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ABSTRACT

Translation of protein from mRNA is a complex multi-
step process that occurs at a non-uniform rate. Vari-
ability in ribosome speed along an mRNA enables
refinement of the proteome and plays a critical role
in protein biogenesis. Detailed single protein studies
have found both tRNA abundance and mRNA sec-
ondary structure as key modulators of translation
elongation rate, but recent genome-wide ribosome
profiling experiments have not observed significant
influence of either on translation efficiency. Here we
provide evidence that this results from an inherent
trade-off between these factors. We find codons pair-
ing to high-abundance tRNAs are preferentially used
in regions of high secondary structure content, while
codons read by significantly less abundant tRNAs
are located in lowly structured regions. By consid-
ering long stretches of high and low mRNA sec-
ondary structure in Saccharomyces cerevisiae and
Escherichia coli and comparing them to randomized-
gene models and experimental expression data, we
were able to distinguish clear selective pressures
and increased protein expression for specific codon
choices. The trade-off between secondary structure
and tRNA-concentration based codon choice allows
for compensation of their independent effects on
translation, helping to smooth overall translational
speed and reducing the chance of potentially detri-
mental points of excessively slow or fast ribosome
movement.

INTRODUCTION

Translation of mRNAs into protein is crucial for cell vi-
ability and function and proceeds at a non-uniform rate
along transcripts (1). While much focus has been placed
on the translation initiation step that is often rate limit-
ing for endogenous genes (2,3), there is growing realiza-
tion that the variable dynamics of translation elongation
also play a crucial role in both fine-tuning expression lev-
els and ensuring the correct folding of soluble proteins (4–
6). Shifts in translational resources such as tRNA concen-
tration and charging, dramatically affect translational effi-
ciency (7–9) and have been suggested as a clear biomarker
in diseases such as breast cancer (10). Synonymous substi-
tutions that have long been thought to be neutral for protein
folding, are increasingly recognized as deleterious for pro-
tein biogenesis (11,12). Furthermore, synonymous codon
usage strongly influences translational efficiency. Optimiza-
tion of synonymous codon choice when designing recom-
binant genes, through minimization of rare codon use in
the expression host, in many cases leads to significantly in-
creased protein yields for mostly single-domain heterolo-
gous proteins (13,14).

The rate of translation of a single codon is determined
by the speed of delivery of the translationally competent
tRNA (i.e. aminoacylated tRNA by its cognate aminoacyl-
tRNA synthetase and complexed with the elongation fac-
tor in its GTP-bound form) to the A-site of the ribosome
and subsequent decoding events that take place at the ribo-
some. These include tRNA accommodation, peptide bond
formation and translocation (15). The decoding rates of
single codons vary by a factor of two (16), with proline-
decoding codons being the slowest (17). However, these
variations only marginally influence the elongation speed
in vivo (16,18). In contrast, tRNAs vary in their cellular
concentrations by up to 10-fold (19). Hence, a key determi-
nant of ribosomal speed during translation is the availabil-
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Figure 1. Trade-offs between mRNA secondary structure and tRNA
abundance can potentially smoothen overall elongation rate. (a) mRNA
secondary structure and cognate aa-tRNA abundance each affect elonga-
tion speed. (b) By trading-off the negative effect of one factor with the pos-
itive effect of the other, a more constant elongation rate can be maintained
along a transcript, reducing the chance of excessively slow or fast regions.

ity and delivery of the charged cognate tRNAs to the ribo-
some (8,9,20). Codons pairing to high-abundance tRNAs
are translated faster than codons read by low-abundance
tRNAs. Models capturing this relationship successfully pre-
dict points of slow translation where ribosomes potentially
pause, and have been validated using single protein studies
(4,21). Clustering of slow-translating codons do not solely
represent potential sites to attenuate ribosome progression
along mRNA. The significant role of biophysical interac-
tions between the ribosome, Shine-Dalgarno like sequence
motifs (22), mRNA secondary structure (23–25) and the
charge of the nascent amino acid chain (26) can also slow
down the elongating ribosomes. A fundamental limitation
of all these studies is that the potential aspects influencing
translational speed are considered in isolation, neglecting
the possibility of multiple factors acting in a coordinated
manner (Figure 1). Surprisingly, although detailed single
protein experiments have shown the significant influence of
each of these factors, recent in vivo genome-wide ribosome
profiling studies found neither in isolation as a good gen-
eral predictor of ribosome speed (26–28), suggesting a com-
peting effect between these factors. Thus, investigating each
factor independently will not yield coherent results. Only
integration of all contributing factors will yield a compre-
hensive picture of the control of the elongation process.

