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Abstract 

 

3D composite materials are characterized by complex internal yarn architectures, leading to 

complex deformation and failure development mechanisms. Net-shaped preforms, which are 

originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a 

tool, and consolidated to create geometrically complex composite components. As a result, the 

internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on 

the structural geometry.  Hence, predicting the mechanical behaviour of 3D composites 

requires an accurate representation of the yarn architecture within structural scale models. 

When applied to 3D composites, conventional finite element modelling techniques are limited 

to either homogenised properties at the structural scale, or the unit cell scale for a more detailed 

material property definition. Consequently, these models fail to capture the complex 

phenomena occurring across multiple length scales and their effects on a 3D composite's 

mechanical response.  Here a multi-scale modelling approach based on a 3D spatial Voronoi 

tessellation is proposed. The model creates an intermediate length scale suitable for 

homogenization to deal with the non-periodic nature of the final material. Information is passed 

between the different length scales to allow for the effect of the structural geometry to be taken 

into account on the smaller scales. The stiffness and surface strain predictions from the 

proposed model have been found to be in good agreement with experimental results.  

 

The proposed modelling framework has been used to gain important insight into the behaviour 

of this category of materials. It has been observed that the strain and stress distributions are 
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strongly dependent on the internal yarn architecture and consequently on the final component 

geometry. Even for simple coupon tests, the internal architecture and geometric effects 

dominate the mechanical response. Consequently, the behaviour of 3D woven composites 

should be considered to be a structure specific response rather than generic homogenised 

material properties. 

 

1 - Introduction 

 

The increased use of high performance composite materials in a variety of applications requires the 

adoption of new technologies to improve the performance and reduce the cost of these materials. 

The drive for better mechanical performance as well as manufacturing efficiency has led to the 

introduction of composite materials with through-thickness reinforcement produced in a near net-

shape pre-form. An example of such a material, is 3D woven composites which are formed from 

multiple layers of fibre reinforcements woven together with through-thickness binder yarns [1, 2]. 

The result is a woven fabric preform that can be consolidated, infused with resin and cured into the 

desired final shape. These materials exhibit enhanced impact performance and energy absorption 

characteristics [3-5]. However, the presence of binder yarns during weaving introduces localized 

deformations such as yarn crimp and waviness [6, 7]. Figure [1a, 1b] shows an example of these 

internal feature on the meso-scale (scale of individual yarns). Additional deformation occurs during 

the second phase of manufacturing which is the compaction in a mould tool. Unlike the periodic 

deformations, which are introduced during weaving, the compaction deformation is a result of 

forming the fibres into the final structural geometric shape. These deformations are thus dependent 

on the tool geometry and are typically non-periodic in nature. The yarn paths change as the preform 

is compressed to conform to the tool surface. Additionally, depending on the part final geometry, 

the preform will experience different levels of compaction at various locations [8]. Figure [1c, 1d] 

shows an example of such deformations on the sub-component or feature scale. Research has 

shown that the meso-scopic deformations have a significant impact on 3D woven materials 

mechanical performance [9]; since, the damage initiation process in these materials is dominated 

by the stress concentrations associated with this localized deformation. Figure [1e, 1f] shows 

further examples of such internal features in a 3D woven orthogonal material.  

 

The yarn architecture deformations occurring during forming and compaction, which will be 

termed “compaction deformation” hereafter, when combined with the internal features present from 

material weaving, results in a non-periodic highly heterogeneous material with its properties 
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dependent on the structural geometry. With the help of modelling or experiments the internal yarn 

architecture of a 3D composite structure can be accurately described. However, this knowledge 

does not mean that the mechanical behaviour of the final structure can be predicted from finite 

element models. For conventional solid mechanics problems, it is reasonable to make the separation 

between the material properties and the structure. The material behaviour is assumed to follow a 

consistent behaviour throughout certain domains and hence can be represented by an equivalent 

material model. This kind of separation is not possible for 3D composites since the material 

behaviour is dependent on the final structural geometry and the manufacturing process. 

Additionally, for this category of materials, the strain variation at component scale is comparable 

to the size of the characteristic model building block.  For this case, the material mechanical 

response cannot be measured consistently using coupon testing at a scale larger than that of the 

composites constituents, which are the yarn and matrix. On the other hand, building detailed models 

from the ground up including all the details of the yarn architecture for a full scale structure is not 

possible with the computational power available today or in the near future. Here, the need arises 

for a multi-scale modelling approach that can link the basic constituents through multiple length 

scales all the way to the structural scale. 

 

 

Figure 1. Features and deformations in 3D composites. a) CT-Scan close up on a binder 

yarn, b) Kinematic model close up on a binder yarn, c) CT- Scan of a finished 3D woven 

component, d) Deformation model of a cured 3D woven component, e) Deformation model 

showing yarn waviness, f) Deformation model showing yarn spreading. 
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Multi-scale approaches have seen wide use in predicting the behaviour of heterogeneous materials. 

Moreover, several of those multi-scale techniques have been adopted to composite materials [10]. 

These approaches try to address two main challenges arising from the nature of composite 

materials. The first challenge is including the effect of the yarn architecture in a macro-scale model 

of the structural behaviour without having to model the heterogeneities explicitly. This is usually 

achieved by taking a periodic Representative Volume Element (RVE) extracted from the 

heterogeneous structure. The boundary conditions on RVE’s boundaries can be set under an 

assumption on how this volume interacts with the rest of the material. Periodicity or symmetry of 

the strain field at the yarn scale are common assumptions. A set of boundary value problems with 

these conditions provides homogenised/effective properties [11, 12]. Single or multiple RVEs can 

be used to represent the various possible heterogeneities’ patterns [13]. This category of approaches 

has been applied successfully to various types of heterogeneous materials and across multiple 

length scales. Woven materials introduce an additional level of complexity due to the presence of 

an intermediate level for the heterogeneity which is the yarn/tow level, here termed the meso-scale. 

