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LOCAL CLUB CONDENSATION AND L-LIKENESS

PETER HOLY, PHILIP WELCH, AND LIUZHEN WU

Abstract. We present a forcing to obtain a localized version of Local Club

Condensation, a generalized Condensation principle introduced by Sy Fried-

man and the first author in [3] and [5]. This forcing will have properties nicer
than the forcings to obtain this localized version that could be derived from

the forcings presented in either [3] or [5]. We also strongly simplify the related

proofs provided in [3] and [5]. Moreover our forcing will be capable of intro-
ducing this localized principle at κ while simultaneously performing collapses

to make κ become the successor of any given smaller regular cardinal. This

will be particularly useful when κ has large cardinal properties in the ground
model. We will apply this to measure how much L-likeness is implied by Local

Club Condensation and related principles. We show that Local Club Conden-
sation at κ+ is consistent with ¬�κ whenever κ is regular and uncountable,

generalizing and improving a result of the third author in [14], and that if

κ ≥ ω2 is regular, CC(κ+) - Chang’s Conjecture at κ+ - is consistent with Lo-
cal Club Condensation at κ+, both under suitable large cardinal consistency

assumptions.

1. Condensation and L-likeness

Besides the presentation of the forcing announced in the abstract, the central
theme of this paper is the relationship between generalized Condensation principles
(i.e. generalizations of consequences of Gödels Condensation Lemma) and other L-
like principles; we investigate the question of how close to Gödels constructible
universe the universe of sets has to be given that it satisfies certain generalized
Condensation principles. For definitions of generalized Condensation principles
that will be relevant to this paper see Section 2.

In [3], Sy Friedman and the first author showed that Local Club Condensation
allows for the existence of very large large cardinals, far beyond those compatible
with V = L - namely they showed, by using the method of forcing, that Local Club
Condensation is consistent with the existence of ω-superstrong cardinals. This was
further improved in [4] by showing that Local Club Condensation and Acceptability
are simultaneously consistent with the existence of ω-superstrong cardinals.

It is generally believed that the fine structural properties of L are necessary to
prove that various square principles hold in L. In [14], the third author showed
that Strong Condensation for ω2 is consistent with ¬�ω1

from a stationary limit of
measurable cardinals, thus giving additional support to this belief. One of the main
aims of this paper is to generalize his result to cardinals beyond ω2, replacing Strong
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2 PETER HOLY, PHILIP WELCH, AND LIUZHEN WU

Condensation for ω2 by Local Club Condensation at κ for κ ≥ ω2
1 and reducing

the consistency assumption to a 2-Mahlo cardinal.2 We further investigate weaker
square principles, Jónsson cardinals and Chang’s Conjecture style principles, all in
the context of generalized Condensation principles.

2. Condensation Principles

The definitions of Strong Condensation and Local Club Condensation apply to
models M of set theory with a hierarchy of levels of the form 〈Mα | α ∈ Ord〉 with
the properties that M =

⋃
α∈OrdMα, each Mα is transitive, Ord(Mα) = α, if α < β

then Mα ∈ Mβ and if γ is a limit ordinal, Mγ =
⋃
α<γMα. We will also let Mα

denote the structure (Mα,∈, 〈Mβ | β < α〉),3 where context will usually clarify the
intended meaning. Moreover we denote 〈Mα | α ∈ Ord〉 or any of its restrictions

by ~M .

If X is a substructure of (Mα,∈, ~M) for some α ∈ Ord, we say that X condenses

or is a condensing substructure of Mα if X is isomorphic to (Mᾱ,∈, ~M) for some
ᾱ ≤ α. More generally, if A is a structure for a countable language of the form

A = (Mα,∈, ~M, . . .) for some α ∈ Ord and X is a substructure of A with domain

X, we say that X condenses or is a condensing substructure of A if (X,∈, ~M�X)
condenses.

Local Club Condensation is the statement that if α has uncountable cardinality

κ and Aα = (Mα,∈, ~M, . . .) is a structure for a countable language, then there
exists a continuous chain 〈Bγ | ω ≤ γ < κ〉 of condensing substructures of Aα whose
domains have union Mα, where each Bγ = dom(Bγ) is s.t. |Bγ | = |γ| and γ ⊆ Bγ .

We will usually be in the situation that M = (L[A],∈, A) for some A ⊆ Ord and
~M = 〈Lα[A] | α ∈ Ord〉. We say that M is of the form L[A] in that case.

If κ = λ+ and λ is uncountable, Local Club Condensation at κ is the statement

that Mκ = Hκ and if α ∈ [λ, κ) and A = (Mα,∈, ~M, . . .) is a structure for a
countable language, then there exists a continuous chain 〈Bγ | γ < λ〉 of condensing
substructures of A whose domains have union Mα, where each Bγ = dom(Bγ) is
s.t. |Bγ | < λ and γ ⊆ Bγ .4

Note: The reason why one need not include the case α = κ in the above is

that if A = (Mκ,∈, ~M, . . .) is a structure for a countable language, then there is
a continuous chain of transitive, elementary substructures of A of size λ that each
have domain some Mᾱ, ᾱ < κ and have union Mκ. Now we may apply Local Club
Condensation at κ to the least substructure of that chain to obtain a continuous
chain 〈Bγ | γ < κ〉 of condensing substructures of A whose domains have union Mκ,
where each Bγ = dom(Bγ) is s.t. |Bγ | < λ for γ < λ, |Bγ | = λ for γ ∈ [λ, κ) and
γ ⊆ Bγ for every γ < κ.

1Local Club Condensation at ω2 implies Strong Condensation for ω2, see Theorem 1 below.
2A cardinal κ is 2-Mahlo if the set of Mahlo cardinals below κ is a stationary subset of κ. In

the first submitted version of this paper, our large cardinal assumption was a stationary limit of
ω-Erdős cardinals. The key hint on how to further reduce this consistency assumption was given
to the authors in personal communication by Boban Veličković.

3We assume some appropriate coding of the sequence 〈Mβ | β < α〉 here.
4If λ = θ+ is a successor cardinal, we may equivalently demand that |Bγ | = θ.
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In [3], the theorem below is shown assuming Local Club Condensation holds
in M, but all that is actually used is Local Club Condensation at κ, giving rise
to the following (we will abbreviate the conclusion of the theorem by saying that
Transitive Condensation at κ holds):

Theorem 1 (Friedman, Holy, Wu). [4, Theorem 88] If (M,∈, ~M) is a model of
Local Club Condensation at κ, where κ = (τ+)M, τ is an M-cardinal of uncountable
cofinality, F = 〈fα : α ∈ [τ, κ)〉 where each fα is a bijection from τ to α in M,

X ≺ (Mκ,∈, ~M,F, S)

where S is a set of Skolem functions for the above structure and X is transitive
below τ , then X condenses. In fact, X need not be an element of M for the above
to hold. 2

Strong Condensation is the statement that for every ordinal α, there is a struc-

ture Aα = (Mα,∈, ~M, . . .) for a countable language such that each of its substruc-
tures condenses.5 Strong Condensation for α (α ∈ Card) is the statement of Strong
Condensation for a single cardinal α together with the assumption that Mα = Hα.

As was observed in [4], Local Club Condensation at ω2 implies (by Theorem 1)
Transitive Condensation at ω2 which is easily seen to imply Strong Condensation
for ω2. In Section 4, we will observe that this is not the case for κ ≥ ω3, i.e. that
Local Club Condensation at κ does not imply Strong Condensation for κ.