In this work we investigate the relationship between
tRNA abundance (4,8,9) and mRNA secondary structure
on the speed of translation elongation (Figure 1a). By as-
sessing the tRNA abundance of codons in strongly and

weakly structured regions of mRNAs, we find a clear re-
lationship that suggests these factors act in an opposing
manner on translational speed, potentially canceling out
their individual effects. We reveal that this feature holds
across both prokaryotes (Escherichia coli) and lower eu-
karyotes (Saccharomyces cerevisiae) with differing codon bi-
ases, also suggesting that the relationship is likely exploited
by many organisms. Moreover, using randomized genome
models and experimental expression data from a synony-
mous codon variant gene library, we illustrate selection for
this feature and the beneficial effect of this trade-off on gene
expression.

Together these findings highlight that while studying fea-
tures influencing translation elongation in isolation is es-
sential to gain clear mechanistic understanding, when con-
sidering such processes at a genome-wide scale and in the
context of living cells, contributions of all potential factors
must be integrated to gain a comprehensive understanding
of their coordinated actions.

MATERIALS AND METHODS

Sequence data and filtering

We applied the described methods to all coding se-
quences of E. coli K-12 (GenBank accession number:
NC 000913.2) and S. cerevisiae (GenBank accession num-
ber: GCF 000146045.1). Nucleotide sequences encoding
untranslated RNAs were excluded from the analysis. To en-
sure that other features related to translation initiation and
termination did not influence our results (29,30), the first
and last 51 bp (17 codons) of all coding regions were re-
moved before analysis. Highly expressed genes for E. coli
(N = 255) were taken from the Highly Expressed Genes
Database (HEG-DB) (31).

mRNA secondary structure

Experimentally determined secondary structure for
mRNAs in S. cerevisae were taken from a recent study (32).
E. coli mRNA secondary structure was predicted compu-
tationally by calculating the minimum free energy of a 101
bp centered sliding window using the Vienna RNAfold
software (33). Unless otherwise stated, a minimum 20 bp of
consecutive high (PARS score > 0 for experimental data or
predicted local free energy < −35 kcal/mol) or low (PARS
score ≤ 0 for experimental data or predicted local free
energy > −20 kcal/mol) secondary structure was required
for that region to be included in the analysis.

Estimating translation elongation speeds

To predict the local translational speed at each codon along
a transcript, we employed the same method as Zhang et al.
(4,21), making use of previously developed computational
tools (7). This approach assumes that translation elongation
is limited by diffusion of a cognate aa-tRNA to the ribo-
some. Thus, the instantaneous speed of a codon is propor-
tional to the concentration of the cognate aa-tRNA pool.
To account for potential local effects, for example clusters
of slow codons having a greater effect on translation in that
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Figure 2. Distributions of predicted codon translation times for protein
coding regions of mRNAs in the Saccharomyces cerevisiae and Escherichia
coli genomes. Upper plots (red) show regions with high mRNA secondary
structure and lower plots (blue) regions with low mRNA secondary struc-
ture. All analyzed sequences had a minimal region length of 20 bp. Green
vertical lines and the value in top right corner denote the median value
for the distribution. The shifts in codon translation times are statistically
significant in both cases, see Table 1 for details.

region, instantaneous speeds were smoothed using a slid-
ing window of 27 nt, which corresponds to the approximate
footprint of the ribosome (21). Predicted codon speeds were
taken from two studies: Reuveni et al. for S. cerevisiae (34)
and Zhang et al. for E. coli (4). Full details of the exact
translation times can be found in Supplementary Table S1.

Comparison of codon translation time distributions

Distributions of codon translation times for both S. cere-
visiae and E. coli where found to not be Gaussian in shape
(Figure 2; Table 1). Therefore, to avoid potential biasing
of summary statistics, median values were used to cap-
ture general translation times and non-parametric statisti-
cal tests (e.g. Mann–Whitney) were applied for comparisons
between distributions.

Functional enrichment analysis

Functional enrichment was performed using the AmiGO
term enrichment tool (35). All protein coding sequences
from S. cerevisiae were chosen as the background set for
comparison and default values were used for the analysis:
‘use IAEs in calculation’ = yes, ‘maximum P-value’ = 0.01,
‘minimum number of gene products’ = 2.

Gene sequence randomizations

Two randomization methods were used to destroy poten-
tial biases in synonymous codon choice and position within
individual genes, (i) synonymous codon shuffling: all syn-
onymous codons within a gene were randomly shuffled to
generate genomes in which codon usage and the amino
acid sequence/ordering were maintained for each gene, but
the synonymous codon ordering was lost and (ii) amino

acid shuffling: each codon position within a gene was shuf-
fled uniformly at random to generate genomes with the
same codon bias for each gene, but with different amino
acid sequence. For each of these methods 100 random-
ized genomes were generated and secondary structure and
tRNA abundance profiles produced as described above.
These formed the null-model distributions used for com-
parison to assess selective pressures related to synonymous
codon choice and amino acid ordering.

