile shape for correct protein folding
are likely to play roles in the fitness of underlying gene
sequences as they evolve.

When considering the differential charging patterns
during leucine starvation, another possible mechanism to
maintain certain speed through a region was found. By
using codons with opposing effects, i.e. some codons
speed up, whereas other slow down, genes were able to
maintain relatively robust profile shapes. This effect is
clearly seen for the profiles of the histidine leader (hisL)
sequence at time points t=7min and t=17min after
leucine starvation (Supplementary Figure S5). At both
time points, the two histidine codons are accelerated by
approximately the same amount. However, at time point
t=17min, the effect on the smoothed profile is partly
compensated for by the slowdown of several preceding
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codons. Although it is difficult with only a limited number
of conditions to evaluate if this mechanism is widely used,
it does illustrate how multiple changes in tRNA availabil-
ity can precisely control translational dynamics.

Another implication of the opposing rate changes
during leucine starvation is a greater overall variability
in profile shapes across the genome when compared with
the different growth rate conditions. This is due to slower
growth rates affecting all codon translation rates in a
similar way, ensuring that qualitative features of the
profiles are maintained. In contrast, the differential rate
changes observed during leucine starvation provide a
mechanism for significant changes in profile shapes.

Although the majority of profiles saw a decrease in their
average speed under all conditions, the increased speed of
a few codons during leucine starvation did allow for
accelerated translational profiles of some genes. Figure 5
shows an example of two genes that show speed up of
translation at time point t=32min after leucine starva-
tion owing to this mechanism. Further characterization of
genes with large decrease in their average translation time
found significant enrichment of structural constituents of
the ribosome for time points t=2, 7, 32min after leucine
starvation (P< 0.01; Supplementary Data Set S2).

Functional enrichment of most and least sensitive genes

To investigate whether profile robustness or variability is
particularly important within groups of genes related to
specific functions, we considered the 10% most and least
sensitive genes with respect to their biological context. We
tested whether particular Gene Ontology (GO) terms were
significantly enriched (P< 0.01) when compared with the
entire E. coli genome (‘Materials and Methods’ section;
Supplementary Data Set S2).

One would expect that, if shifts in tRNA availability is
used as a control mechanism in E. coli, genes with regu-
latory roles or those only expressed under specific tRNA
conditions (e.g. transiently expressed genes needed during
a stress response) would be most sensitive to these
changes. In contrast, genes playing an essential role or
those with broad functionality needed at all times should
display more robust profiles, ensuring changes in tRNA
availability do not significantly affect protein production.
Supporting this hypothesis, analysis of the 10% most

sensitive genes under different growth conditions revealed
enrichment of genes involved in regulatory functions and
specifically DNA-dependent regulation of transcription.
Although the GO terms related to this are significantly
enriched within the most sensitive genes at a growth rate
of 1.6, the number of terms decreases as growth rates de-
creases. At a growth rate of 0.4, where changes compared
with the standard growth rate 2.5 are most pronounced,
only a few terms related to biofilm formation, pilus for-
mation, lipopolysaccharide metabolism and defense
response remain significantly enriched. This reduction in
the number of enriched terms is likely due to larger
changes in codon rates affecting a much broader range
of genes. Thus, only rare terms in relation to the back-
ground set are retained under these conditions
(Supplementary Data Set S2).
When analyzing the 10% least sensitive genes, the

number of significant terms increases at lower growth
rates (Supplementary Data Set S2). Owing to relatively
small changes across a wide variety of different genes,
only a few GO terms are enriched at a growth rate
of 1.6. As the growth rate slows, larger rate changes
occur and significant enrichment of GO terms related
to metabolic functions (e.g. glycolysis, energy deviation/
cellular respiration, nucleotide metabolism) or
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Figure 4. Changes to tRNA availability non-uniformly influence translational profiles across the genome. Comparison of two profiles taken from the
(a) 10% most sensitive and (b) 10% least sensitive genes. These show the effect of changing rates for different leucine codons 2min after leucine
starvation. The high sensitivity of yhgN is mainly caused by the three low rate leucine codons CUU, CUC and CUA that vary greatly between these
conditions. In comparison, these codons do not occur in the less sensitive sequence btuE, where only the fast CUG codon and the two less variable
UUG and UUA codons are used. yhgN codes for an annotated non-essential inner membrane protein and btuE for a non-essential glutathione
peroxidase. Red lines show the smoothed reference profiles before leucine starvation and green lines show the profiles 2min after leucine starvation.
The blue horizontal line indicates the threshold value used for the analysis of general profile features. Bars showing local codon speeds are colored in
dark gray for reference condition and in light gray for starvation condition. To ensure the profile shape is clearly visible, some bars extend beyond
the bottom of the plot. The annotation at the bottom shows all leucine codons, the three highly variable low rate leucine codons are shown in
magenta and the faster and more robust codons are shown in black. Sc denotes the sensitivity value and Tc the average translation time under the
respective condition c.
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translational machinery (e.g. ribosomal subunits, tRNA
aminoacylation) are observed.
Data for starvation conditions showed enrichment of