We define one last version of Local Club Condensation that strengthens Local
Club Condensation at κ (we will observe that this is a proper strengthening in
Section 4).

If ω ≤ λ < λ+ < κ, Local Club Condensation in [λ, κ) is the statement that

Mκ = Hκ and if α ∈ [λ+, κ) and Aα = (Mα,∈, ~M, . . .) is a structure for a count-
able language, then there exists a continuous chain 〈Bγ | λ ≤ γ < κ〉 of condensing
substructures of Aα whose domains have union Mα, where each Bγ = dom(Bγ) is
s.t. |Bγ | = |γ| and γ ⊆ Bγ . If λ = ω in the above, we call the resulting principle
Local Club Condensation up to κ.

Note: Whenever λ0 < λ1 < λ1
+ < κ, Local Club Condensation in [λ0, κ) is

stronger than Local Club Condensation in [λ1, κ) which in turn is stronger than
Local Club Condensation at κ. If κ = λ++, Local Club Condensation in [λ, κ) is
the same as Local Club Condensation at κ.

3. Easy observations regarding L-likeness

Local Club Condensation implies the GCH (see [3, Lemma 1]). If κ = λ+ and λ
is uncountable, Local Club Condensation at κ implies 2λ = κ and 2<λ = λ, in fact
it is easily seen to imply that Hλ = Mλ has cardinality λ. We will see in Section
4 that it does not impose any further restrictions on the values of the continuum
function. Strong Condensation for κ implies that the GCH holds below κ, in fact it
implies that Mλ = Hλ has cardinality λ for every uncountable λ ≤ κ. We provide
a proof of this last statement.

Lemma 2. If κ is an uncountable cardinal, Strong Condensation for κ implies that
for every uncountable cardinal λ ≤ κ, Mλ = Hλ.

5Strong Condensation was originally introduced by Hugh Woodin in [13].
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Proof. This is part of the definition of Strong Condensation for κ if λ = κ. Thus
we may assume that λ < κ.

Assume x ∈ Hλ. Let N be a condensing elementary substructure of Mκ that
contains the transitive closure of x as a subset and has size less than λ. It follows
that x ∈Mλ, i.e. Hλ ⊆Mλ.

Let A be a Skolemized structure on Hκ witnessing Strong Condensation for κ
holds. For α < λ, let Nα be the Skolem hull of α in A. Each Nα condenses to some
Mf(α), where f(α) < λ and {f(α) | α < λ} is cofinal in λ. It follows that Mα has
size less than λ whenever α < λ. Since each Mα is transitive, it thus follows that
Mλ =

⋃
α<λMα ⊆ Hλ has cardinality λ. �

We mention some further facts about Local Club Condensation, localizations of
which may also be easily obtained.

Fact 3. [4, Lemma 95] Local Club Condensation implies

• ♦κ(E) whenever κ is regular and E ⊆ κ is stationary.
• ♦+

κ for all successor cardinals κ.

Fact 4. [3, Theorem 37] Local Club Condensation implies that whenever κ is reg-
ular, there is a ∆1-definable wellorder of Hκ+ .

Strong Condensation has some even more striking consequences:

Fact 5. [3, Theorem 4] Strong Condensation implies that there is no ω1-Erdős
cardinal.

Fact 6. [9, Corollary 1.13] Strong Condensation for ω3 implies that there is no
precipitous ideal on ω1.

4. The Forcing Construction

In this section, we present our main forcing construction. This is a (strongly
simplified and improved) variation of forcing constructions (and the corresponding
proofs of their properties) from [3] and [5], that allows us to obtain Local Club
Condensation at κ for a given regular cardinal κ while collapsing κ to become the
successor of any given smaller regular uncountable cardinal λ.6 When κ = λ+ = ω2,
the construction below is a significant simplification to obtain the main technical
result of [14], namely a small forcing to obtain Strong Condensation for ω2.

Assume κ is regular. We want to extend a given model V of set theory to a model
of Local Club Condensation at κ while, for some regular cardinal λ < κ, collapsing
all cardinals in (λ, κ) so that κ = λ+ in the generic extension. We assume that V
satisfies 2<λ = λ, 2λ ≤ κ and θ<λ < κ for every θ < κ, define a forcing iteration
P = P (λ, κ) and show that P -generic extensions of the universe satisfy Local Club
Condensation at κ, model κ = λ+ and 2λ = κ and that forcing with P preserves λ
and both the continuum function and all cardinals outside of the interval [λ, κ). P
will be <λ-directed closed and κ-cc. We define P inductively. P<λ, the forcing up
to λ, is just the product of length λ with <λ-sized support of the lottery of {0, 1}.7

If α ≥ λ, a condition at α is a pair (fα, cα) which is either trivial, i.e. (fα, cα) =
(∅, ∅), or there is γα < λ such that

6This is supposed to include the case where κ = λ+ initially, i.e. when no actual collapses are

performed by the forcing.
7So P<λ is just the forcing to add a Cohen subset of λ, in disguise.
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• cα : γα → 2 is such that Cα = {δ < γα | cα(δ) = 1} is closed in λ, 8

• fα : max(Cα)→ α is an injection and
• fα[max(Cα)] ⊇ max(Cα).

If p0 = (f0, c0) and p1 = (f1, c1) are conditions at α, we let p1 ≤ p0 iff p0 is trivial
or

(1) f1 ⊇ f0 and
(2) c1 ⊇ c0, i.e. c1�dom(c0) = c0.

Note that if we force with the poset consisting of conditions at α, ordered as above,
this will generically add a bijection from λ to α.

While defining P<α for α ∈ (λ, κ] we also define a function A with domain [λ, κ)
such that for every α, A(α) is a P<α-name for either 0 or 1. We fix a wellorder W
of Hκ of order-type κ. Let β ∈ [λ, κ) and assume A�β and P<β have been defined.
Let A(β) be the canonical P<β-name for either 0 or 1 such that for any P<β-generic
G<β , A(β)G<β = 1 iff β = ≺γ,≺δ, ε��,9 ẋ is the γth (in the sense of W) P<δ-nice
name for a subset of λ, ε < λ and ε ∈ ẋG<β .

Now assume α ∈ (λ, κ] and we defined 〈P<β | β < α〉 and A � α. Then P<α is
the set of all α-sequences p with <λ-support such that

• p�β ∈ P<β for every β < α and if α = β + 1, the following hold:
• p(β) = (fβ , cβ) is a condition at β,
• if Cβ 6= ∅, then p�β decides A(β) = aβ ∈ {0, 1},
• ∀δ ∈ Cβ p(ot fβ [δ]) = aβ ,
* We let C-supp(p) = {β | Cβ 6= ∅}. The following need to hold for p as

well:10

• γp := supp(p) ∩ λ = γβ = dom(cβ) for any β ∈ C-supp(p),
• ∃δp ∀β ∈ C-supp(p) max(Cβ) = δp,
• ∀β0 < β1 both in C-supp(p),

fβ0 [δp] is an initial segment of fβ1 [δp]

and
fβ1 [δp] \ β0 6= ∅.

For p and q in P<α, we let q ≤ p iff q�λ ≤ p�λ and for every β ∈ [λ, α), q(β) ≤ p(β).
We let P = P<κ. Note that if β < α then P<β ⊆ P<α.