Dedicated modelling approaches derived from RVE homogenization have been developed to 

predict the equivalent mechanical properties of a woven unit cell [7, 14-17]. The underlying 

assumptions for the RVE approach require that, the heterogeneities or at least the heterogeneities’ 

distribution be periodic [18]. If the structure is irregular or strain field is non periodical, the classical 

homogenisation framework is not applicable. As shown earlier, for complex geometry 3D woven 

composite material properties are dependent on both the local tow/yarn architecture and the 

structural geometry and hence are non-periodic. The results obtained using the RVE approach will 

thus not be descriptive of the true structural response on the macro-scale. 

 

The other main challenge for multi-scale modelling is the non-linear behaviour of heterogonous 

materials undergoing progressive damage. Damage initiation at the meso- and micro-scales will 

progress based on the heterogeneities’ patterns and the stress and/or strain state on this scale. The 

damage will degrade the material on the meso scale, which in turn will impact the global structural 

behaviour. The interaction between the structure at the macro scale and the damage at the meso- 

and micro-scales is a nonlinear multi-scale problem. A wide array of multi-scale modelling 

techniques have been developed for this purpose [19-24]. These techniques utilize some form of 

domain decomposition where the problem domain is divided into two or more domains. The 

domains can be completely overlapping, partially overlapping or non-overlapping, based on the 

multi-scale approach used. The smaller scale models can include progressive damage models and 

are linked to the macro-scale to ensure that the forces and displacements are compatible between 

the various scales. The modelling approaches in this category are generally efficient and can handle 
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the progressive damage problems well. However, for most these approach the problem domain 

needs to be divided into areas of interest, which are modelled in detail, while the rest of the domain 

is homogenized. Decomposing the 3D woven structure before the analysis start with no prior 

knowledge of the stress state is not a sound strategy. The effect of the local features, which are 

different throughout the structure, on the mechanical performance cannot be assessed before 

solving the macro-scale structure.  On the other hand, having detailed models for all the possible 

sub domains will lead to unpractical model sizes where the multi-scale modelling approach losses 

its efficiency in terms of computational loads. 

 

The topic of damage initiation and progression in composite materials has been widely studied in 

literature. Physically based phenomenological damage initiation models have been proposed and 

widely applied for both fibre and matrix dominated properties [25-27]. Several continuum damage 

models based on smeared crack approaches have been proposed for modelling of progressive 

failure [28-32]. Also, the cohesive zone interface element approach has been used to model 

delamination and cracking in composite materials [33-36]. XFEM based methods have also been 

proposed as an efficient approach to modelling crack growth [37] and have been applied to 

composite materials [38].  The choice of which model or group of models to use with composite 

materials is largely related to a balance between accuracy and computational efficiency and is still 

an open research topic. However, all these models share in common that a detailed knowledge of 

the stresses and strains is required throughout the domain where the damage model is applied. For 

3D woven materials a dedicated multi-scale approach that takes into consideration the complexities 

associated yarn architecture and its interaction at both the meso and macro scales is needed. The 

key features for a successful modelling approach, which leads to the understanding of the complex 

multi-scale nature of 3D woven composites are:  

• The creation of a new basis of homogenization to replace the absence of the unit cell 

periodicity. 

• Representing the effect of the meso-scopic features on the macro-scale model. 

• The ability to locate regions of the problem domain subject to high stress / strain with no 

prior assumptions as to the whereabouts of these regions within the structure. 

• The ability to include detailed meso-scale models with high fidelity at critical locations if 

required. 
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2 - Modelling Approach Overview 

 

The primary goal of a solid mechanics problem is the prediction of mechanical behaviour at 

the macro-scale where the loads are applied and design criteria can be implemented. Hence, it 

is essential, when only the properties of the micro scale constituents are available, to link all 

the length scales from the fibre to the structural levels in the models. In the proposed approach, 

three length scales will be investigated micro, macro and meso. The micro scale is the scale of 

the fibre where the material properties are known and where the structure geometry has no 

significant impact on the mechanical behaviour. The primary driver of the mechanical 

behaviour at this scale is how tightly the fibres are packed together and how much of the 

material volume is filled by matrix. The fibre packing is expressed by the Intra Yarn Volume 

Fraction (IYVF). Micro-mechanical models based on different IYVF can be built using 

analytical methods or Finite Elements (FE) [39, 40]. Based on the IYVF at a given location, a 

set of equivalent 3D orthotropic material properties can be calculated. 

 

The intermediate scale in this approach is the meso-scale. On the meso-scale, the woven 

composite structure is described in terms of yarn and matrix materials. The material regions 

enclosed inside a yarn surface are no longer represented as fibre and matrix but as the 

homogenized orthotropic equivalent properties, as calculated on the micro-scale for a given 

IYVF. On this scale, the weave pattern is represented by the yarn paths and yarn cross-sections 

throughout the fabric. In addition, to the weave pattern and the IYVF, meso-scopic features 

such as crimp and waviness need to be represented to account for the stress concentration 

resulting from such features. The third scale is the macro-scale, which is the structure or feature 

scale. At this scale, the structure geometry is modelled, loads and boundary conditions are 

applied. Additionally, at the macro-scale, materials are no longer presented as the orthotropic 

yarn and homogenous matrix but as an equivalent orthotropic material. These macro equivalent 

material models are calculated from the meso-models for a given sub-domain within the 

structure. However, since the meso-scopic features are not only a result of the weave pattern 

but also a result of the structure geometry, the macro and meso scales cannot be separated in 

the same manner as the separation between the meso and micro-scales.  