Expression data for �29 DNA polymerase synonymous
codon gene library

To assess how differences in the relationship between codon
choice and mRNA secondary structure affected translation,
we used absolute expression data from a library of �29
DNA polymerase synonymous codon variants (36). In to-
tal, this contained 39 gene variants of which 30 exhibited
measurable expression. Hence, only these 30 variants were
included in our analysis to avoid other factors that may have
led to lack of expression. In addition, mRNA secondary
structure for these variants was predicted using the same
method as described above.

RESULTS

Fast-translated codons are enriched in regions with high sec-
ondary structure propensity

To assess whether potential trade-offs are made between
tRNA abundance and mRNA secondary structure, we first
focused on S. cerevisiae for which experimental in vivo
mRNA secondary structure measurements are available
(32). We selected regions with consecutively high and low
mRNA secondary structure by considering the PARS score
at each nucleotide (threshold of >0 for high and ≤0 for low
secondary structure) and compared the average translation
time per codon based purely on tRNA abundance taken
from Reuveni et al. (34). We chose regions with a mini-
mal length (initially 20 bp) as single nucleotides in isolation,
even those with high propensity to be involved in secondary
structure, cannot slow down ribosomes. This ensured that
any localized effects that may manifest away from the codon
being considered would still be captured during the anal-
ysis and enabled us to focus on regions where such effects
would have most influence. In addition, to reduce other con-
founding effects due to initiation and termination, such as
codon bias to reduce mRNA secondary structure and fa-
cilitate translation initiation (3,30), we further excluded the
first and last 51 bp of all protein coding regions.

Comparison of the estimated codon translation times
(based on tRNA abundance) for regions of high and low
secondary structure showed a significant difference (P <
2.9 × 10−11, Mann–Whitney test; Figure 2; Table 1). For re-
gions with high structure we observed a bias toward codons
with higher tRNA abundance and therefore shorter transla-
tion times. In contrast, regions with low secondary structure
tend to be enriched in codons with low-abundance tRNAs
resulting in longer translation times. This is also clearly ev-
ident in many gene traces that show an anti-correlation be-
tween these two features (Figure 3).
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Table 1. Codon translation times for protein coding regions of high and low mRNA secondary structure across the S. cerevisiae and E.coli genomes

Regions Median time (a.u.)

Organism Rl High Low High Low �t P

S. cerevisiae 30 111 1237 44.5 (30.5, 57.4) 57.8 (45.9, 78.3) 13.3 2.9 × 10−11

20 2628 13 490 42.4 (30.0, 64.2) 53.5 (43.1, 78.7) 11.1 2.9 × 10−102

10 11 253 42 011 42.1 (30.0, 67.7) 50.2 (35.9, 73.6) 8.1 1.1 × 10−137

E. coli 30 1403 1709 68.1 (59.5, 83.0) 89.8 (75.2, 159.1) 21.7 1.1 × 10−105

20 2250 2677 67.8 (58.1, 83.1) 86.7 (71.6, 115.3) 18.9 1.4 × 10−127

10 4613 4994 66.6 (54.4, 83.3) 82.9 (66.0, 107.2) 16.3 8.7 × 10−166

Rl denotes the minimum region length in base pairs and �t the time difference between the median codon translation times in regions of high and low
mRNA secondary structure. Median times are shown with their interquartile range in parenthesis. P-values are calculated using a non-parametric Mann–
Whitney test.

S
ec

on
da

ry
 S

tr
uc

tu
re

 
P

ro
pe

ns
ity

 (
kc

al
/m

ol
)

E
lo

ng
at

io
n 

Ti
m

e 
(a

.u
.) aceB

Codon

Figure 3. Elongation speed and secondary structure propensity are anti-correlated as exemplified by the aceB gene in Escherichia coli. Codon elongation
times are calculated using the method of Zhang et al. (4). Light gray vertical bars represent the individual codon elongations times and the red line the
smoothed translational profile. Dips correspond to regions of slow translation. The dotted horizontal line represents a threshold under which translational
pausing is thought to occur (4). mRNA secondary structure predicted using Vienna RNAFold is shown by the blue line. Lower values correspond to
stronger secondary structure. The first and last 17 codons are removed from our analysis (dark shaded regions).

To ensure that this relationship was not limited to S.
cerevisiae, we performed similar analyses with E. coli. This
prokaryote exhibits a very different codon bias, enabling us
to assess the generality of this relationship. Experimental
mRNA secondary structure data is not yet available, thus
local mRNA secondary structure profiles were predicted us-
ing the Vienna RNAFold software (33), which has shown
a good resemblance of fit to in vivo data (37). Similar to
S. cerevisiae, we observed the same clear relationship be-
tween tRNA abundance and mRNA secondary structure
(Figure 3; Table 1).