Claim 7. If p ∈ P<α, β ∈ [λ, α) and δ < λ, then there is q ≤ p with β ∈ C-supp(q)
and δq > δ.

Proof: We obtain an α-sequence r = 〈(frζ , crζ) | ζ < α〉 from p by extending p�β
to r�β ∈ P<β such that r�β decides A(β) = aβ ∈ {0, 1} and setting r�[β, α) =
p�[β, α).11 Choose ξ > δ such that γr�β + ξ = ξ. We want to find a componentwise

8Thus if γα is a limit ordinal, Cα is bounded in γα. To avoid this case (which we don’t), one
could simply demand that γα is a successor ordinal.

9≺·, ·� denotes the Gödel pairing function.
10The remaining clauses will help ensure both that our forcing is sufficiently closed and that

the following proofs go through easily. None of these clauses (nor the last clause for a condition
at α) were used in the forcing constructions presented in either [3] or [5]. While this made the
presentation of the forcing constructions itself somewhat easier, it made the corresponding proofs
much more difficult (and also the forcings provided there were not closed).

11As our forcing is no standard iteration, it is not necessarily the case here that r ∈ P<α, as
for example possibly γr�β > γp.
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end-extension q of r with q ∈ P<α, δq = ξ and β ∈ C-supp(q). It then follows that
q ≤ p, i.e. q is as desired.

Let C-supp(r) = {ζ | Crζ 6= ∅}. For every ζ ∈ C-supp(r) ∪ {β}, we choose

cqζ : (ξ + 1) → 2 such that cqζ�dom(crζ) = crζ , c
q
ζ�[dom(crζ), ξ) = ~0 and cqζ(ξ) = 1. By

our assumptions on ξ, we may extend frζ to fqζ with domain ξ such that fqζ [ξ] ⊇ ξ

and such that whenever ζ0 < ζ1 are both in C-supp(r)∪{β}, then fqζ0 [ξ] is an initial

segment of fqζ1 [ξ] and fqζ1 [ξ]\ζ0 6= ∅, using that ξ was chosen sufficiently large. This

now allows us to choose q(ot fζ [ξ]) = aζ for ζ ∈ C-supp(r) ∪ {β}, where if ζ 6= β,
aζ ∈ {0, 1} is such that either p�ζ (if ζ > β) or r�ζ (if ζ < β) decides A(ζ) = aζ . 2

The following useful fact can easily be extracted from the proof of Claim 7:

Fact 8. If p ∈ P<α, β ∈ [λ, α), q ∈ P<β and q ≤ p�β, then there is r ∈ P<α
stronger than both p and q. 2

Claim 9. If β < α, then P<β is a complete subforcing of P<α.

Proof: Let X be a maximal antichain of P<β and let p be a condition in P<α.
Then p�β ∈ P<β is compatible with some element of X as witnessed by q ∈ P<β
which is stronger than both. By Fact 8, p and q are compatible in P<α. 2

Notation: Given a decreasing sequence of conditions 〈pi | i < δ〉 in P<α, we say
that r = 〈r(β) | β < α〉 is the componentwise union of 〈pi | i < δ〉 if for every β < λ,

r(β) =
⋃
i<δ p

i(β), and for β ≥ λ, crβ =
⋃
i<δ c

pi

β and frβ =
⋃
i<δ f

pi

β . r is usually not

a condition in P<α as the crβ are not necessarily closed. We let C-supp(r) denote

{β | Crβ 6= ∅} =
⋃
i<δ C-supp(pi).

Claim 10. P<α is <λ-closed.

Proof: Let δ < λ be a limit ordinal and let 〈pi | i < δ〉 be a decreasing sequence
of conditions in P<α. Let r be their componentwise union. Let γr = supp(r)∩ λ =⋃
i<δ γ

pi . Let δr =
⋃
i<δ δ

pi . If δr < γr, then r is a condition in P<α and a lower

bound for 〈pi | i < δ〉. Thus assume that δr = γr is a limit ordinal from now on.
We want to form q out of r (by componentwise end-extension) such that q ≤ pi for
every i < δ. We have to set Cqβ = Crβ ∪ {δr} for every β ∈ C-supp(r).

As for every i < δ, fp
i

β [δp
i

] ⊇ δpi , we obtain that frβ [δr] =
⋃
i<δ f

pi

β [δp
i

] ⊇ δr for

every β ∈ C-supp(r). Similarly, if β0 < β1 are both in C-supp(r), we obtain that
frβ0

[δr] is an initial segment of frβ1
[δr] and β0 and β1 are both in C-supp(pi) for some

i < δ and hence fp
i

β1
[δp

i

] \ β0 6= ∅, implying that fβ1 [δr] \ β0 6= ∅. This now allows

us to choose q(ot fβ [δr]) = aβ for every β ∈ C-supp(r), where aβ is such that some
pi decides A(β) = aβ ∈ {0, 1}, and moreover set cqβ = crβ ∪ {(δr, 1)} ∪ {(γ, 0) | γ ∈
(δr, sup{ot fβ [δr] + 1 | β ∈ C-supp(r)})} for every β ∈ C-supp(r), to obtain a
condition q as desired. 2

If δ < λ is a limit ordinal, 〈pi | i < δ〉 is a decreasing sequence of conditions in
P<α and q is the lower bound of 〈pi | i < δ〉 as obtained in the proof of Claim 10,
then we write q =

⋃
i<δ p

i.

Definition 11. If Q is a poset, D ⊆ Q is directed if any two elements of D have
a lower bound in D. We say that Q is <λ-directed closed if for any directed D ⊆ Q
of size less than λ, there is a condition in Q below all elements of D.
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Corollary 12. The proof of Claim 10 in fact shows that P<α is <λ-directed closed.
2

Claim 13. P<α is κ-cc.

Proof: Assume for a contradiction that X is an antichain of P<α of size κ. By a
∆-System argument using 2<λ = λ, there is r of size < λ and Y ⊆ X of size κ such
that for any p0, p1 in Y , C-supp(p0) ∩ C-supp(p1) = r. 2<λ = λ now implies that
κ-many conditions in Y are compatible in P<α, contradicting our assumption. 2

Claim 14. For every α < κ, P<α has size less than κ. P ⊆ Hκ has size κ, forces
that κ = λ+ and 2λ = κ and preserves λ and both cardinals and the continuum
function below λ and at and above κ.

Proof: The first and second statements follow since θ<λ < κ for every θ < κ. If
G is P -generic over V and fGα denotes

⋃
p∈G f

p
α, then fGα is a bijection from λ to α

for every α ∈ [λ, κ) by an easy density argument. That P forces 2λ = κ follows from
the first statement of the claim and Claim 13. The rest of the claim is immediate
by Claim 10, Claim 13 and the fact that our assumptions imply that κ<κ = κ. 2

We will use the following easy fact, a proof of which may be found in [3].

Fact 15. Assume β has regular cardinality ν and for every γ ≤ β, fγ is a bijection
from card γ to γ. Then there is a club of δ < ν such that

fα[δ] = fβ [δ] ∩ α for all α ∈ fβ [δ] \ ν. 2

Claim 16. P forces Local Club Condensation at κ = λ+.