 

The multi-scale modelling approach proposed here efficiently handles the modelling of 3D 

woven structures by solving the problem in two steps. An initial phase where a full scale 

homogenized mechanical model is generated, taking into account the knowledge of the detailed 
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yarn architecture and the heterogeneities, hereafter called the macro-scale model. The novel 

macro-scale mechanical model used in this paper will be presented in section 5. The solution 

of the macro model is used to determine the critical regions within the structure. Next, these 

critical regions are replaced with high fidelity models where the yarn architecture and 

heterogeneities are described in sufficient detail, here after called meso-scale models. The 

meso-scale models are connected to the macro-scale model using a set of Lagrangian 

Multipliers. This meso/macro-scale interaction allows information to be passed between the 

two scales thus allowing for the stress state on the meso-scale to affect the response on the 

macro-scale. Figure [2] shows the overview of the modelling approach. The proposed approach 

starts by building a detailed deformation model of the component being studied. Next, relevant 

properties such as the IYVF and the directions are extracted from the deformation model and 

submitted as input to the multi-scale mechanical modelling phase.   

 

 

Figure 2. Modelling approach overview 

 

 

3 - Internal Yarn Architecture 

 

In the proposed modelling framework, the starting point is the meso-scale models, which 

connects directly from the geometric modelling phase. The meso-scale models are built based 

on detailed knowledge of the internal yarn architecture at the given location.  These meso 
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models in turn inform the macro models and control the overall structural response. Hence, it 

is of importance to accurately predict the internal geometry after weaving and compaction. 

Several approaches have been adopted to determine the yarn geometries of woven materials. These 

approaches can be classified, based on the formulation used to describe the dry yarn behaviour, 

into geometric, kinematic and mechanical models. Geometric approaches assume that the yarn 

behaviour follows that of geometric entities such as splines [41, 42]. A set of geometric rules are 

used to create the yarn surface geometries ensuring that the yarn paths follow the restriction 

enforced by the weave pattern and avoiding yarn interpenetration. Such approaches can offer 

acceptable results for single layer 2D woven materials. However, the coupling of out of plane and 

in plane deformation in 3D woven fabric create significant challenges for these models that results 

in less accurate yarn geometries in terms of their path, cross-sections and fibre volume fractions. 

The geometries calculated using geometric approaches can be enhanced by eliminating yarn 

interpenetrations in an additional step using contact algorithms [43]. Another approach to eliminate 

the mechanical modelling mesh quality issues arising from these models is by using mesh 

superposition approaches. In these approaches the yarn and matrix material are meshed 

independently [44, 45]. Additionally, experimental data from CT- Scans can be used to augment 

the geometric approach and considerably enhance the accuracy of such models using direct 

measurements [46, 47]. The key limitation to using CT-Scan approaches is the need to first 

manufacture physical samples of the material. Another class of models are kinematic models, 

where contact algorithms are used to simulate the weaving and compaction of 3D materials. In 

contrast to the experimental/geometric approach, kinematic models can model the internal yarn 

architecture with minimal experimental inputs. One notable modelling approach is the Digital 

Element where each yarn is represented by a bundle of beam elements in a contact model [48-50]. 

A digital element model under periodic boundary conditions can be used to accurately simulate the 

weaving deformations. However, the digital element is normally associated with a high 

computational effort which limits its applicability to the unit cell scale. Another type of kinematic 

models is the single surface approach which have been specifically developed to handle large scale 

compaction models [8, 51]. The third category of compaction models is the mechanical models 

[52-55]. Several constitutive models for representing the mechanical behaviour of dry fibre yarns 

have been developed and implemented. These models have the advantage of capturing the 

compaction pressures and forces as well as the final yarn architecture, which is valuable 

information from a manufacturing engineering point of view. However, the application of these 

models are still limited to the unit cell scale due to their computational cost.  
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For calculating the mechanical performance of 3D woven structures, we are only concerned with 

determining the yarn/weave architecture as an input to the mechanical models. Consequently, 

kinematic modelling is the optimal approach for predicting the internal yarn geometry. For the large 

scale models used in this work, a reduced yarn geometric representation is adopted where each yarn 

is represented by a single surface. Each yarn is divided into a number of connected segments. Each 

segment is bound by two yarn sections which are defined as polygons. Segments are straight 

between the two sections and the yarn surface is linearly interpolated between the two sections. An 

example of how the fabric yarn architecture is defined in this approach is given in Figure [3]. The 

algorithms described in this section have been applied to a sample of a 3D orthogonal 5 harness 

satin fabric. The warp yarns have 24,000 fibres each in 8 layers, with 2 yarns per layer of the unit 

cell. The weft yarns have 12,000 fibres each in 9 layers, with 5 yarns per layer of the unit cell. The 

binder yarns have 6,000 fibres each. The weft yarn spacing is 5.5 mm and the warp yarn spacing is 

2.5 mm. All fibres are 7 µm diameter carbon fibres. The unit cell size of this fabric is 9.9 mm in 

the weft direction and 27.8 mm in the warp direction. The as-woven thickness is 7 mm and the as-

woven volume fraction is 45%. The nominal compacted thickness at 57% volume fraction is 5.5 

mm.  The composite was woven from carbon fibre and infused using epoxy resin MVR444. The 

kinematic models for this fabric has been presented and verified against CT-scans by Green et al 

[7]. 