An interesting difference between the two organisms was
the shape of the codon translation time distributions for
high and low structured regions (Figure 2). The S. cerevisiae
data shows a highly right-skewed distribution with a large
number of regions with slow translation times. This differ-
ence may be due to the greater diversity in the tRNA mod-
ifications, particularly in the anticodon loop, which would
lead to a broader range of potential codon translation times
that are not captured by our fixed estimates calculated from
tRNA abundance. This skew is greatly reduced for E. coli
with the distributions displaying a more normal Gaussian
shape (Figure 2). The precise reason for this difference is un-
clear, however, it may relate to the smoothing applied to the
E. coli data during computation of local secondary struc-
ture.

Another clear difference between the distributions for
each organism was the total number of high and low struc-
tured regions (Figure 2; Table 1). E. coli displayed a simi-
lar number of high and low structured regions, whereas S.
cerevisiae had much lower numbers of high structured re-
gions in comparison to low structured regions. A poten-

tial reason for this difference is the G/C content for each
genome. Analysis of all coding regions revealed G/C con-
tent of 40.1% for S. cerevisiae and 52.6% for E. coli. As G/C
residues have a greater chance of forming secondary struc-
tures, the reduced number of highly structured regions in S.
cerevisiae is likely due to this sequence bias.

In addition to these general differences, we found that
the S. cerevisiae distribution for low structured regions dis-
played a weak bimodal shape. To better understand whether
the low structured regions with particularly long translation
times had some functional significance, we carried out GO
enrichment analysis (Supplementary Table S2). This gene
group was significantly enriched in GO terms related to
membrane and transporter roles. This is interesting because
translational elongation dynamics can play an important
role in protein biogenesis including folding of local struc-
tural elements and membrane insertion (38) and transloca-
tion (39).

Next, we reasoned that in longer stretches with higher
secondary structure propensity codons pairing to high-
abundance tRNAs might be selected to counteract the ef-
fect of the secondary structure. To test this hypothesis, we
repeated the previous analysis for both organisms over a
range of minimal region length cut-offs from 10 to 30 bp.
Comparing the difference in average predicted codon trans-
lation time between the high and low structured regions we
again observed significant differences (P < 8.54 × 10−15,
Mann–Whitney test) and a clear enrichment of fast trans-
lated codons as the minimal region length cut-off increased
(Table 1). For S. cerevisiae this resulted in a 64% and for E.
coli, a 33% increase in the median translation times when
comparing region cut-off lengths of 10–30 bp. While the
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large spread of the underlying distributions (Table 1) means
that these changes are unlikely to be statistically significant,
in both organisms the general trends support the idea that
selection will act more strongly on regions with higher sec-
ondary structure propensity, which in turn requires much
greater differences in tRNA abundance to counter act it.

To test whether other gene features might influence the
observed trade-offs, regions were binned into sets based on
the genes in which they were found and similar compar-
isons of codon translation times for high and low structured
regions performed. First, we considered highly expressed
genes as more likely candidates for increased selection for
efficient translation. Again we found a presence of a signifi-
cant trade-off (P = 1.04 × 10−7, Mann–Whitney test), with
an overall shift to shorter average codon translation times
in regions with low and high secondary structure propensity
due to a strong bias toward more abundant synonymous
codons (Supplementary Figure S1–S2). This accounts for
highly expressed genes showing increased usage of tRNAs
with high availability, which in our model will lead to re-
duced translation times.

Second, we analyzed the potential influence of gene
length by partitioning genes into short (<500 bp), medium
(500–1500 bp) and long (>1500 bp) lengths. Notably, we ob-
served significant trade-offs in all categories, but no clear re-
lationship between gene length and codon translation time
for high and low structured regions (Supplementary Figure
S3).

Finally we assessed the amino acid composition of high
and low structured regions (Supplementary Figure S4). We
found a slight enrichment of some amino acids in high or
low structured regions. Alanine was commonly found in
high structured regions and lysine, asparagine, phenylala-
nine and isoleucine in low structured regions across both
organisms. This may be partially due to the sequences of
the codons encoding each amino acid. For example, amino
acids found in high-structured regions are coded for by
codons that are G/C rich, while amino acids found in low-
structured regions are coded for by A/T rich codons (Fig-
ure 4).

Codon bias differ between highly and lowly structured mRNA
regions

To better understand the specific codon choice in regions
of high and low mRNA secondary structure we separately
analyzed these groups and compared synonymous codon
usage for each amino acid (Figure 4). Note that codons for
each amino acid have been ordered from left to right in ac-
cordance to their tRNA abundance, i.e. with fast (left) to
slow (right) predicted translation times.