Proof: Let G be P -generic. Let B be the generic predicate obtained by letting
B�λ = A<λ, where A<λ denotes the generic Cohen subset of λ added byG restricted
to P<λ, and for α ∈ [λ, κ), B(α) = aα, where aα ∈ {0, 1} is s.t. some p ∈ G decides

A(α) = aα. Note that H
V[G]
κ = Lκ[B], as Claim 14 and Claim 13 show that every

subset of λ in V[G] has a P<α-nice name in Hκ for some α < κ. We claim that
〈Mα | α < κ〉 witnesses Local Club Condensation at κ in V[G] with Mα = Lα[B].
Asume α ∈ [λ, κ) and let Aα = 〈Mα,∈, 〈Mβ | β < α〉, . . .〉 be a structure for a
countable language. We may assume that Aα is Skolemized. Note that for β ∈ α\λ
we have B(β) = B(ot fβ [δ]) for all δ in the club

⋃
p∈G c

p
β ⊆ λ. It follows that for

a club C of δ < λ, B(β) = B(ot fβ [δ]) and moreover fβ [δ] = fα[δ] ∩ β for all
β ∈ fα[δ] \ λ; this is seen using Fact 15. For any X ⊆ α let Aα(X) be the least
substructure of Aα containing X as a subset of its domain Aα(X). Consider the
continuous chain 〈Aα(fα[δ]) | δ ∈ D〉, where D consists of all elements δ of C s.t.
δ = fα[δ] ∩ λ and fα[δ] = Aα(fα[δ]) ∩ Ord. Then Aα(fα[δ]) condenses for each
δ ∈ D. 2

Note: If κ = λ+ and λ is regular and uncountable, the above provides a cofinality-
preserving forcing to obtain Local Club Condensation at κ, generalizing [14] and
in the case of κ = ω2 providing a strongly simplified version of the proofs given in
[14], [3] and [5]. Note moreover that if κ ≥ ω3, we may perform the above forcing
over a model of 2ℵ0 = ℵ2, to obtain a model of Local Club Condensation at κ in
which CH fails. This contrasts the situation with both Strong Condensation for κ
and Local Club Condensation up to κ, as they both imply CH to hold.
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5. Local Club Condensation and the negation of Square

In [14], the third author obtained Strong Condensation for ω2 (which is implied
by Local Club Condensation at ω2) and ¬�ω1

starting from a stationary limit of
measurable cardinals. In this section, building on the methods introduced in [14]
and on the forcing construction of Section 4, we generalize his result to cardinals
larger than ω2 and also reduce the large cardinal hypothesis to a 2-Mahlo cardinal.
For convenience, we assume GCH throughout.

Definition 17. If κ is regular and greater than ω1, �(κ) is the statement that there
exists a sequence 〈Cα | α < κ〉 such that the following hold:

(1) Whenever α is a limit ordinal, Cα is a closed unbounded subset of α.
(2) If β is a limit point of Cα then Cβ = Cα ∩ β.
(3) There is no club C ⊆ κ such that for every limit point α of C, Cα = C ∩α.

Definition 18. If κ = λ+ > ω1, �λ is the statement that there exists a sequence
〈Cα | α < κ〉 such that (1) and (2) from above hold together with the following:

(3*) For every α, ot(Cα) ≤ λ.

Lemma 19. If η is Mahlo, θ ≥ η is regular, λ < η is regular and A is a structure
for a countable language with domain Hθ, then there is a pair of models M∗0 and
M∗1 such that

(1) M∗0 and M∗1 are both substructures of A.
(2) M∗0 and M∗1 both have size λ.
(3) λ ⊆M∗0 ,M∗1 .
(4) Let δ̄ = sup(η ∩M∗0 ∩M∗1 ). Then Pω1(M∗0 ∩ Vδ̄) ⊆M∗1 .
(5) min(M∗0 \ δ̄) has cofinality ≥ λ
(6) δ̄ < sup(M∗0 ∩ η) = sup(M∗1 ∩ η) and the latter have cofinality ω.

Proof: Large parts of this proof are based on the proof of [12, Lemma 3.5] and
much of the adaptation below was essentially suggested to us by Boban Veličković.

Let A = Hθ denote the domain of A and let F : [A]<ω → A be such that X ≺A
whenever X is closed under F . Consider the following two player game with perfect
information of length ω. I starts by playing ρ ∈ [λ, η) with cof(ρ) > ω. Then II
plays δ0 ∈ (ρ, η) and A0 ∈ [Vρ]

λ. If II has played δi and Ai for some i < ω, I
responds by playing αi and βi such that δi < αi < βi < η. Moreover I has to
choose α0 such that cof(α0) ≥ λ. If I has played αi and βi for some i < ω, II
responds by playing δi+1 and Ai+1 such that βi < δi+1 < η and Ai ∈ [Vρ]

λ.

I

II

ρ

δ0, A0

α0, β0

δ1, A1

α1, β1

. . .

Let X be the closure under F of λ ∪
⋃
i<ω Ai ∪ {αi | i < ω}. I wins the game if

Ord(X) ⊆ ρ ∪
⋃
i<ω[αi, βi).

If II wins, he knows so by a finite stage, i.e. the above is an open game for II.
It follows by [6] that the game is determined, i.e. one of the players has a winning
strategy. We will now show that if I has a winning strategy, then we can construct
M∗0 and M∗1 as desired, and then show that II does not have a winning strategy.
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Thus assume now that I has a winning strategy in the above game. We will play
the game on two boards simultaneously, denoting moves on the first board as above
and adding a ∗ for moves on the second board in our notation. On the first and
second board, let I start by playing ρ = ρ∗ according to her strategy. On the first
board, let II respond with δ0 = ρ + 1 and A0 = ∅. Assume δi and Ai are played
on the first board. Let I respond with αi and βi according to her strategy. On the
second board, let II respond with δ∗i = βi and A∗i = [Vρ ∩ clF (λ ∪ {αj | j ≤ i}]≤ω
and let I respond with α∗i and β∗i according to her strategy. Now on the first board
let II respond with δi+1 = β∗i and Ai+1 = ∅.

After playing as above for ω-many stages, let M∗0 = clF (λ∪{αi | i < ω}) and let
M∗1 = clF (λ ∪

⋃
i<ω A

∗
i ∪ {α∗i | i < ω}). We claim that M∗0 and M∗1 are as desired.

(1), (2) and (3) are obvious. If δ̄ = sup(η ∩M∗0 ∩M∗1 ), it follows that δ̄ ≤ ρ, thus
Pω1

(M∗0 ∩ Vδ̄) ⊆ M∗1 by our choice of the A∗i , i.e. (4) holds. (5) and (6) are again
obvious from our construction.

We will thus finish the proof of Lemma 19 by the following:

Claim 20. II does not have a winning strategy in the above game.

Proof: Assume for a contradiction that II has a winning strategy in the above
game. Let θ∗ > θ be sufficiently large and regular. Let H be a structure for a finite
language on Hθ∗ that contains everything relevant, in particular A and the winning
strategy for II, as a constant, together with a wellorder of Hθ∗ . Let 〈Mi | i < η〉 be a
continuous increasing ∈-chain of elementary substructures of H which are transitive
below η, such that there is δ < η which is inaccessible and Mδ ∩ η = δ, using that
η is Mahlo. For i < η, let ξi = Mi ∩ η and note that ξδ = δ. Choose a singular
strong limit cardinal ρ < δ such that if N = HH(Vρ ∪ {ξδ·i | 1 ≤ i < ω}), we get
N ∩δ = ρ. Since |Vρ| = ρ, N is bounded in ξδ·i for each i ≥ 1. We claim that I wins
by playing (independent of II’s moves) ρ, αi = ξδ·(i+1) and βi = sup(N ∩ ξδ·(i+2)).
This is because of elementarity of Mi for i < η, II is forced to play δi ∈ Mδ·(i+1)

and thus δi < αi. We obtain

clF (λ ∪
⋃
i<ω

Ai ∪ {αi | i < ω}) ⊆ HH(Vρ ∪ {αi | i < ω}).