 

 

Figure 3. Fabric yarn architecture. a) Model of the full fabric of a 3D orthogonal 5 harness 

satin weave, b) Yarn geometry definitions showing yarn segments and sections. 
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4 –High Fidelity Models of 3D Woven Composites 

 

4.1 - Micro Mechanical Models 

 

Mechanical properties for this level are combined from both micro-scale material models and the yarn 

architectures. A key input to the micro-scale models is the IYVF calculated from the meso-level 

geometry. For each yarn segment as defined in Figure [3], the IYVF can be calculated directly from the 

kinematic model outputs. For each yarn segment, a 3D Delunay triangulation is built using the points 

forming the start and end sections. The volume enclosed within each section can then be triangulated 

and compared to the volume of fibres used to weave the yarn. This information is then fed into a micro-

scale mechanical model where the equivalent yarn properties can be calculated. For this work the 

analytical model proposed by Chamis [56] is used to calculate an equivalent 3D orthotropic material 

property for each segment. Figure [4a] shows the variation of intra-yarn volume fraction for the binder 

yarn in a 3D fabric. The IYVF can be seen to vary as the yarn interacts with other yarns and 

consequently the material properties change along the yarn length. The other key piece of information 

to be extracted is the material axes definition which can be obtained from the yarn paths. The material 

axes for each segment are calculated as the tangent to the yarn centreline at the section seen in Figure 

[4b]. All triangulations, polyhedra and geometric search trees used in this work are built using the 

CGAL library [57]. 

 

4.2 - Meso Mechanical Models 

 

Once the equivalent 3D orthotropic material properties have been found for every yarn, the next step is 

to build a finite element mesh to represent the domain of the problem. Several meshing techniques have 

been proposed to mesh 3D woven composites. However, most of these techniques focus on idealized 

geometries. Realistic 3D woven geometries with yarn crimp, waviness offer a challenge to such 

techniques [58], especially if the geometry may contain interpenetrations. Voxel meshes provide a 

robust alternative for representing the domain complexities. Unlike conventional techniques, for Voxel 

meshes the domain is meshed in uniform cubes, then each cube is assigned a set of material properties 

based on its location with respect to the yarn architecture. For the purpose of this work a dedicated 

multi-scale finite element solver has been developed. This solver uses first order hexahedral elements 

with 8 integration points. The equivalent orthotropic material properties calculated for each yarn 

segment is assigned to the integration points located within the yarn surface. The points are located 

using the same yarn surface 3D triangulations used for calculating IYVF. During element’s integration, 

the micro model is used to correct the material properties based on the intra-volume fraction.  Elements 

with a mix of integration points from inside and outside the yarn are homogenised using an average 

IYVF across all integration points. Once all the yarns have been mapped, the remaining Voxels are 
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assigned homogeneous matrix material properties. This model construction approach lends itself to 

parallelization based on mapping multiple yarns at the same time. Thus greatly enhancing the 

computational efficiency of the process.  The finished model can be solved under any combination of 

loads and boundary conditions to get a high fidelity prediction of the stresses and strains across the 

model, which serves as a basis for damage modelling. The solver used in this work uses the PETSC 

iterative sparse matrix solver package [59, 60] to solve the finite element equations.  

 

 

4.3 - Voxel meshing of 3D woven composites 

 

Voxel meshing is a robust meshing technique that have seen wide use in FE modelling of woven 

composites [61-63]. A key strength of Voxel meshes besides the ability to mesh complex geometries, 

is that these meshes are suitable for Boolean operations. For meshes with similar Voxel size, mesh 

union and subtraction operations are straight forward. Regions that needs to be removed from a Voxel 

mesh can be identified by comparison against a triangulation of this region in a similar manner to what 

was described for the properties mapping. Mesh union can be done by simply adding the Voxel from 

two or more meshes together then running node equivalence. In addition to unions and subtractions, 

geometric boundaries can be applied to Voxel meshes, which works in a similar fashion to subtraction 

but instead of removing the elements and nodes located inside a given region, the process retains the 

nodes and elements within the region of interest and removes the rest of the elements. Using these tools 

any geometry, regardless how complex, can be modelled using a combination of Boolean operations as 

shown in Figure [5]. 

 
 

 

 

Figure 4. a) As-woven yarn surface triangulation showing IYVF. b) Material axis mapping 
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Figure 5. Boolean operations for Voxel meshes; a) boundary application, b) subtraction,  

c) union. 

 

Figure [6] shows the pseudo-code for an automated material mapping process to generate 3D woven 

mechanical models from geometric fabric definitions. The material properties used for meso models are 

shown in Table [1]. The properties of the constituents used to construct the model are given by Green 

et al [58] for the same materials. The material mapping results and the IYVF results for a preform 

compacted to 57% VF are shown in Figure [7]. The axial and transverse stresses predicted by this model 

are shown in Figure [8]. 

 

 

Figure 6. Pseudo-code for 3D woven / Voxel material mapping. 

 

Table 1. Model material properties [58] 

 E11(MPa) E22 = E33 (MPa) G12 = G13 (MPa) G23(MPa) nnnn12 = nnnn13 nnnn23    

Carbon 

Fibre 
238 13 13 6 0.2 0.25 

Matrix 

(MVR444) 
3.1 3.1 1.2 1.2 0.35 0.35 



 13

 

 

 

Figure 7. Mapping process result. a) Unit cell geometry b) Material properties assignment, c) 

Intra-yarn volume fraction distribution (only yarn Voxels shown). 

 

 

Figure 8. FE analysis results showing stress distribution on a 3D woven composite samples 

loaded in tension along the warp direction, a) Global stresses along the loading axis, b) 

Global stresses perpendicular to the loading axis. 

 

5 - Full scale models using spatial Voronoi tessellation 

 

The meso-model described in the previous section is not practical from a computational expense point 

of view to apply to the feature or structural scale. In order to accurately describe the yarn surface 

geometries and resin pockets, a high fidelity mesh with a large number of elements is required. To avoid 

this cost we propose a macro scale modelling approach using a Voronoi tessellation as a basis for 

homogenization. Voronoi tessellation is a numerical algorithm to divide a spatial domain into 

completely interlocking cells which tessellate to form the original domain. The conventional tessellation 

creates its cells such that for all the points inside a cell with a given centre, the distance to the cell centre 

is smaller than the distance to any other centre in the given domain. Voronoi tessellation has been used 

in multi-scale modelling of heterogeneous materials with cells built around the heterogeneities as 

geometric centres [64-66]. Each Voronoi cell is then homogenised taking into account the heterogeneity 

in the centre. Several challenges face applying the conventional Voronoi tessellation to the 3D 

composites. First, the yarns follow complex paths which may or may not be related to a specific layer. 