Similar to our previous analysis, we detected a clear bias
toward codons with shorter translation times (higher tRNA
abundance) in the highly structured regions. This bias is less
prominent or lost for the low structure regions. In many
cases for the experimental structural data of S. cerevisiae,
amino acids coded by a pair of synonymous codons, e.g.
phenylalanine (F), histidine (H), lysine (K), asparagine (N)
and tyrosine (Y), showed complementary ratios. More in-
terestingly, the biases we see in many cases are proportional
to the predicted translation time and therefore tRNA abun-

dance. This is evident for the majority of amino acids with
many synonymous codons, e.g. alanine (A), arginine (R),
serine (S), threonine (T) and valine (V) for S. cerevisiae, and
glycine (G) and leucine (L) for E. coli.

Codon choice and mRNA secondary structure are not
completely separable factors with changes to one poten-
tially influencing the other. The G/C composition of a
codon influence its propensity to form a secondary struc-
ture. We observed a tendency for highly structured regions
to be enriched with codons of higher G/C content. How-
ever, this relationship does not hold in all cases. For exam-
ple, the most abundant codon found in highly structured
regions for S. cerevisiae is GCT, even though codons GCC
and GCG that code for the same alanine amino acid could
potentially be used.

Notably, there were also several codons that displayed un-
usual characteristics. The GGC glycine codon in S. cere-
visiae exhibited very low usage across both high and low
structured regions even though it is read by major tRNA
and is thus predicted to have very high translation rate. This
may be due to the large number of modifications that S.
cerevisiae makes to tRNAs which may result in the actual
translation time for this codon being much slower than that
predicted from its tRNA abundance (40). Furthermore, we
observed preferences for faster translating codons in low-
structured regions for other amino acids. Specifically, in S.
cerevisiae for glutamic acid (E) and glutamine (Q) and in
E. coli for aspartic acid (D), glutamic acid (E), phenylala-
nine (F) and lysine (K). While at a first glance this appears
to go against our hypothesis of trade-offs helping to smooth
translational speed, it is important to note that the sequence
as a whole and not a single codon determine the propensity
for a codon to be involved in secondary structures and that
in many cases these may not be sufficiently large to interfere
with translation. Of the amino acids highlighted above, all
are encoded by two synonymous codons and are preferably
located in low structured regions due to their A/T content,
specifically at the third position.

Genome randomizations show selection for trade-offs be-
tween mRNA structure and tRNA abundance

The biases we observed in codon usage across regions of
high and low secondary structure, could merely be the re-
sult of specific codons having a greater propensity to form
strong structural motifs. Thus, next we generated random-
ized genomes using two different approaches and assessed
whether similar trade-offs in tRNA abundance and mRNA
secondary structure were still present (for more details on
the randomization see ‘Materials and Methods’ section).
By maintaining the codon usage in each individual gene,
but randomizing the order within each sequence, we will
assess whether the observed trade-offs naturally arise from
the codon composition of the genome. The first randomiza-
tion method shuffled the synonymous codon usage within
each gene thereby keeping the amino acid sequence intact.
The second randomization method shuffled all the codons
in each gene, resulting in a changed amino acid and codon
order, while the codon usage is maintained. Because the
secondary structure of these randomized genomes will dif-
fer from the original, we computed their secondary struc-
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Figure 4. Codon usage for protein coding regions of mRNAs with high and low mRNA secondary structure across the Saccharomyces cerevisiae and
Escherichia coli genomes. Separate plots are displayed for each amino acid, with upper plots (red) showing regions with high mRNA secondary structure
and lower plots (blue) regions with low mRNA secondary structure. Each plot displays the normalized usage of each codon for the associated amino acid
on a scale from 0 to 0.08 and codons are sorted from left to right in terms of predicted translational times, see Supplementary Table S1 (stop codons are
excluded), fastest (left) to slowest (right). Notice a clear bias toward faster codons in regions with high secondary structure that is not always related to
G/C content in the second and third positions (e.g. in S. cerevisiae see the CCA codon for proline and GAA codon for glutamic acid, both of which display
a strong bias in highly structured regions even though other synonymous codons with greater G/C content exist they are, however, predicted to be the
fastest translated). Horizontal grid lines are positioned at intervals of 0.01. Number in top left corner of each plot denotes the percentage of individual
codons shown in the plot in relation to the total number of codons contained within the total associated low or high mRNA secondary structure regions.
For example in E. coli, codons coding for alanine in low secondary structure regions correspond to 6.6% of all codons in low structured regions, while the
same codons in high secondary structure regions correspond to 13.7% of all codons in high structured regions.

ture using Vienna software package (33), see ‘Materials and
Methods’ section. Comparisons were only made to the E.
coli dataset in order to use a uniform approach when assess-
ing the secondary structure landscape of mRNAs between
the original gene set and the randomized counterpart.