But now I has won the run of the game, for the intersection of the latter set with
the ordinals was arranged to be contained in ρ∪

⋃
i<ω[αi, βi). This gives the desired

contradiction. 2 2

Theorem 21. Given κ 2-Mahlo and λ < κ regular, P (λ, κ) forces Local Club
Condensation at κ = λ+ and ¬�λ.

Proof: Let P = P (λ, κ). Assume for a contradiction that q ∈ P forces that

Ċ = 〈Ċη | η < κ〉 is a �λ-sequence in a P -generic extension. As q plays no role in
the proof, we assume that q = 1.

If η < κ, Ċ�η is a name for an object that consists of <κ-many ordinals and thus
using the chain condition of the forcing, there is ξ < κ s.t. Ċ�η is in fact a P<ξ-name.

For a club of η < κ we thus have a P<η-name Ċ�η. By the large cardinal properties
of κ, we may choose such an η < κ that is Mahlo. Assume some condition forces
that Ċη has a P<η-name. Then Ċη has order-type η > λ, as η is regular in any

P<η-generic extension, contradicting that Ċ is a name for a �λ-sequence. Thus Ċη
doesn’t have a P<η-name.
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By the above, there are t0 ⊥ t1 in P with t0�η = t1�η and some ξ < η such that t0
and t1 disagree about whether ξ ∈ Ċη. Let M∗0 and M∗1 be elementary substructures

of (Hθ,∈, η, λ, ξ, t0, t1, Ċη, . . .) for some large, regular θ as provided by Lemma 19,
let δ denote sup(M∗0 ∩ η) = sup(M∗1 ∩ η), let δ̄ = sup(M∗0 ∩M∗1 ∩ η). Let M0≺M∗0
be countable with sup(M0 ∩ η) = δ and t0 ∈ M0, let s0 ≤ t0 be (M0, P )-complete,
so that s0 =

⋃
i<ω pi for some decreasing sequence of conditions 〈pi | i < ω〉 ⊆M0

with p0 = t0 and such that whenever D ∈M0 is a dense subset of P there is i < ω
such that pi ∈ D.

Claim 22. s0�δ̄ ∈M∗1 .

Proof: s0�λ ∈ Hλ and is thus an element of M∗1 by Clause 3 of Lemma 19.
For every i < ω, pi�[λ, δ̄) = pi�[λ,min(M∗0 \ δ̄)) ∈ M∗0 ; the equation holds since
supp(pi) ⊆M∗0 . But by Clause 5 of Lemma 19, pi�[λ, δ̄) ∈ Vδ̄ holds as well, for M∗0
thinks that pi�[λ, δ̄) ∈ Vmin(M∗

0 \δ̄). By Clause 4 of Lemma 19, 〈pi�[λ, δ̄) | i < ω〉 ∈
M∗1 and thus so is s0�[λ, δ̄) for it is easily definable from that sequence. 2

Let M1 be a countable elementary submodel of M∗1 such that s0�δ̄ ∈ M1 and
sup(M1∩η) = δ. Note that by Fact 8, s0�δ̄ and t1 are compatible. Let s1 be stronger
than both and (M1, P )-complete. By the properties of M0 and M1, both s0 and s1

force that δ ∈ Lim(Ċη). Thus both s0 and s1 force that ξ ∈ Ċη ⇐⇒ ξ ∈ Ċδ.

Claim 23. s0�η and s1�η are compatible.

Proof: s1�δ̄ ≤ s0�δ̄ and supp(s0) ∩ [δ̄, η) ⊆ M∗0 and supp(s1) ∩ [δ̄, η) ⊆ M∗1 , and
hence these supports are disjoint by the disjointness properties of M∗0 and M∗1 . 2

We can now strengthen s0�η and s1�η to conditions agreeing about whether
ξ ∈ Ċδ, which clearly gives a contradiction to our choice of t0 and t1. 2 2 Theorem 21

Note: One could replace Local Club Condensation at λ+ by Local Club Conden-
sation up to λ+ (or, with a little more work, by Local Club Condensation) in the
statement of Theorem 21. However this would require providing a σ-closed forcing
construction to obtain this Condensation principle (and, in the case of Local Club
Condensation, working around the κ-cc by standard reduction arguments). This
is straightforward to do (but with a significant increase in complexity of notation)
by combining the construction from Section 4 with some of the ideas from [5]. To
keep things more easily readable and because the most obvious interaction between
�λ and Local Club Condensation (and thus the most interesting aspect of their
independence) should naturally occur within the interval [λ, κ], we decided not to
present such a construction.

6. Variations of Square

We first improve Theorem 21 by showing that in fact a whole hierarchy of weaker
square principles is forced to fail by P (λ, κ). We again assume GCH throughout.

Definition 24. �nλ is the statement that there exists a sequence 〈Cα : α < λ+〉
such that the following hold:

(1) Each Cα has at most n-many elements.
(2) Whenever α is a limit ordinal, elements of Cα are closed unbounded subsets

of α of order-type at most λ.
(3) If β is a limit point of X ∈ Cα then there is Y ∈ Cβ such that Y = X ∩ β.
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Theorem 25. Given κ 2-Mahlo, λ < κ regular and 2 ≤ n < ω, P (λ, κ) forces
Local Club Condensation at κ = λ+ and ¬�nλ.

We need the following minor generalization of Lemma 19.

Lemma 26. If η is Mahlo and θ ≥ η is regular, c ∈ Hθ and λ < η is regular, then
there is a sequence of models 〈M∗i | i < ω〉 such that

(1) M∗i ≺ (Hθ,∈, c, η, λ) for every i < ω.
(2) Each M∗i has size λ.
(3) λ ⊆M∗i for every i < ω.
(4) Let δ̄i = sup(η∩M∗i ∩M∗i+1). Then Pω1(M∗i ∩Vδ̄i) ⊆M

∗
i+1 for every i < ω.

(5) 〈δ̄i | i < ω〉 is increasing.
(6) If j > i, sup(η ∩M∗i ∩M∗j ) = δ̄i.

(7) min(M∗i \ δ̄i) has cofinality ≥ λ.
(8) δ̄i < sup(M∗i ∩ η) = sup(M∗j ∩ η) and the latter have cofinality ω for any

i, j < ω.

Proof: We consider the game described in Lemma 19, for which player I has
a winning strategy. Using this, we can simultaneously play on ω-many boards to
produce the desired models, in a similar way as we produced two models in the
proof of Lemma 19: Use a disjoint partition 〈Si | i < ω〉 of ω into infinite sets and
at stage j play on board i if j ∈ Si. We leave the (easy) details to the reader. 2

Proof of Theorem 25: Fix n < ω and let P = P (λ, κ). Assume for a contradiction

that q ∈ P forces that Ċ = 〈Ċη | η < κ〉 is a �nλ-sequence in a P -generic extension.
As q plays no role in the proof, we assume that q = 1.

If η < κ, Ċ�η is a name for an object that consists of <κ-many ordinals and thus
using the chain condition of the forcing, there is ξ < κ s.t. Ċ�η is in fact a P<ξ-name.