Additionally, the yarn cross-section changes for each yarn segment.  Hence, it is required to expand the 

tessellation to account for the 3D nature of the problem and for the variability of the yarn cross-section. 
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For this work, the conventional 2D point based tessellation has been replaced by a 3D volume based 

tessellation. In this tessellation, the yarn segment surfaces have been used as tessellation generators. As 

a result, the cells are the volumes closest to a given segment of a yarn surface. Since each yarn segment 

is straight, the typical Voronoi cell consists of a single straight yarn segment surrounded by an arbitrary 

region of matrix material. The precise shape of the cell outer surface is dependent on the yarn segment 

cross-section shape and also the yarn segments geometry in its vicinity and is generally irregular. 

Consequently, the tessellation decomposes the 3D composite structure into a set of interlocking cells 

each containing a 1D yarn segment. Each cell material properties can be homogenized using volume 

integration over a very fine grid to calculate the cell homogenized material properties with no need for 

orientation averaging. The averaged material properties are considered to be acting in same direction as 

the 1D yarn segment at its centre. These 3D orthotropic material properties are then assigned to a macro 

voxel mesh of the complete structure. The result of the complete process is that the structure has been 

divided into a set of completely interlocking Voronoi cells which fill the complete domain. Thus, an 

intermediate length scale to replace the yarn/layer length scale has been created. At this scale, the loads 

and boundary conditions can be applied and the displacements fields calculated. Since the yarn 

directions have been maintained in the macro-scale model, the displacement field is expected to show 

a level of heterogeneous behaviour which will prove beneficial when solving the meso-scale boundary 

value problem.  
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Figure 9. Voronoi tessellation generators a) Yarn segment defined by points b) Yarn segments 

represented as polyhedron.  

 

For the homogenization to be successful it is essential to have a Voronoi tessellation which satisfies 

two conditions:  

• The tessellations cover the complete domain with no regions left without being assigned to a 

Voronoi cell. 

• The Voronoi cells are mutually exclusive which ensures that there is no overlap of the cells to 

avoid inaccurate homogenization. 

 

Figure [9.a] shows the yarn section points extracted from the geometric modelling phase for an example 

yarn. Figure [9.b] shows the results of a yarn surface generated by applying a convex hull to each group 

of section points. A polyhedron can be generated from the section convex hull to represent the yarn 

surface at this location. Each polyhedron is closed and built from a set of planar faces. In a Euclidean 

space S given a set of tessellation generators A, representing the yarn segments is defined as:  

 

� =	 ��� , ��, … , �	
		, 2	 ≤ 
	 < 	∞ 
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The generators in the proposed tessellation are the polyhedra representing the yarn surface segments. 

Thus Ai for a given yarn segment is defined by:  

 

�� = ����, ���, … , ���
, 3	 ≤ �	 < 	∞ 

 

Where fij is the jth face of the ith yarn segment.  For all the points p in S we define a Voronoi mapping 

function g(p,Ai). Where g is defined as:  

�(�, �� 	) = � 1, ��		‖��‖ 	≤ 	 ����			0, !"ℎ$%&�'$															 
 

Where di  and  dj is the distance between the point p and the ith and jth polyhedron calculated as the 

distance from the nearest face fim in Ai. Okabe et al [67] defines two conditions for the cells of a 

generalized Voronoi tessellation to be collectively exhaustive and mutually exclusive. The first 

condition given as:  

(	�(�, �� 	)
	

�)�
	≥ 1,						�	 ∈ 		, 

 

This condition indicates that all the points in S are assigned to at least one Voronoi cell. For the proposed 

tessellation, this conditions is satisfied by the proposed mapping function since each point is assigned 

to at least one cell which contains the closest face.  The second condition concerns the boundary of any 

two adjacent Voronoi cell V(Ai) and V(Aj) which is defined by the set of points -.�� , ��/ given by: 

 

-.�� , ��/ = 	 0�1�(�, ��) = �.�, ��/ = 1, �	 ∈ 	,2 
 

For the exclusivity condition to be satisfied, in a Euclidian space, the set of point -.�� , ��/ should not 

have a positive volume. For the case of using the yarn segments as generators, based on the kinematic 

modelling constraints, which were used to generate the yarn architecture in the first place, yarns are not 

allowed to interpenetrate. Moreover, in the case of contacting yarn segments, each segment is defined 

by it is own set of points. This guarantees that the following conditions is universally true for the fabric:  

 

�� ∩	�� = ∅	, � ≠ 6	 
 

This relation guarantees that the boundary of any two Voronoi cells will be open and will not have a 

positive volume. Thus it is guaranteed that the Voronoi cells will be both exhaustive and mutually 

exclusive. 
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Figure 10. Pseudo-code for Voronoi homogenization. 

 

Using the proposed tessellation, a problem domain containing any 3D yarn architecture can be 

completely divided into cells which serves as basis for homogenization. The pseudo-code for the 

implementation of this homogenization algorithm is shown in Figure [10].  The core of this 

homogenization algorithm is organizing the faces defining each yarn surface into a search tree. The 

search tree is used to calculate the homogenized properties and to assign these properties to the macro-

scale Voxel mesh. The search trees in this work was implemented using the AABB Tree from the CGAL 

library. Figure 11. shows the tessellation process applied to a simple reinforcement geometry. The 

geometry shown here is of two out of phase spiral yarns embedded in a cuboidal domain. The 

tessellation decomposes the domain into a set of interlocking cells which are assigned to specific yarn 

sections. Multiple cross-section are taken along the domain length to show how the domain is divided 

between the two yarns. The same approach used to decompose the two yarns problem in Figure 11 can 

be used to decompose any 3D woven composite, regardless of its complexity or the number of yarns. 
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Figure 11. 3D spatial Voronoi tessellation applied to a simple geometry, a) Reinforcements 

geometry, b) Domain decomposition using Voronoi tessellation, c) Reinforcements’ domains 

after decomposition, d) Cross-sections across the tessellation domain. 

