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On the Nonlinear Dynamics of a Rotor in Autorotation: a

Combined Experimental and Numerical Approach

D. Rezgut and M. H. Lowenberg
Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom

This article presents a systematic assessment of the use ofhmerical continuation and bifurcation
techniques in investigating the nonlinear periodic behawur of a teetering rotor operating in forward
autorotation. The aim is to illustrate the potential of these tools in revealing complex blade dynamics,
when used in combination (not necessarily at the same time)ith physical testing. We show a simple
procedure to promote understanding of an existing but not flly understood engineering instability
problem, when uncertainties in the numerical modelling andconstraints in the experimental testing
are present. It is proposed that continuation and bifurcation methods can play a significant role in
developing numerical and experimental techniques for stuging the nonlinear dynamics not only for

rotating blades but also for other engineering systems withuncertainties and constraints.

Keywords: bifurcation, continuation, autorotation, slifg autogyro.

I. Introduction
The development of many accurate nonlinear numerical nsaafetlynamical systems in engineering
involve a level of experimental updating, ‘correcting’ antng, for example: the incorporation of para-
metric equations or experimentally-derived correctioctdes. The extent to which these models are valid
depends on the level of understanding of the behaviour gpltlysical system, which is — in turn — man-

ifested in the modelling strategy and complexity togethién any assumptions and experimental corrections.

In the aerospace sector, the use of nonlinear methods suclrgisuation and bifurcation tools
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is becoming more widespread. In particular, it is increglgiradopted to investigate nonlinear aircraft
flight dynamics and control problems. However, the applicadf continuation and bifurcation methods
has been limited to a small number of helicopter dynamicabj@ms, such as flight mechanics [1-7],
ground resonance [8, 9] and examination of the rotor voiitex state [10]. Furthermore, almost all of the
investigations whichutilize these nonlinear tools can égarded as research studies and it is still hard to
find these tools widely adopted in industry for productiomti@ft. Recently, In recent years, the nonlinear
aeroelastic stability of helicopter rotor blades was itigeged by Rezguet al. [11, 12], using humerical
continuation and bifurcation techniques. This invest@yashowed that these techniques are powerful in the
identification of instability scenarios of rotor blades amtovering the multiple solution structure driven by
the nonlinearities in the rotor system. However, this wadused mainly on the applicability of the methods
to investigate the effects of nonlinearities for standaeticopter blade stability problems. Nevertheless,
this work led to the first practical application of the con@tion and bifurcation methods for certification
of production aircraft, which contributed towards the &it®elease-To-Service of the AW159/Wildcat

helicopter [13].

Unlike fixed wing aircraft, rotorcraft produce lift by spimg a number of blades about a rotor shaft,
where each blade can constitute a separate dynamical systhrits own degrees of freedom and hence
its own behaviour. Creating an accurate numerical modeldtmr dynamical analysis is very demanding
due to the complexity of the aerodynamics and the strucpin@berties of the rotor. For example, if the
aerodynamics of the flow field is to be accurately represetited all of the following characteristics need
to be properly modelled: unsteady flows, compressibilipn-uniform inflow, reverse flow region, wakes,
etc. Of course, this would substantially increase the mdasEnsion. To carry out rapid blade stability
analysis, however, it is customary to make use of a numbes&iraptions in order to reduce the size of
the model to a practical level. This carries the risk of afiteg erroneous results, in particular in areas of
fluid-structure interaction that have not been studied feefuch as highly nonlinear regimes or novel rotor

configurations.

On the other hand, the numerical tools used for bifurcatiwalyesis can vary from simple brute-force



time-integration techniques to the so-called numericatiooation methods. However, the accuracy and
the correctness of the results produced by these tools eetlydependent on the fidelity and validity of
the nonlinear dynamical models used. In 2008, Sieber andskapf [14] presented a novel experimental
continuation technique that does not require an accurateerioal model. Instead, the physical model of
the system under investigation is interrogated by the tigelento produce the bifurcation diagrams, which
describe its nonlinear behaviour. This experimental tephais often known asontrol-based continuation
and can follow both stable and unstable solution branchsl{leria and periodic) as well as detect bifurca-
tion points. There has been a number of studies in recens yleat utilized the control-based continuation
method for various purposes [15-20]. However, althouglsdahs&tudies have already demonstrated how
powerful the control-based continuation approach can ligaing solution branches, without the need to
know the underlying mathematical equations of the systaodied, the implementation of this method to
more complex systems, such as fluid-structure interactioblems, can be challenging. In particular, if it
difficult to achieve sufficient control of the required pargters because of constraints or limitations at the

level of the physical system or the experimental setup.