We found that both randomization methods gener-
ated genomes with significantly reduced trade-offs between
tRNA abundance and mRNA secondary structure (Figure
5; P = 3.9 × 10−18 in both cases, one-sample Wilcoxon test).
Thus, the trade-offs cannot naturally arise from the codon
bias present in the host suggesting that selection has oper-
ated to maintain this feature. A further interesting outcome
of this analysis were the significant differences between the

randomization methods themselves. Specifically, upon syn-
onymous codon shuffling the trade-off was reduced in com-
parison to the amino acid shuffling method (P = 3.2 ×
10−32, Mann–Whitney test). This suggests that synonymous
codon choice and the amino acid sequence play a signifi-
cant role in ensuring such a trade-off is present and offers
two mechanisms by which such a trade-off can be developed
and maintained.
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Figure 5. A strong selection pressure operates on the Escherichia coli
genome to select for trade-offs between tRNA abundance and mRNA sec-
ondary structure. Time difference is calculated as the difference of the me-
dian predicted codon translation time between high and low structured
regions. Greater negative values are evidence that these factors trade-off
their contributions to smoothen translational speed. The time difference
for E. coli is marked on the axis. The clear separation between both distri-
butions and the native E. coli genome is significant in all cases.

Trade-offs between tRNA abundance and mRNA structure
improves gene expression

The selective pressures we observed suggest that the trade-
offs made between tRNA abundance and mRNA sec-
ondary structure may play an important functional role.
To explore this in the context of protein expression, we an-
alyzed an existing experimental data in which 30 synony-
mous codon variants of a �29 DNA polymerase gene were
synthesized and expressed under a strong promoter in E.
coli (36). Each of these gene variants produced an identical
protein product. However, the varying synonymous codon
usage led to changes in the translation elongation dynam-
ics due to differing tRNA abundance and propensity of
each codon to participate in secondary structure along the
transcripts. Applying the same approach, we compared the
predicted local mRNA secondary structure with the tRNA
abundance for codons in high and low structured regions for
each gene independently. We reasoned that, if such trade-
offs help smoothen translational speed and enable more ef-
ficient protein expression, we expect that greater deviations
in tRNA abundance between high and low structured re-
gions will lead to higher protein yields.

Thus, we next calculated the time difference between the
median codon translation time in high and low structured
regions. Greater negative values mean that highly structured
regions exhibited an increased bias toward faster translated
codons (greater tRNA abundance), while low structured
regions showed increased bias toward slower translated
codons (lower tRNA abundance), implying that these fac-
tors trade-off their contributions to smooth overall trans-
lational speed. We found a significant negative correlation
between the predicted time difference in codon translation
times and the experimentally measured absolute protein ex-
pression (Figure 6; R = −0.5908, P = 0.0005), suggesting
that smoothing of translation rate along a transcript plays
an important role in improving protein expression.

For all gene variants the same promoter and ribosome
binding site (RBS) was used for expression to minimize po-
tential contextual effects that can influence transcription or
translation. However, interactions between the RBS and the

Figure 6. Synonymous codon choice in a synthetic gene effects expres-
sion level. Time difference is calculated as in Figure 5 as the difference in
predicted codon translation time between high and low structured regions.
Greater negative values correspond to stronger trade-offs between tRNA
abundance and mRNA secondary structure which exhibits a significant
negative correlation (R = −0.5908, P = 0.0005) with the absolute protein
expression. The red line represents a linear least squares regression fit (a
= −0.0869); points are colored (red = low, green = high) and labeled in
relation to the codon adaptation index (CAI) of each variant.

start of the coding sequence can significantly alter transla-
tion initiation rates (2,3). To assess whether the increased
expression we observed was due to such interactions we
used the RBS Calculator (2) to predict translation initia-
tion rates. This analysis revealed no relationship between
the predicted initiation rate and the protein expression level,
suggesting that the effects we observe are solely due to trans-
lation elongation in the coding region. This finding is sup-
ported by recent work showing that translation initiation
contributes minimally (∼1%) to expression variability of en-
dogenous genes, compared to a much larger contribution
(12%) for factors related to translation elongation (41). Fur-
thermore, only in cases where secondary structure between
the RBS and the start of a gene are high (rare for endoge-
nous genes) (3), such interactions significantly influence ex-
pression (36).

We also investigated whether other measures of transla-
tional efficiency might explain the relationship we observed.
The codon adaptation index (CAI) is a common measure
often used to predict the efficiency of translation of each
gene in the context of a particular host (42,43). It consid-
ers the codon usage in a set of highly expressed endogenous
genes and compares this to the codon usage in the gene of
interest. Values range from 0 to 1, with 1 representing a gene
with perfect adaptation to the hosts’ codon usage pattern
with predicted high expression, while 0 represents a poorly
adapted gene with predicted low expression. By overlay-
ing the CAI values on top of our existing results (see point
color in Figure 6), it can be seen that while there is no clear
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trend between CAI and protein expression (36). However,
we found that those variants with greatest expression tend
to have the lower CAI values. Because CAI values are based
purely on codon usages and considers an average across the
entire gene, the measure is unable to account for potential
local contextual effects that might affect a codons suitability
and translation speed (44).