 

For purpose of model verification and validation, a set of meso and macro models have been created 

and compared against experimental results. Three sets of models have been solved where each set 

models a specific physical experiment. The models include two tensile samples, one loaded in the warp 

direction and the other in the weft direction, and a V-notch rail shear test [68]. The high fidelity models, 

loading directions and the Voronoi models are shown in Figure [12]. For the shear test, the shear 

modulus was calculated following the ASTM standard D 7078 which uses the cross-section area 

between the two notches to calculate modulus. The same standard was applied to calculate the shear 

modulus from the meso and macro scale models.  The elastic moduli predicted by both the meso and 

the macro scales have been compared against the value measured by experiments. The results are shown 

in Table [2]. Model sizes data are shown in Table [3]. The elastic response is shown to be in good 

agreement for the two model types with the experimental results for all three load cases.  For 2D 

composites, the transverse direction properties of the fibres is a usual source of modelling uncertainty. 

In contrast, for 3D woven composites, fibres are present in all three main directions. Hence, the response 

is controlled by the fibre axial properties and the transverse properties have minimal effect on the 

stiffness response. Consequently, the elastic response can be predicted accurately if the internal yarn 

architecture is considered in detail.  

The weft loaded samples were compared against stereo Digital Image Correlation (DIC) measurements 

for a similar physical sample. The model took into consideration the exact specimen yarn architecture 

in relation to the specimen boundary. This was done to include edge effects present in the experiment 

in the models. The full width of the specimen and 4 unit cells in the gauge direction with periodic 
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boundary conditions was modelled. The model was displacement controlled and loaded to the same 

level as the experiment. The results were compared in terms of the in-plane transverse displacement 

and out of plane transverse displacement. The axial strain response is dominated by the applied 

displacement. Hence, the comparison in the axial direction does not yield any additional knowledge of 

the sample behaviour. The comparisons are shown in Figure [13] and Figure [14].  Both the macro and 

meso models have captured the in-plane transverse displacement with good accuracy. For, the out of 

plane displacement both models were capable of capturing the hotspots in the experiment which 

correspond to the binder yarn locations. The surface strain profiles along path “A” from Figure [13] 

have been plotted in Figure [15]. The macro and meso model capture the general trend present in the 

DIC results. Additionally, the strain profiles shown in Figure [15] show a strong variation across the 

specimen. This can be explained by the presence of strong interaction between the internal yarn 

architecture and the sample size. 

 

Figure 12. Models used to calculate 3D woven composite elastic constants, a) High fidelity 

weft direction (showing only yarn elements), b) High fidelity warp direction, c) High fidelity 

shear specimen, d) Homogenized weft direction, e) Homogenized warp direction, f) 

Homogenized shear specimen 

 

Table 2. The elastic moduli predicted by the macro and meso models in comparison to the 

experimental results. 

 Experimental 

(GPa) 

Meso-Scale  

(GPa) 

Macro-Scale  

(GPa) 

Young’s modulus warp 63.9 64.0 63.0 

Young’s modulus weft 60.8 61.0 60.0 

In-plane shear modulus 4.7 4.8 4.3 
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Table 3. Model size comparison for macro and meso models. 

 Ex – Meso 

(Warp) 

Ex – Macro 

(Warp) 

Ey–Meso 

(Weft) 

Ey-Macro 

(Weft) 

Gxy-Meso 

(Shear) 

Gxy-Macro 

(Shear) 

Model size in 

million degrees of 

freedom 

15 0.94 15 0.94 30 1.875 

 

 

 

Figure 13. A comparison of the in-plane transverse strain from weft loaded specimens; DIC 

and FE models (loading in the vertical direction). 
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Figure 14. A comparison of the out of plane displacement from weft loaded specimens; DIC 

and FE models (loading in the vertical direction). 

 

 

Figure 15. Comparison of transverse surface strain profiles between meso, macro and 

experimental DIC 

 

For the V-notch shear test, the critical section is the through thickness slice at the middle of the specimen 

where the sample is narrowest. The in-plane shear strain acting on the middle slice as calculated by both 

the macro and meso models is shown in Figure [16]. A comparison of the mid-plane strain along on the 

same sections is shown in Figure [17].  It can be seen that the average strain and the general loading 

trend is in agreement in both models. On the other hand, the concentrations resulting from the geometry 
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details have been lost in the homogenised macro approach.  As stated in section 1, it is important to 

include the effects of the meso level stress concentrations in mechanical modelling since these features 

drive the damage initiation, leading to ultimate failure of the composite.  An additional step is needed 

to complete the multi-scale modelling approach by introducing a coupled global-local analysis for the 

highly loaded regions. 

 

 

Figure 16. Through thickness sections showing In-plane shears train comparisson between 

macro and meso model at two different locations within V-notch shear sample. a) Contour of 

displacment maginitude on a the sample. b) Meso model inplane shear strain on section 1. c) 

Macro model inplane shear strain on section 1. d) Meso model inplane shear strain on 

section 2. e) Macro model inplane shear strain on section 2. 