similar terms related to metabolic and translational func-
tions within the 10% least sensitive genes and enrichment
of terms related to transcriptional regulation within the
10% most sensitive genes. In both cases, the number of
significantly enriched terms was highest at time point
t=17min, where a major shift in translation rate occurs
for most codons.

Increased sensitivity of regulatory leader sequences

Closer inspection of particularly sensitive genes high-
lighted an interesting regulatory mechanism that consti-
tutes a way in which codon rates can significantly
influence protein expression, even though they may not
be rate limiting themselves.
In bacteria expression of amino acid biosynthesis

operons are commonly regulated by transcriptional at-
tenuation (25,26); a mechanism mediated by a leader
region of the mRNA transcript preceding the structural
genes of the operon. This leader mRNA can form two
different and mutually exclusive stem-and-loop structures
that either lead to premature termination of transcription
or allow for transcription of the structural genes. The for-
mation of a certain secondary structure is only possible if
the required regions are not shielded by a translating
ribosome. Hence, the decision for either of the structures
depends on the efficiency with which the leader region is
translated. This in turn is controlled by several regulatory
codons that code for the amino acid related to the biosyn-
thesis operon and where the speed of translation is highly
sensitive to the abundance of cognate charged tRNAs.
We found the translational profiles of several leader se-

quences among the 10% genes that are most sensitive to
measured changes is tRNA abundance. Specifically, the
leader peptide leuL (27) of the leucine biosynthesis

operon leuLABCD was found to be amongst the five
most sensitive sequences at all times after leucine starva-
tion. The deficiency of charged tRNALeu leads to a slower
translation of four adjacent regulatory leucine codons, re-
sulting in a large slowdown of the smoothed profile
(Supplementary Figure S4a). Ribosome stalling at these
codons supports the formation of the antiterminator and
thus allows transcriptional read through to the structural
genes.

A similar effect is observed within the leader sequences
ilvL (28) and ivbL (29) controlling expression of two
operons involved in valine and isoleucine biosynthesis
(ilvGEDA and ilvB). During leucine starvation, we find a
large slowdown at the regulatory Leu codons
(Supplementary Figures S4b and c). Ribosome stalling
at these codons prevents formation of the terminator
and leads to increased expression of these operons.

The leader sequence hisL (30) of the histidine biosyn-
thesis operon hisLGDCBHAFI is an example of a highly
sensitive sequence with a more variable response to differ-
ent conditions (Supplementary Figure S5). Under low
growth rate conditions, translation of the hisL leader
sequence slows down owing longer translation times at
several codons including the seven regulatory histidine
codons (Supplementary Figure S5a), allowing for tran-
scription of the operon. In contrast, translation of the
histidine codons is accelerated during leucine starvation
(Supplementary Figure S5b), which allows for the termin-
ator to form and transcription of the operon to halt. As
discussed earlier, this effect is party compensated for at
time point t=17min owing to a slowdown of other
codons. It is not obvious why histidine would exhibit a
more variable response. However, it may relate to the
relatively rare usage across the genome leading to a less
highly expressed set of biosynthesis genes and therefore
reduced evolutionary pressure for strict regulation
(Supplementary Table S4).
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Figure 5. Selective charging of specific tRNAs under leucine starvation increases the translational speed of some genes. Shown are two sequences
where the translation is accelerated during leucine starvation. (a) asr codes for an annotated non-essential acid shock-inducible protein and (b) rplL
for an essential 50S ribosomal subunit protein. Red lines show the reference profiles at t=0min and green lines show the profiles t=32min after
leucine starvation. The blue horizontal line indicates the threshold value used for the analysis of general profile features. Bars showing local codon
speeds are colored in dark gray for reference condition and in light gray for rates that are decreased under starvation conditions. To ensure the
profile shape is clearly visible, some bars extend beyond the bottom of the plot. Codons that show an increased rate under this condition are
annotated in magenta, and the vertical lines denote the value of the accelerated speed. Sc denotes the sensitivity value and Tc the average translation
time under the respective condition c.
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Non-uniform and temporal changes across the genome