DISCUSSION

Genome-scale analysis shows that a clear relationship be-
tween tRNA abundance and local mRNA secondary struc-
ture is maintained through codon choice across both E. coli
and S. cerevisiae genomes. We find that regions of high sec-
ondary structure contain codons read by high-abundance
tRNAs, while regions of low secondary structure contain
codons pairing to tRNAs with lower abundance. Given that
each of these factors in isolation significantly influences the
speed of translation elongation (23,24), the relationship we
observe suggests that a trade-off between their beneficial
and detrimental effects smooths overall translation rate.

The rate of elongation of a single codon is a sum of
several discrete processes, each of which depends on the
specific codon identity and each differently contributing
to the overall speed of decoding. These include: (i) pro-
cesses outside the ribosome, e.g. aminoacylation of tRNAs
by the cognate aminoacyl-tRNA synthetases, complex for-
mation with elongation factor and delivery by diffusion
to the ribosome (45) and (ii) decoding processes at the ri-
bosome, e.g. sampling and accommodation of the correct
tRNA, peptide bond formation and translocation from the
A- to P-site (15). Detailed kinetic data from elaborated in
vitro experiments show that among the 20 proteinogenic
amino acids, the amino acid proline is incorporated into
the nascent chain 3–6 times slower than the other 19 amino
acids (17,46). The cyclic sterics of proline affects transla-
tion rates at the peptidyl transfer step (17) and proline has
been associated with slow translation in ribosome profil-
ing experiments (28). New developments in ribosome pro-
filing that produce unbiased data on the position of ribo-
some fragments without using antibiotics to stall elongat-
ing ribosomes, suggest rather marginal differences in the
residence time of the ribosome at different codons in vivo
(16,18). In general, the residence time of the ribosome at
different codons when they are in the A-site differs by a
factor of ∼2, with GC-rich codons decoded at the slowest
rate (16). Furthermore, some slow translated regions, e.g.
codons at the 5′ end of the coding sequence or in the prox-
imity of Shine-Dalgarno-like sequences in prokaryotes, sug-
gest that other factors unrelated to the codon identity can
slow translation (18,22). Overall, the influence of the cellu-
lar tRNA concentration on elongation of the single codons
is the highest (16,20). Notably, proline codons, which are
also GC-rich are among the slowly translated ones, but only
consecutive proline codons cause ribosomal delays similar
to the rare codon-specific delays (16). The latter are much
rarer in the genomes and may only influence the elongation
speed of specific transcripts. Thus, at global scale the ac-
tive tRNA concentration (i.e. aminoacyl-tRNA) is a good
approximation of the ribosome residence time and conse-
quently the rate of elongation of each codon in vivo; other

discrete steps at the ribosome have rather a marginal effect
on the overall speed.

The reduction of excessively fast or slow translation rates
along an mRNA would be beneficial to increase the rate
of protein synthesis. Regions of excessively slow transla-
tional speed can lead to the formation of bottlenecks and
cause ribosome collisions and potential queuing or paus-
ing that may in turn trigger stress responses that prema-
turely recycle stalled ribosomes (47–49). Such problems
have been highlighted in models designed to optimize ex-
pression rates, with non-uniform translational speed lead-
ing to an increased chance of ribosome collisions that re-
duce overall expression (50). However, these models have
not considered the impact of the mRNA secondary struc-
ture in modulating the local translational speed. By assess-
ing the observed trade-off in a library of synonymous codon
variants, we find a significant trend whereby expression is
maximized when a strong trade-off is present.

A less intuitive aspect of the benefit provided by a
smoothed translation rate is why an increased translational
speed in regions of low secondary structure is not benefi-
cial to protein yield. From a purely translation-based per-
spective, an increased rate of elongation should directly im-
prove efficiency. It is therefore puzzling why selection for
less abundant tRNAs in this case would help. This confu-
sion can be addressed by considering mRNA degradation.
Recent experimental studies have shown that ribosomes sta-
bilize mRNAs by shielding it from degradation (51,52) and
models that incorporate dynamic shielding of mRNAs dur-
ing co-transcriptional translation more accurately capture
the observed in vivo decay characteristics (53). Thus, while
transcripts with codons with high tRNA abundance and
low mRNA structure would be most efficiently translated;
the higher translation rate correlates with a lower ribosome
density, which in turn increases the mRNA susceptibility
to degradation. Optimal protein production will therefore
arise from a complex trade-off between the many differ-
ent processes at work during protein biogenesis and max-
imization of a single attribute may not always lead to a pre-
dictable or desired outcome.