 

 

Figure 17. A comparison of the strain calculated by the meso and macro models on sections 1 

and 2 from Figure [16]. 
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6- Meso-scale boundary value problems 

 

Once the macro-scale problem has been solved and the displacement field calculated, the highly loaded 

regions within that model can be determined with reasonable accuracy. At this stage the overall stiffness 

of the component has been calculated and the next stage of analysis is to understand the failure envelope 

of the structure under investigation. A detailed meso-scale model can be built based on the internal yarn 

architecture as shown in section 4. This meso scale model can be solved as a boundary value problem 

under boundary conditions extracted from the macro model. This is done by creating a set of Lagrangian 

Multipliers acting on the meso-model. These Lagrangian Multipliers represent the boundary 

displacement of the meso-scale, described in terms of macro-scale displacement in form:  

 7� = 879 (1) 

Here 8 is the coefficient matrix of the Lagrangian multipliers equations, 7� is the meso scale boundary 

displacement, 79 is the macro model displacement.  To ensure a smooth transition between the macro 

and meso-scales, the macro element shape functions are used to compile the Lagrangian equations. 

Initially, a critical region is located from the macro-model and then a new high fidelity model is built 

for this region which uses direct material properties mapping with no homogenization. A convex hull 

is then constructed over the meso mesh nodes. The nodes that form the convex hull are the meso mesh 

boundary nodes, which need to be constrained by the Lagrangian multipliers. The nodal coordinates are 

then converted from the meso model axis to the macro model axis and to the nearest macro element 

intrinsic coordinates. The macro element shape function is then used to interpolate the meso node 

displacement in terms of macro element nodal displacements which are assembled into the coefficient 

matrix 8. The Lagrangian equations are then added to the set of finite element equations generated by 

the meso-scale model giving:  

 :;	�	 	 <=
< 0 > ?7�@ A = ?��0 A (2) 

 Where ;	�	  is the stiffness matrix of the meso-scale model and @ is the Lagrangian multiplier forces. 

Lagrangian multipliers by definition introduce singularities to the diagonal of the system matrix, which 

in turn causes most linear equations solvers to fail. As a result, the complete system has to be solved in 

an iterative process where the Lagrangian multiplier forces are fed back to the macro-scale system. The 

Lagrangian forces can be projected on the macro-scale mesh using the Moore-Penrose pseudoinverse 

of the coefficient matrix	<B after scaling for macro/meso mesh size ratio. In this approach, the macro-

scale degrees of freedom can be divided into internal and boundary degrees of freedom following the 

FETI approach  [19, 69]. Then the macro system can be rewritten as: 
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 C ;9	�� ;9�D
;9D�	 ;9DDE C

79�79D E = C �9��9D − <B	@E (3) 

Here, 	;9	�� is the stiffness matrix of the internal degrees of freedom.  ;9DD is the stiffness matrix 

components associated with the degrees of freedom on the boundary between the meso and macro 

models. ;9D� and ;9�D is the macro stiffness boundary/internal coupling terms. 79�  is the displacement 

associated with the internal degrees of freedom on the macro-scale. 79D  is the displacement associated 

with the boundary degrees of freedom.	�9�  is applied forces associated with the macro-scale internal 

degrees of freedom and		�9D is applied forces associated with meso/macro boundary. Once the system is 

setup in this manner, the macro-scale displacements are recalculated under the Lagrangian forces. Then, 

a new set of meso boundary conditions is calculated. A new meso-scale solution is then found and the 

iteration process proceeds until convergence. The solution convergence speed in the proposed approach 

is greatly enhanced by using the full macro model solution as an initial condition for the iteration 

process. In this manner, the global/local analysis is concerned with finding the difference between the 

homogenized and high fidelity solutions rather than solving the complete problem. Also, it is worth 

noting that for the model sizes in this paper where the models have tens of millions of degrees of 

freedom, sparse matrices and iterative solvers are the only practical option for handling this problem. 

Hence, the problem formulation had to be adapted accordingly.  

The V-notch shear specimen used in the previous section to predict the in-plane shear modulus of the 

fabric being studied is a good example where a hybrid multi-scale model can be used. The critical region 

of this sample is in the middle, where the sample is narrowest and the average strain is highest. The 

multi-scale model was applied to this type of test and the results compared to a full meso-model of the 

specimen. The result for the strain field and the overall displacement are shown in Figure [18] and 

Figure [19]. The comparison shows that there is no detectable displacement discontinuity between the 

macro and meso regions in the hybrid model. A key drawback of many global-local analysis approaches 

is the presence of discontinuities between the global and local scales. These discontinuities can lead to 

stress artefacts in the meso-models. For the proposed modelling approach, since the macro displacement 

field is heterogeneous and follows the same pattern as the meso scale, no such stress artefacts can be 

seen in the meso model. Figure [20] shows displacement field on the interface between the meso and 

macro scale	(79D ) which has been calculated by solving equations [2] and [3] simultaneously. Figure 

[21] shows the stress distribution on the middle slice as predicted by both the multi-scale and the full 

meso scale model. Figure [22] shows a comparison of the strain profiles on a path across the sample 

between the hybrid and meso-scale model. It can be seen that the two models are in good agreement an 

there is no significant strain discontinuities along this path. The multi-scale model solves the same 

problem with 2.5 million degrees of freedom as compared to 30 million for the full meso scale solution. 



 25

 

 

Figure 18. A comparison of in plane shear strain for a V-notch test. a) Full meso scale model 

b) Hybrid meso/macro model. c) Hybrid model domain decomposition. 

 

 

Figure 19. A comparison of total displacement field for a V-notch test. a) Full meso scale 

model b) Hybrid meso/macro model. 
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Figure 20. The displacement boundary conditions on the meso-scale model as interpolated 

from the macro model for the V-notch rail test. a) X displacement (in-plane transverse 

direction), b) Y displacement (in-plane loading direction), and c) Z displacement (out of 

plane direction). 

 

 

Figure 21. Comparison of in plane shear stress on the middle slice of the V-notch sample.  

a) Multi-scale model, b) Full meso-scale model 
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Figure 22. A comparison of the mid-plane strain profile across the V-notch specimen as 

calculated by the high fidelity model and the hybrid multi-scale model.  