With the aim of providing a more holistic view of how
sensitivities vary across the entire genome, between condi-
tions and times, and to discover possible links to other
genomic features such as GC content and codon adapta-
tion index (31), the Circos visualization tool was used
(‘Materials and Methods’ section). Figure 6 shows
genome-wide sensitivity for both data sets, and all condi-
tions averaged over small regions of the genome and for
several selected groups of individual genes.

When comparing between conditions, quantitative dif-
ferences in the sensitivity profiles are revealed. The growth
rate data set displays near uniform increases in sensitivity
across the entire genome as the growth rate slows. This is
most evident from the averaged heat maps (Figure 6a) that
transition to deeper red values (increased sensitivity). As
discussed previously, this relates to more uniform shifts
found in all codon rates as growth rate decreases.

In contrast, after starvation, a far more specific
response with temporal features is observed (Figure 6a).
Particular regions in the genome are found to be highly
sensitive or robust, and large differences in sensitivity are
observed for specific time points. For example, at
t=17min after leucine starvation, numerous localized
points of high sensitivity arise. These specific responses
are due to limited sets of codons displaying differential
rate changes. Codon composition is known to vary
between genes with differing functions (32), and therefore
shifts in specific codon rates that might be overexpressed
for genes with a particular function enable translational
changes to affect certain functional subsets of genes that
are often clustered in operon structures.

It is possible that such a localized shift in tRNA avail-
ability at t=17min after leucine starvation could be an
experimental artifact. However, this seems unlikely owing
to two main reasons. First, measurements of tRNA con-
centrations and charging are performed using a custom
microarray that includes 18 replicates for each probe to
help improve accuracy and reduce measurement errors
(11). Second, although errors could still be introduced
during sampling and sample preparation, if this were the
case, then because a tRNA sample is prepared as one, we
would expect all of the tRNAs to be affected in a non-
specific manner. We do not find such broad differences in
the tRNA availabilities, with the majority following a
similar trend to measurements made at time points before
(t=7min) and after (t=32min). Therefore, we believe
that the temporal changes we see are accurately captured.

To better illustrate the variety of responses seen, five
regions were selected containing genes of differing types;
see highlighted points (i–v) in Figure 6a. Gene-level plots
of sensitivity were then produced for both data sets and all
conditions (Figure 6b).

Leader sequences were contained within regions (i) and
(iii) for the leucine and histidine biosynthesis operons, re-
spectively. Comparing between the data sets, the leucine
leader (leuL) sees a large increase in its sensitivity under
leucine starvation, whereas the structural genes down-
stream display virtually no change. This is expected as
leucine biosynthesis capabilities are not necessarily

required at slower growth rates but will be after a
targeted starvation event. Moreover, as the structural
genes for amino acid production form a core process for
the cell, selection is likely to have acted to improve both
efficiency and robustness of translation for these genes.
Conversely, the hisL sequence sees elevated sensitivity

under virtually all conditions and a more variable
response after leucine starvation. However, once again,
the structural genes of the pathway display more robust
profiles, although to a lesser extent than for leucine bio-
synthesis and likely due to histidines much rarer usage
(Supplementary Table S4).
Genes with low CAI and GC% values were contained

within region (ii). These displayed increased sensitivity
and a much greater variability in the size of the response
seen when compared with other regions. For example,
cohE (a predicted repressor protein) only sees increased
sensitivity at slower growth rates, whereas ymfI (an
uncharacterized protein) displays strong sensitivity under
all conditions.
The range of CAI and GC% values observed in this