For a club of η < κ we thus have a P<η-name Ċ�η. By the large cardinal properties

of κ, we may choose such an η < κ that is Mahlo. Choose Ẋ to be a name for an
element of Ċη. Assume some condition forces that Ẋ has a P<η-name. Then Ẋ
has order-type η > λ, as η is regular in any P<η-generic extension, contradicting

that Ċ is a name for a �nλ-sequence. Thus Ẋ doesn’t have a P<η-name.

By the above, there are countably many incompatible conditions ti in P with equal
restrictions to η and some ξi < η for i < ω such that for every i < ω, ti and
ti+1 agree about whether ξj ∈ Ẋ for j < i but disagree about whether ξi ∈ Ẋ.
Let 〈M∗i | i < ω〉 be an ω-sequence of elementary substructures of (Hθ,∈, η, λ,
〈ξi | i < ω〉, 〈ti | i < ω〉, Ẋ, . . .) for some large, regular θ as provided by Lemma 26,
let δ denote sup(M∗0 ∩η) = sup(M∗i ∩η) for any i < ω, let δ̄i = sup(M∗i ∩M∗i+1∩η).

Let M0≺M∗0 be countable with sup(M0 ∩ η) = δ and t0 ∈ M0, let s0 ≤ t0
be (M0, P )-complete. Exactly as in the proof of Claim 22, we can now show that
s0�δ̄0 ∈M∗1 . Now given si, let Mi+1 be a countable elementary submodel of M∗i+1

such that si�δ̄i ∈ Mi+1 and sup(Mi+1 ∩ η) = δ. Note that si�δ̄i and ti+1 are
compatible and let si+1 be stronger than both and (Mi+1, P )-complete. Using that
si�δ̄i ∈M∗i+1 analogous to above, we may perform this construction for every i < ω.

By the properties of the Mi, each si forces that δ ∈ Ẋ. Since Ċδ has size at most
n, we can pick a Pη-name Ẏ for an element of Ċδ and indices i < j such that both

si and sj force that Ẋ∩δ = Ẏ . Now both si and sj force that ξi ∈ Ẋ ⇐⇒ ξi ∈ Ẏ .
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Claim 27. si�η and sj�η are compatible.

Proof: sj�δ̄i ≤ si�δ̄i (this uses Clause 5 of Lemma 26). supp(si) ∩ [δ̄i, η) ⊆ M∗i
and supp(sj) ∩ [δ̄i, η) ⊆M∗j - hence those supports are disjoint by the disjointness
properties of M∗i and M∗j (Clause 6 of Lemma 26). 2

We can now strengthen si�η and sj�η to conditions agreeing about whether

ξi ∈ Ẏ and hence about whether ξi ∈ Ẋ, which clearly gives a contradiction to our
choice of ti and tj . 2 2 Theorem 25

Now we consider �(κ). Note that our consistency strength assumption in Theo-
rem 28 below is optimal, essentially because weakly compact cardinals are 2-Mahlo.

Theorem 28. Given κ which is weakly compact and λ < κ regular, P (λ, κ) forces
Local Club Condensation at λ+ and ¬�(λ+).

Proof: Assume the GCH. Let P = P (λ, κ). Assume for a contradiction that

q ∈ P forces that Ċ = 〈Ċη | η < κ〉 is a �(κ)-sequence in a P -generic extension. As
q plays no role in the proof, we assume that q = 1. Using the κ-cc of P , we may
assume that Ċ ⊆ Vκ.

(Vκ,∈, P,
P , Ċ) |= 
P Ċ is a �(κ)-sequence.

As κ being Mahlo is a Π1
1-property of Vκ, we may invoke Π1

1-indescribability of κ
to find a Malo cardinal η < κ such that

P<η 
 Ċ�η is a �(η)-sequence.

It follows that Ċη cannot have a P<η-name, as this would contradict that Ċ�η is
forced to be a �(η)-sequence in any P<η-generic extension. But this now allows us
to finish exactly as in the proof of Theorem 21. 2

Note: Similar to the remark at the end of the previous section, one could replace
Local Club Condensation at λ+ by Local Club Condensation up to λ+ in the state-
ment of Theorem 28. However we do not know whether it could also be replaced by
Local Club Condensation in this case, for the proof of Theorem 28 heavily uses that
P ⊆ Vκ. Moreover just like the proof for ¬�λ was improved to ¬�nλ for n < ω, one
could improve the above from ¬�(λ+) to ¬�(λ+, n) for n < ω, where the latter is
defined correspondingly.

7. Condensation and Jónsson cardinals

In [3], it was shown that Strong Condensation refutes the existence of an ω1-
Erdős cardinal. We slightly improve this result by showing that it refutes the
existence of an ω1-Jónsson cardinal.

Definition 29. If ω < δ < κ are cardinals, κ is δ-Jónsson if for every first order
structure A for a countable language with universe κ, there is A′ ≺ A with universe
A′ such that ot(A′) = δ.
κ is κ-Jónsson or Jónsson if every structure A as above has a proper substructure

A′ with universe A′ of size κ.

It is easy to see ([10]) that every δ-Erdős cardinal is δ-Jónsson. Whether the
reverse implication holds is not known. The proof of the next result closely follows
a proof by Keisler and Rowbottom (announced in [8]) which shows that if there is
a Jónsson cardinal, then V 6= L. Their proof can be found in [7].
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Theorem 30. Assume κ is an uncountable cardinal. Strong Condensation for κ
implies that κ is not Jónsson and that for no δ < κ, κ is δ-Jónsson.

Proof: First assume for a contradiction Strong Condensation for κ holds and κ is

Jónsson. LetA = (Mκ,∈, ~M, . . .) be a structure for a countable language witnessing
Strong Condensation for κ. As κ is Jónsson, A has a proper substructure B0 of

cardinality κ. By our choice of A, (B0,∈, ~M) is isomorphic to (Mκ,∈, ~M); let π be
the inverse of the collapsing isomorphism of (B0,∈), let δ > ω be the critical point
of π. Define U by

X ∈ U ⇐⇒ X ⊆ δ ∧ δ ∈ π(X).

Since Mκ = Hκ, U is easily seen to be a δ-complete ultrafilter and hence δ is a
measurable cardinal, contradicting the above-mentioned result of [3], for measurable
cardinals are in particular ω1-Erdős.

Now assume Strong Condensation for κ holds (note that this implies the GCH below
κ), δ < κ and κ is δ-Jónsson. Assume that A is as above, but also includes δ as a
constant. Let ρ be an isomorphism between κ and Hκ such that for every cardinal
λ < κ, ρ�λ is an isomorphism between λ and Hλ (this uses the GCH below κ). This
means that A is isomorphic (via ρ−1) to a structure B on κ that has a substructure
B′ with underlying set B′ of order-type δ. ρ′′B′ induces a substructure A′ of A
with underlying set A′. By Strong Condensation, A′ condenses, say to A′′ ⊇ Hδ.
Let π denote the elementary embedding from A′′ to A. If crit(π) = θ < δ, then
P(θ) ⊆ domπ and θ is seen to be measurable, leading to a contradiction as above. If
critπ ≥ δ, this means that Hδ∪{π(δ)} ⊆ A′ and hence δ∪{ρ−1(π(δ))} ⊆ B′ by our
choice of ρ, contradicting that otB′ = δ. If π = id, this means that A′′ = A′ = Hδ

by our choice of ρ. But this contradicts elementarity of π, as δ 6∈ Hδ. 2

In contrast to this, Local Club Condensation is clearly consistent with the exis-
tence of Jónsson cardinals, both inaccessible and accessible: Start with countably
many measurable cardinals and force Local Club Condensation preserving those
measurables by the techniques of [3] (preservation of measurables is a standard
argument that is not carried out in that paper). In the extension, Local Club Con-
densation holds and the supremum of the measurable cardinals is accessible and
Jónsson (see [11]). Preservation of a measurable while forcing Local Club Conden-
sation clearly yields the consistency of Local Club Condensation with inaccessible
Jónsson cardinals, as measurable cardinals are Jónsson.