 

An additional strength of the proposed modelling approach is the ability to handle components with 

complex geometries. The examples studied so far were all sections of flat plates. These samples show 

edge effects and thus demonstrate the need for multi-scale modelling for even the simplest components. 

They have not however shown how the proposed model can handle complex geometries. An example 

of a more complex component geometry is shown in Figure [23]. The geometry has a double curvature 

with a varying radius at its apex. A kinematic simulation was run to model the deformation and 

compaction of the orthogonal 3D woven material studied in this work on the tools shown. The kinematic 

model used to generate this internal yarn architecture for this component is detailed by El Said et al [8]. 

The internal yarn architecture resulting from the kinematic model is shown in Figure [23 c]. It can be 

seen that the yarn architecture varies throughout the component as a result of the tool geometry and the 

initial yarn architecture. The weft yarns on the surface have different levels of waviness between the 

component apex, the component corners and the flat sections. The section showing the highest level of 

yarn waviness has been modelled using the proposed multi-scale approach. Figure [24a] shows the 

homogenised Voronoi model of this section. The model is loaded in compression in the y-axis direction 

to induce bending stresses in the middle part of the component. The average transverse stress in each 

yarn as calculated by the macro-scale model is shown in Figure [24b].  Figure [25] shows the multi-

scale mesh and the displacement as calculated by the multi-scale model. The full macro-scale model is 

2 million degrees of freedom and the hybrid meso/macro is 3.2 million degrees of freedom.  Figure [26] 

displays the fibre direction stresses in the meso-model. Figure [27] shows the yarn transverse stresses 

and the matrix maximum principal stresses. It can be seen that the stresses are consistent with the 

bending behaviour expected at this location. Additionally, the model captures the complex nature of the 

stress state at this scale as would be expected from the complex yarn architecture. The model shows 
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that the yarn transverse stress, which is the main driver behind matrix cracking in woven composite, is 

dependent on the yarn crimp and waviness. The weft yarns with the highest crimp and waviness is 

displaying high transverse stress as well as high matrix stress in the yarn vicinity. Here, it has to be 

mentioned that despite the considerable reduction in model size between the full meso-scale and the 

proposed multi-scale model, the analysis is still relatively large. As has been shown, the proposed model 

can handle feature scale modelling such as the double curvature geometry presented here. However, for 

even larger structures applying this approach directly might be computationally prohibitive. A further 

level of homogenization might thus be required to inform or interact with the hybrid model represented 

here. Several approximate models are available in literature that can fill this role [70-72]. 

 

 

Figure 23. Complex 3D woven component, a) Upper tool surface, b) Lower tool surface, c) 

Kinematic model of the internal fiber architecture. 

 

 

Figure 24. Complex 3D woven component, a) Homogenized Voronoi model b) Yarn 

transverse stress. 
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Figure 25. Complex 3D woven component, a) Multi-scale meshes, the red section is the meso 

and grey is the macro, b) Multi-scale results for displacement magnitude. 

 

 

Figure 26. Complex 3D woven component meso model: fiber direction stresses on the full 

model and a cut section of the same region. 

 

 

Figure 27. Complex 3D woven component meso model: a) Yarn transverses stresses b) Matrix 

maximum principal stresses. 
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7 – Conclusions 

 

In this paper, a novel integrated multi-scale modelling framework for 3D woven structures has been 

proposed and verified against experimental results. The proposed model has been used to gain insight 

into the mechanical behaviour of 3D woven composites. The strain and stress distributions found using 

this modelling approach show a strong relation between the internal yarn architecture and the 

mechanical response of 3D woven composites. Internal yarn deformations such as crimp and waviness 

create localized stress concentrations that can act as damage initiators in these structures. Additionally, 

it has been shown that the internal yarn architecture changes throughout the manufacturing phases and 

is dependent on the final structural geometry. Consequently, the yarn architecture and the meso-scale 

mechanical response become no longer only material properties but are also influenced by the specific 

structure of interest. This observation leads to additional complications when modelling or 

experimentally testing 3D composites due to the need to consider the yarn architecture at the meso-

scale, even for structural scale response.  

Composites modelling have traditionally relied on achieving scale separation between the macro and 

meso scale. Here, it has been shown that for 3D composites the loss of periodicity and the mechanical 

response dependency on yarn architecture mean that scale separation is no longer feasible. A coupled 

approach which links the meso-scale to the global structural response is required. This coupled approach 

needs to include the influence of the internal yarn architecture on both the macro and meso scales. 

Additionally, coupon testing is a widely used approach of composites characterization. In this work, we 

have modelled three different specimens commonly used in such tests. The strain profiles calculated by 

the models show considerable variation throughout the specimens’ planform and through thickness. 

Even for simple test such as a tensile test, the strain distribution shows large variation across the sample 

width, which is an indicator of strong interaction between the yarn architecture and the sample size. 

These yarn architecture dependent variations mean that conventional coupon testing of these materials 

will measure specimen specific properties rather than generic material properties. For 3D woven 

composite structures with complex geometry, the changes in internal architecture are associated with a 

changes to the yarn architecture on the meso-scale. As a results, homogenised material properties 

measured from flat samples or calculated from models of flat samples will not be valid as inputs to 

structural scale models. This effect has been observed clearly in the double curvature component 

modelled in this paper. In this model, the highest transverse stresses were observed in regions where 

the internal yarn architecture showed the highest deformations, as a result of the component geometry. 

This observation shows that more elaborate specimen design, which is informed by the internal 

architecture and the final structure geometry, is needed to carry out proper characterisation. The 
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modelling techniques presented here offer an opportunity to carry out trials of such characterisations in 

a virtual sense, due to their accurate physical representation of geometry at the relevant scales. 
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