region revealed a link between these sequence-based
measures and profile sensitivity. Specifically, when
comparing CAI to sensitivity values under all conditions,
highly significant correlations were found (Spearman’s
rank, P � 0:01; Supplementary Table S5). Extending
this analysis to GC% also yielded significant correlations.
However, the goodness of fit for these was much less, and
in several cases, it was extremely low (R2 ¼ 0:03 for t=2,
7 and 32min after leucine starvation).
The link between CAI and sensitivity likely stems from

the fact that the CAI relies on a set of highly expressed
genes for calculation of codon biases (31). As highly ex-
pressed genes are likely to have experienced strong evolu-
tionary pressure to maintain robust profiles under normal
conditions, biases contained within these genes will
become captured by the CAI value. Supporting this hy-
pothesis, we found that when comparing with conditions
where rates deviated more significantly from standard
conditions, i.e. after leucine starvation, the goodness of
fit for the correlations drops from an average R2 value
of 0.445 between growth rate conditions, to 0.362 under
leucine starvation (Supplementary Table S5).
Region (iv) contained two untranslated nucleotide se-

quences (sibD and sibE) that we would assume are uninflu-
enced by tRNA availability. These genes both displayed
increased sensitivity under all conditions. Assuming there
exists no evolutionary pressure on these sequences for
reduced sensitivity, we tested whether the sensitivity of
untranslated nucleotide sequences was higher than for
protein-coding sequences (Supplementary Table S3). As
expected, significant differences were observed for
growth rates of 1.07, 0.7 and 0.4 doublings per hour and
at 17min after leucine starvation (P-value< 2.2� 10�16;
Supplementary Table S3).
Lastly, region (v) contained a set of essential genes that

form structural constituents of the ribosome and RNA
polymerase. As would be expected for genes expressed at
high levels and at all times, these display low sensitivities
to all conditions and vary together in a highly uniform
way.
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(a)

(b)

Figure 6. Genome-wide visualization of translational profile sensitivities. All plots display the entire E. coli genome and positions within the
chromosome are indicated on the outer rim in Mbp. (a) Averaged sensitivities across the entire genome. The genome is split into 200 equal
length portions, and averages are taken over genes that start within each region. Outer tracks show sensitivity heat maps (yellow= low, red=high)
for differing conditions: (left) growth rates of 0.4, 0.7, 1.07, 1.6 and; (right) time points t=32, 17, 7, 2min after leucine starvation. The next two
inner most heat maps show averaged general features of the genome. Specifically, the codon adaptation index (CAI) and GC%, with darker colors
relating to higher values. Inner most tracks (displayed as bars) correspond to essential genes (red) and nucleotide sequences that are not translated
(green). Each bar has a width the length of the gene it corresponds to, and bars are stacked in regions with high densities of essential genes or
nucleotide sequences. (b) Gene-level sensitivities for the five highlighted regions marked on the upper plots. These relate to (i) the leucine biosynthesis
operon leuLABCD; (ii) a region containing low GC% and CAI values; (iii) the histidine biosynthesis operon hisLGDCBHAFI; (iv) a region
containing two untranslated nucleotide sequences; and (v) a region containing several essential genes related to the 50S ribosomal subunit and
the RNA polymerase � subunit. The height and color of the histogram tracks relate to the gene sensitivity. Inner most tracks match the upper plots
displaying CAI, GC%, essential genes and nucleotide sequences. Highlighted regions are zoomed by a factor of �200 to ensure individual genes are
visible. Non-highlighted regions are shaded in light gray.
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DISCUSSION

In this work, we developed a computational workflow for
estimating codon translation rates based on tRNA avail-
ability. We used this to generate profiles that capture the
translational speed along a transcript. By considering ex-
perimentally measured tRNA availabilities under differing
growth rates and for time points after leucine starvation,
we were able to reveal several interesting ways in which
translation can be affected across the E. coli genome.

When analyzing general features of the profile shapes,
we found that for both conditions, a slowdown in average
translation speed occurred. This increased with slower
growth rates and remained fixed after an initial
slowdown during leucine starvation. These differences
were attributed to growth rate having a relatively
uniform effect across all codon rates, whereas leucine star-
vation displayed more differential changes, with the
majority of codons decreasing, but some increasing their
rate.

By assessing the sensitivity of the translational profiles
under different conditions, we found that as with the
average translational speed, gene sensitivity saw a
more uniform increase for decreasing growth rates,
and more differential changes during leucine starvation.
However, careful examination of the profiles did
uncover the exclusion of rare codons and the use of
codons with opposing rate changes to improve the ro-
bustness of some profiles.