8. Condensation and variants of Chang’s Conjecture

Definition 31. For infinite cardinals α, β, γ, δ with α > β > δ and α ≥ γ > δ,

(α, β)�(γ, δ)

is the statement that for every countable language L with a unary predicate A ∈ L
and every L-structureM = (M,AM, . . .) with cardM = α and cardAM = β, there
exists N = (N,AN , . . .) such that

(1) N is a substructure of M and
(2) cardN = γ and card(AN ) = δ.

Theorem 32. Strong Condensation for α refutes (α, β)�(γ, δ).
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Proof: Assume for a contradiction that Strong Condensation for α holds and

(α, β)�(γ, δ). Thus (Mα,∈, ~M, β) has an elementary substructureN with cardN=
γ and card(N ∩ β) = δ, which condenses to some Mᾱ; let π denote the collaps-
ing map. By taking the Skolem Hull of N ∪ (δ + 1) in that structure w.r.t. some
wellordering of Mα, we may as well assume that δ + 1 ⊆ N . Hence π(δ) = δ. As
card(N ∩ β) = δ, π(β) < δ+. Since, using Lemma 2, Hδ+ = Mδ+ ⊆ Mᾱ, it follows
that Mᾱ |= π(β) is not a cardinal, contradicting elementarity of N . 2

Theorem 33. Local Club Condensation at κ++ refutes (κ++, κ+)�(κ+, κ) for any
infinite cardinal κ.

Proof: Let F be as in Theorem 1. Assume for a contradiction Local Club

Condensation at κ++ holds and (κ++, κ+)�(κ+, κ). Thus (Mκ++ ,∈, ~M, κ+, F )
has an elementary substructure N with cardN = κ+ and cardN ∩ κ+ = κ. We
may assume that (κ+ 1) ⊆ N (and hence N is transitive below κ+) as in the proof
of Theorem 32 and thus by Theorem 1, N condenses to some Mα ⊇ Mκ+ = Hκ+

(the final equality is mentioned in Section 3). Let κ+ denote the Mα-version of κ+.

κ+ ∈ (κ, κ+), contradicting Mα ⊇ Hκ+ . 2

Are any nontrivial instances of Chang’s Conjecture consistent with Local Club
Condensation? Under sufficient large cardinal assumptions, the following fact an-
swers this positively.

Fact 34. Assume δ+ < κ and κ is δ+-Jónsson. Then (κ, δ+)�(δ+, δ).

Proof: Let A be a Skolemized structure on κ using δ+ as a predicate. Then by
δ+-Jónssonness of κ, there is an M ≺A of order-type δ+. δ++ ∈M by elementarity
and thus M is bounded in δ+ (as otherwise ot(M) > δ+). But this means that
M ∩ δ+ has cardinality at most δ. We may enlarge M to contain δ as a subset
(by taking the Skolem Hull of M ∪ δ in A), so that M ∩ δ+ has cardinality δ.
Since any structure of size κ with a unary predicate T of size δ+ has an extension
which is isomorphic to some extension of A and identifies T and δ+, this shows
that (κ, δ+)�(δ+, δ). 2

We next present a positive result for small cardinals, strongly based on a proof
of James Baumgartner in [1]. Let CC(κ) denote the statement that for every λ < κ,
(κ, λ)�(ω1, ω). We will show that, assuming the existence of an ω1-Erdős cardinal
κ, we may collapse κ to become the successor of any regular cardinal λ ≥ ω2 and
obtain CC(κ) together with Local Club Condensation at κ. By Theorem 33, this
cannot work for λ = ω1.

Definition 35. A cardinal κ is α-Erdős if for any Skolemized structure A for a
countable language with universe κ and for any closed unbounded C ⊆ κ, there is
I ⊆ C of order-type α such that I is a set of indiscernibles for A that is remarkable,
i.e. whenever α0, . . . , αi, . . . , αn and βi, . . . , βn are increasing sequences from I with
αi−1 < βi, τ is a term in the language of A and τA(α0, . . . , αn) < αi, then

τA(α0, . . . , αn) = τA(α0, . . . , αi−1, βi, . . . , βn).

Definition 36. [1] Suppose A is a Skolemized structure for a countable language
with universe κ. For each k < ω let fk be given so that fk : κn → κ for some
n < ω that may depend on k. We say I ⊆ κ is remarkable for A and the fk
if for any α ∈ HA(I) there is k < ω and increasing α0, . . . , αn−1 from I so that
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α = fk(α0, . . . , αn−1) and if αi−1 ≤ α < αi then for any increasing βi, . . . , βn−1

from I with αi−1 < βi we have α = fk(α0, . . . , αi−1, βi, . . . , βn−1) and α < βi. We
say that a cardinal κ is α-remarkable if for any A as above there exist fk as above
so that for any closed unbounded set C ⊆ κ there is I ⊆ C of order-type α s.t. I
contains none of its limit points and is remarkable for A and the fk.

Lemma 37. [1, Proposition 5.1] If κ is ω1-remarkable, then CC(κ) holds. 2

Definition 38. We say that 〈P<α | α ≤ κ〉 is an Easton bounded iteration of
length κ if whenever α0 < α1 < κ, P<α0

is a complete subforcing of P<α1
, and P<α

is the direct limit of 〈P<β | β < α〉 if α is inaccessible.

The proof of Theorem 39 below is almost an exact copy of one of the two cases
of [1, Theorem 5.2], which however refers to what are called Easton-like partial
orderings (those are particular kinds of products with Easton support). All that
we do below is to essentially observe that the same proof can be carried out for
Easton bounded iterations of length κ. For the benefit of the reader, we provide
the basic framework of the proof (and omit the proofs of several auxiliary lemmas,
which can all be found in [1]).

Theorem 39. Let κ be ω1-Erdős and let 〈P<α | α ≤ κ〉 be an Easton bounded
iteration of length κ s.t. P<α has size < κ for α < κ, and P = P<κ is <ω2-directed
closed. Then 
P κ is ω1-remarkable and hence CC(κ) holds by Lemma 37.

Proof: We may assume that P<α ∈ Vκ for α < κ, and so P ⊆ Vκ. Let Ȧ be a
term for a Skolemized structure with universe κ. Let

B = (Vκ,∈, <, P,
φ),

where < is a well-ordering of Vκ, φ ranges over all formulas of the language of Ȧ
and 
φ is the relation

{(p, α0, . . . , αn−1) | p
 Ȧ |= φ(α0, . . . , αn−1)}.