The non-random nature of mRNA sequences has long
been appreciated, with studies of randomized and shuffled
genomes and mRNAs showing selection for a variety of
features, e.g. the amino acid composition of proteins (54),
mRNA secondary structure (55) (although this has been
contested (56)) and synonymous codon choice across or-
ganisms (42,43) and within transcripts coding for genes with
differing functions (57–59). Non-random preferences are
also present in the use of codon pairs across genomes (60),
potentially due to the large differences that are observed
experimentally in their decoding speeds due to the specific
codons found up and downstream––referred to ‘codon con-
text’ (44). Moreover, many of these biases are not uniform
across mRNAs, but localized to specific regions that influ-
ence the correct folding of the cognate protein, facilitate
translation initiation due to reduced secondary structure at
the start of a transcript (30,59), have correlated ordering
of synonymous codons to ensure efficient recycling of tR-
NAs (61) and pause ribosomes through the formation of
strong secondary structures to aid in the accurate decoding
of codons at functionally critical points (62).
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Our results highlight that the separated analysis of the
impact of factors that alter translational speed, can miss
potentially important relationships that are maintained be-
tween several factors at once. The ability for tRNA abun-
dance and local mRNA secondary structure to trade-off
their detrimental and beneficial influences on elongation
rate means that their individual role cannot be disentan-
gled. Only when viewed in the context of the entire pro-
cess and with an understanding of their potential individ-
ual effects can we deliver valid interpretations of the data.
For this reason, our results may help to resolve a puzzling
finding from a genome-wide study of translation rate in E.
coli, where studying the effect of many different modula-
tors of translational speed in isolation showed only amino
acid charge of the translated codon as having a measurable
effect on translational speed (26). Furthermore, the connec-
tion we find suggests that many of the isolated relationships
between factors such as secondary structure or synonymous
codon choice and the non-random biases embedded within
mRNA sequences, may be strengthened when considered in
unison. For example, the role of these combined aspects on
pausing sites for co-translational folding has yet to be ana-
lyzed, with our results suggesting that a pause may be better
characterized by a combined negative effect on translational
speed, not only their individual contribution.

Related to this, our work may also offer some insight into
results from recent efforts in synthetic biology to perform
large-scale synonymous re-coding of genomes. Lajoie et al.
showed that it was possible to extensively recode using syn-
onymous codons, 42 highly expressed genes in E. coli (63).
Although reduced fitness (growth) was generally observed,
the cells often remained viable. However, there were several
cases in which specific synonymous codon substitutions had
a significant impact, resulting in unpredictable responses.
The relationship we have presented here may help to explain
these complex failure modes as mRNA secondary structure
and tRNA abundance can act either synergistically or an-
tagonistically. For example, high secondary structure cou-
pled with low tRNA abundance could lead to amplified
pausing of ribosomes. For highly expressed genes this could
lead to a severe sequestering of ribosomes that in extreme
conditions could hinder the expression of other endogenous
genes required for maintenance and growth. Validation of
this hypothesis will be the focus of future work.

Optimization of gene sequences is important for improv-
ing the yield of protein products. To date most methods
have relied on optimization of global transcript features
such as reduced secondary structure across the entire tran-
script or optimal codon selection (13,14,36,43). However,
such approaches often fail highlighting the need to address
the coordinated impact of different factors on translation
speed to improve expression. More recently, attempts have
been made to model the translational process in greater de-
tail, accounting for the influence of local effects along a
transcript (50). However, these are still often limited to fo-
cusing on a single determinant of translational speed such
as tRNA abundance or ordering constraints on the syn-
onymous codons used (61). Our work suggests a potential
extension to these models such that optimization is per-
formed based on the influences of two factors with the aim
of smoothing the overall translation rate, not maximizing

it. Moreover, it provides a rational and universal tool for
tuning expression of genes where certain secondary struc-
tures in the mRNA are unavoidable due to constraints on
the amino acid sequence.

Although under normal conditions concentrations of
charged tRNAs remain fairly constant, it has been shown
experimentally that tRNA abundance can vary for differ-
ing growth rates (64) and amino acid starvation conditions
(65). It is thought that such changes in availability may play
a role in maintaining efficient protein synthesis by matching
the varying demands placed on particular tRNA pools due
to fluctuations in transcript levels (66) or by enabling a tun-
ing of gene expression based on their functional role during
a stress response (7,57,58). Furthermore, there is growing
evidence that the dynamic modification of tRNAs can also
impact translation elongation speed of cognate codons to
efficiently tune their dynamics or potentially be the cause of
disease (67). Although such regulation of translation was
outside the scope of this study, it provides an interesting fu-
ture direction.

In summary, this study provides the first evidence of
a strong synergistic link between separate factors influ-
encing translation in prokaryotic and eukaryotic organ-
isms. This suggests that tRNA abundance and mRNA sec-
ondary structure together impose an important constraint
on codon choice in many organisms. As our knowledge of
how such mechanisms influence translation develops, piec-
ing together how these are integrated to control various as-
pects of this process will form an integral part in fully un-
derstanding how cells use such modulators to refine their
proteomes and will offer new methods for optimizing pro-
tein expression.
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