Ranking genes in terms of their sensitivity to shifts in
tRNA availability showed that robust profiles related to
genes that were essential or involved in core functions,
whereas highly sensitive profiles were linked to genes
with more specific regulatory roles or which play
specific roles during a stress response. Furthermore,
many of the most sensitive genes were those where trans-
lational control was known to play a major role.
Specifically, leader peptide sequences for amino acid syn-
thesis operons were found to be highly sensitive. These
allow for small rate changes in specific codons to effect-
ively turn on or off the transcription of the structural
genes in the associated amino acid biosynthesis
pathways.

For most natural translational processes, ribosome ini-
tiation is believed to be the rate-limiting step (7), and
therefore the codon translation rates presented here may
not significantly contribute to protein levels themselves.
However, as we show, these rates can have indirect links
to protein expression via their impact on various features
of the translational speed profiles. Translational pausing
caused by clusters of slow codons is regarded as crucial in
some cases to ensure correct protein folding (4,10) and
enhance solubility (5,6), whereas stalls located near the
start of a transcript can have adverse effects of expression
by inhibiting ribosome initiation. The complexity and
often conflicting influences of translational rate changes
make our tool valuable for understanding and predicting
such effects.

An interesting future direction that builds on this work
is to incorporate a fuller description of the dynamical
changes to tRNA and ribosome pools during a change

in conditions. Here, we extend previous studies by
allowing for measured shifts in tRNA availability but
neglect possible transient changes as this takes place.
This could be particularly important when considering
the overexpression of a recombinant protein, where a
specific codon composition might lead to the depletion
of certain charged tRNA pools (33) or under amino-acid
limited growth conditions that have been shown to lead to
specific charging patterns (34). Moreover, it has recently
been found that codon composition of the entire transcrip-
tome, and thus tRNA demand, changes dynamically
under environmental stress (35).
Further refinement of our model could also be made

through incorporation of a wider range of potential
post-transcriptional modifications to tRNAs (13,14).
These modifications come in many different forms.
However, for our analysis, the most relevant are uridine
methyl-transferases that alter the wobble position 34
of certain tRNAs, causing changes in the recognition
and sensitivity of particular codon-anticodon pairings.
These can be incorporated by updating the rules for the
conversion from tRNA availability to codon translation
times.
The workflow developed here has solely been used for

understanding how translation of endogenous sequences
behaves under varying conditions, attempting to reverse
engineering how translational control is used by E. coli.
There is also the possibility to use the same workflow in a
forward engineering mode. Under this scenario, rather
than providing sequences and tRNA availabilities, a
required profile shape would instead be given. By using
the workflow within an optimization framework, it is then
possible to design genes with the rational use of slow and
fast codons that introduce required local translational
features. This approach would allow for future investiga-
tions into the possible effect that co-translational folding
can have on synthetic genes (e.g. to assist in the correct
domain structures being formed) and in the design of syn-
thetic leader sequences that, similar to bacterial regulation
of amino acid synthesis operons, enable a way of signifi-
cantly controlling gene expression through tRNA avail-
ability and transcriptional attenuation (25,26).
To test the feasibility of this approach, preliminary tests

were run on a library of synthetic genes variants (16). All
genes coded for the same amino acid sequence (a single-
chain antibody fragment), but each included differing syn-
onymous codon usage. Comparing variant profiles under
leucine starvation conditions showed a large variability in
the types of profile produced (Supplementary Figure S6).
Although further analysis was outside the scope of this
work, these findings did highlight the potential flexibility
for modulating profile shape to particular conditions while
maintaining a fixed protein sequence.
Finally, although this study further strengthens the im-

portant and diverse roles that tRNA availability plays in
controlling translational processes (4–6,20,25,36,37),
there remains a significant lack of data sets capturing
the temporal changes of both concentrations and
charging of individual tRNAs under different stress con-
ditions. These will be essential to broaden our under-
standing of tRNA-mediated translational control across
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the genome and for the potential application of this
knowledge to synthetic gene design (38). Furthermore,
by comparing these model predictions with new
high-resolution ribosome profiling techniques (39), we
have the opportunity to validate these approaches at
the genome-scale.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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