Let 〈fk | k < ω〉 enumerate all functions of the form f : κn → κ definable over B. By

the κ-cc of P , every club subset of κ in VP contains a club subset of κ in V. Let C ⊆
κ be club. Let I ⊆ C be a cofinal remarkable set of indiscernibles for B with order-
type ω1 (we say that I is cofinal if whenever α0, . . . , αn is an increasing sequence of
elements of I and τ is a term in the language of B, then τB(α0, . . . , αn−1) < αn; this
property can be ensured by shrinking C before applying the large cardinal properties
of κ to obtain I). By standard arguments we may assume that I consists only of
Mahlo cardinals and ∀α < β Pα ∈ Vβ for every β ∈ I. In particular, I contains

none of its limit points. We will show that in VP , I contains a set of order-type
ω1 remarkable for Ȧ and the fk.

For X ⊆ I, we say G is P -generic over HB(X) if G ⊆ P ∩ HB(X) is a filter
meeting every dense subset of P lying in HB(X), the Skolem Hull of X in B.

The following lemmas can be proven exactly as in [1] by using our requirements
on P , so we will just provide their statements and refer to the corresponding lemmas
in [1].

Lemma 40. [1, Lemma 5.3] Let G be P -generic over V. In V[G] suppose J ⊆ I
is uncountable and G∩HB(J) is P -generic over HB(J). Then J is remarkable for

Ȧ and the fk. 2
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We thus want to find J ⊆ I as in the hypothesis of the above lemma. We work
in V. Let F = {X ⊆ I | X is countable and has no last element}. For X,Y ∈ F
put X < Y if X is a proper initial segment of Y .

Lemma 41. [1, Lemma 5.4] Suppose X,Y ∈ F , X < Y and β = min(Y \X). If
G is P -generic over HB(X) then G is Pβ-generic over HB(Y ). 2

Lemma 42. [1, Lemma 5.5] Suppose X,Y ∈ F , X < Y and G is P -generic over
HB(X). Then there is H ⊇ G such that H is P -generic over HB(Y ). 2

Lemma 43. [1, Lemma 5.6] Suppose that for n ∈ ω, Xn ∈ F , Gn is P -generic
over HB(Xn), Xn < Xn+1 and Gn ⊆ Gn+1. Then

⋃
n∈ω Gn is P -generic over

HB(
⋃
n∈ωXn). 2

Using the above lemmas, it is straightforward to find G ⊆ P ∩HB(I) such that
G is P -generic over HB(I). Since by Corollary 12 P is <ω2-directed closed, there

is p ∈ P stronger than any condition in G. Hence if Ġ is the canonical name for
the P -generic,

p
 Ġ ∩HB(I) is P -generic over HB(I)

and we are thus finished proving Theorem 39. 2

Corollary 44. Given the consistency of an ω1-Erdős cardinal and 2 < n < ω, Local
Club Condensation at ωn is consistent with CC(ωn). More generally, assuming the
GCH, if κ is ω1-Erdős and ω2 ≤ λ < κ is regular, we may obtain a forcing extension
in which κ becomes λ+, all cardinals up to λ and ≥κ and the GCH are preserved,
and CC(κ) and Local Club Condensation at κ hold. In fact, a similar statement
can be obtained using only weaker assumptions on the continuum function, namely
those made in Section 4.

Proof: If κ and λ are as in the second statement above, force with P = P (λ, κ).
2

Note: Similar to the remark at the end of Section 5, one could replace Local
Club Condensation at κ by Local Club Condensation in [ω1, κ) in the statement of
Corollary 44. This would require a forcing construction to obtain the latter principle
by <ω2-directed closed forcing which (as explained in Section 5) we omitted for the
sake of simplicity. It is worth noting however that forcing Local Club Condensation
up to κ seems to require us to add new subsets of ω1 in general and hence any forcing
to obtain this principle should not be <ω2-directed closed. As the proof of Theorem
39 seems to crucially require this closure property, we do not know whether Local
Club Condensation up to κ is consistent with CC(κ) for any κ > ω2 (they are
inconsistent for κ = ω2 by Theorem 33 above).

We close this section by considering weak Chang’s Conjecture.

Definition 45. [2] Assume κ is a successor cardinal. The weak Chang Conjecture
for κ, wCC(κ), is the following assertion: Whenever A is a first order structure
for a countable language, with universe A and κ+ ⊆ A, then there is α < κ such
that for all β < κ there is X ≺A with X ∩ κ ⊆ α and ot(X ∩ κ+) > β.12

We present a well-known auxiliary lemma.

12The same definition would make perfect sense if κ were inaccessible. The resulting principle
though is easily seen to be inconsistent with ZFC.



LOCAL CLUB CONDENSATION AND L-LIKENESS 17

Lemma 46 (folklore). Assume N ≺A for some Skolemized structure A on Hκ.
Assume λ0 < λ1 are regular cardinals below κ and λ0, λ1 ∈ N . There is M ≺A such
that sup(M∩λ1) = sup(N∩λ1), M is transitive below λ0 and M∩λ0 = sup(N∩λ0).

Proof: Let M = HA(sup(N ∩λ0)∪N). Assume that ξ ∈M ∩ [sup(N ∩λ1), λ1).
Then for some δ0, . . . , δm ∈ N , γ0, . . . , γn < sup(N ∩λ0) and some formula ϕ in the
language of A, M |= ξ is the unique x with ϕ(x, γ0, . . . , γn, δ0, . . . , δm). Let ν be
such that M thinks that ν is the supremum of all x < λ1 which are uniquely defined
by some formula ϕ in the language of A of the form ϕ(x, ζ0, . . . , ζn, δ0, . . . , δm) for
some ζ0, . . . , ζn < λ0. By regularity of λ1, ν < λ1. By elementarity, ν ∈ N .
As ξ < ν, this implies that sup(M ∩ λ1) = sup(N ∩ λ1). The final statement of
our claim follows similarly, noting that if sup(N ∩ λ0) is not a cardinal, we have
M = HA(card(sup(N ∩ λ0)) ∪N). 2

Theorem 47. Local Club Condensation at κ+ refutes wCC(κ) whenever κ = λ+

is a successor cardinal.

Proof: Assume that both Local Club Condensation at κ+ and wCC(κ) hold

with κ regular. Assume A = (Mκ+ ,∈, ~M,F, . . .) is a Skolemized structure for a
countable language with F as in Theorem 1 and assume α is for A as in Definition
45. For each β < κ, let Xβ be a witnessing structure, i.e. Xβ ≺A with Xβ ∩ κ ⊆ α
and ot(Xβ ∩ κ+) > β. We may assume that each Xβ is transitive below κ by
Lemma 46 and hence condenses by Theorem 1. Let πβ denote the collapsing map
of Xβ , X̄β its transitive collapse. Then λ + 1 ⊆ Xβ and therefore πβ(κ) ∈ (λ, α].
But X̄β ⊇ Mβ , hence for sufficiently large β < κ, X̄β |= α ∼= λ, contradicting
elementarity of Xβ . 2

9. Open Questions

Question 48. Does Lemma 19 hold true if η is assumed only to be inaccessible?

If the above has a positive answer, we would obtain the result of Theorem 21
from the optimal consistency assumption, namely a Mahlo cardinal, i.e. a positive
answer to the following question.

Question 49. Does Theorem 21 hold true if κ is assumed only to be Mahlo?

Question 50. Assume λ is regular and GCH holds. Under sufficient large cardinal
hypothesis, can one force to obtain a model of Local Club Condensation at λ+ and
¬�ωλ while preserving all cofinalities ≤ λ? 13
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