In recent years, the stability of rotor blades in autorotatvas investigated using numerical continuation
and bifurcation methods, and wind-tunnel testing. In [24¢ coexistence of stable and unstable branches
in the behaviour of autogyro rotors was demonstrated, bathemically and experimentally (not at the same
time as in control-based continuation approach). The irtagihns of such nonlinear behaviour on stability of
autogyros from an engineering and flight safety perspeutam discussed in [22]. In this paper, we revisit
the not fully understood problem of autogyro blade flapiotainstability, using experimental testing in
conjunction with a numerical continuation and bifurcatemmalysis. The purpose is to highlight the bene-
fits of the combined numerical-experimental approach idyshg the dynamics of nonlinear fluid-structure
problems. First, the blade flapping instability problem irtcaotation is introduced with an overview of the
principal challenges. Then, a description of the expertalepparatus and procedure are presented followed
by a discussion of the obtained results. Finally, evaluatibthe extent to which the continuation and bi-
furcation methods have helped in uncovering the physiceulyidg unstable blade behaviour is illustrated

through a combination of numerical and experimental result



Il.  Autogyros and Instability of Rotor Blade in Autorotatio n

Autorotation is a phenomenon whereby the rotor can sustdation relying only on the aerodynamic
forces of the airflow passing through it. This process is @x@d in aircraft, known as autogyros, to
produce lift. For simplicity, the basic aerodynamics inaxatation can be viewed by considering the flow
environment around one blade: in the general case, a cegation of the blade is absorbing energy from
the airflow and the rest of the blade is adding energy to the fldence, at the equilibrium condition, the
net torque on the rotor shaft is zero and this constitutesdgt@utorotation. The autogyro achieves an
autorotation state by slightly tilting the rotor disc backd allowing the air to flow upward and through the
rotor blades as the aircraft moves forward (see figure 1).hfast the aircraft forward, an engine-driven

propeller is typically used either in a tractor (puller) arsher configuration [23].

Propulsion

Lift Resultant from rotor

force Lift
1 i
Flow is upward onroter Rotor
through the rotor thrust
Thrust from Net drag b > Net drag
propeller +—4 from rotor from rotor
& airframe & airframe
Flow is downward
through the rotor
Weight Weight
(a) Autogyro (b) Helicopter

Fig. 1 The autogyro rotor (a) provides lift using the phenom@on of autorotation by tilting the rotor backward.
The propulsion is offered by a separate engine-driven progdéer. Whereas, the helicopter rotor (b) provides both

lift and thrust. Figure adapted from [23].

Although autogyros were proved to provide significant adages relative to other aircraft types, the
greater operational envelope of the helicopter has redelgidieir use almost entirely to sport enthusiasts;
hence they are less familiar to the wider public. The autodsaternity knows, through experience, that a
rotor operating in high speed edgewise flight can exhiblieatuindesirable characteristics in the form of
blade flapping instability or rapid rotor speed decay, eigiigdf it is lightly loaded (low thrust coefficient).
However, the mechanism governing this potentially verygigiaus behaviour is poorly understood and a

better understanding of the lifting rotor dynamics that kesad to such wayward behaviour is required.



The lack of understanding of autogyro stability togethethvinadequately trained pilots resulted in a
number of fatal accidents. In an attempt to categorise thegso crashes on the basis of their causes,
the Popular Rotorcraft Association identified Aircrafttiasility —where the aircraft becomes unstable and
uncontrollable— as one of the two major contributions todhbeident record [24]. Violent blade flapping
leading to in-flight rotor blades strike on other aircraftrqgmonents is one manifestation of this, along with
the loss of rotor speed. These outcomes are directly relattte rotor blade stability and are the focus of

this paper.

A. Blade Flapping in Autorotation

Like in helicopters, the blades of an autogyro rotor arevedid to flap to avoid the problems of lift
asymmetry. The flapping behaviour of the blade in forwardfligill create an oscillatory motion, in a way
that the peak flapping amplitude of the oscillation is achicever the nose of the aircraft and the minimum
is achieved over the rear of the aircraft. This results inrtter tip-path plane being tilted back as viewed
from the side of the aircraft. This rotor disc tilt increaséth forward speed [23], which in turn increases
the flow rate through the rotor. This means that rotor shafieafthe hub plane angle) can be reduced
even further to keep steady level flight. In forward flighte erodynamic forces provide excitation to the

flapping blade, primarily at once per revolution and hental#ish a periodic forcing in the rotor system.

The flapping oscillatory motion of the blade also inducedicyorces in the plane of rotation, due to the
conservation of angular momentum of the blade. These fameesalled Coriolis forces and they require the
incorporation of lead-lag hinges at the blade root to alléadb motion in the plane of rotation to eliminate
structural fatigue. Finally, as well as the aerodynamic @adiolis forces, there are the centrifugal and

gravitational forces acting on the blade.

B. Stability Autorotation State

It was seen that autorotation is a phenomenon that reliesatamting the aerodynamic torque acting
along the blade. Hence, it is logical to investigate if arpeaiiation state is always achievable. Of course
if it can not be sustained during flight then this will be regdga as a form of instability. The stability of

the autorotation state was first investigated in axial desieg Wimperis [25] in 1920. He showed that the



autorotational state of a rotating blade section is depanole the local inflow angle and the local angle
of attack, as well as the section’s aerofoil charactegsti@nifested in the lift and drag coefficients. This
was investigated using the so callaatorotational diagramand it was shown that both the accelerating and
decelerating forces acting on on the blade section ardigtabi It was also shown that there is a maximum
pitch angle above which autorotation is not possible, rdigas of the inflow angle value. This represents
the stall condition, which only causes a decelerating foocexist. However, although the autorotational
diagram can be used for a single blade section, construatsigilar diagram for the whole rotor blade is
very complicated. This is because autorotation equilibria this case is determined by the cumulative
effects of the forces and flow velocities acting along thedela Similarly, constructing an autorotation
diagram for the forward flight case is also challenging du¢h® oscillatory behaviour of the blade and

indeed for any blade section.

Nikolsky and Seckel [27] extended the above analysis tarsdtoaxial autorotation. They considered
the effect of stalling on the stability of autorotation. Jt&howed that when stall effects are included, two
trim solutions can be found. The first represents the normahle autorotation state, while the other is an
unstable autorotation condition. The analysis also redktidat for small blade incidences, the stability of
the blade is evident. However, for higher blade incidenitese is a risk that flow disturbances can cause the
blades to stall, because of the unstable trim points bewgedo the normal autorotation state. Nikolsky and
Seckel also illustrated that there is a maximum angle (aB&itfor the example rotor used) above which

axial autorotation cannot exist.

C. Blade Stability in Autorotation

As far back as 1936, Wheatley[26] found that autogyro raeadtlag oscillations are mainly the direct
effects of blade flapping (Coriolis forces) and that the iafice of the aerodynamic forces in the plane of
rotation are secondary. Understanding the lead-lag mafi@m autorotating rotor can help in knowing the
amount of damping required by the blade. The analysis wassaldorsed by flight test validations. In 1978,
Wei and Peters [28] used perturbation and Floquet methositly the blade lag stability in autorotation,

including the effects of advance ratio (ratio of aircraftviard speed to blade tip speed), blade elastic



coupling, blade in-plane natural frequency and rotor triomdition. This analysis revealed that blades
operating in the autorotation condition are consideratg Istable compared to the powered flight regime.

This study was, however, limited to cases of advance ratgsthan 0.5.

Floros and Johnson [29, 30] investigated aspects of blaplddtastability and found that it was difficult
to find trim solutions above an advance ratio of 2. They alsatified that the trim solution in autorotation
is not unique, which raises the question whether a manoerourkel cause the rotor to change abruptly
between different states. Rigsby [31] also used Floqudysisao investigate the stability of an autorotating
rotor. Although the results identified some areas wherettglgy is reduced, the analysis did not predict

any form of blade instability.

Another source of rotor instability in autogyros is the naigtion between the blade elastic forces with
the aerodynamic and inertial forces. Although the aerdielaffects are not the subject of this paper, it is
worth mentioning that there is a strong coupling betweernrdhar speed and the blade degrees of freedom

in bending and twist [32, 33], and that blade elasticity ceastically reduce the rotor stability [29].

Finally, there is extremely limited experimental researcthe available literature that addresses blade
stability for autogyro rotors, most testing focusing irgt@n performance and flying qualities. De Silva [34]
performed wind tunnel tests to quantify the extent of flagpith high advance ratios. The tests showed
that as the advance ratio increases, the amplitude of thie lapping angles increases first linearly and
then exponentially, depending on the rotor disc loadingweler, the results of the experiments did not
distinguish between real flapping instability and high fiagpangles. On the other hand, Wheatley and
Bioletti [35] confirmed one of the basic concepts about attdion stability by conducting wind tunnel tests
using a 10 foot diameter rotor. The tests showed that theaecigtical angle of attack (rotor tilt) below
which the rotor can self autorotate and above which the retard rotate in the reverse direction. However,
since the rotor had only one degree of freedom, azimuthatioot, then it was inevitable to spin either in

autorotation or in a reverse direction.



Ill.  Continuation and Bifurcation Methods for Rotating Bla des

The basic idea of numerical continuation and bifurcatiarthitéques is the calculation of the steady
solutions of a dynamical system as one of its parametelgdctile continuation parameter, is varied across
a pre-defined range. The computed solutions construct a ewuafilbranches that could be either stable or
unstable. To determine the stability, either an eigen ogi#éd analysis is carried out at each computed
solution, depending on the nature of the solution. For imetain hover the blade behavior can be considered
to be in equilibrium (fixed points), hence an eigen analysisarried out for stability, whereas in forward
flight, the blades behave in a periodic manner (limit cycths) to the rotor lift asymmetry, hence Floquet

theory is used to determine the stability.

A bifurcation is the qualitative change in the system betwaas a parameter is varied. In other words,
when the stability of a system is changed or lost, the systifuncltes. The points at which these stability
changes happen are called bifurcation points. When themsys nonlinear, new solution branches may
emerge from the bifurcation points, leading to the preseficeultiple solutions for the same set of system
parameters. The identification of these different solubcanches helps to uncover the global dynamics of
the system. Of particular interest is when the blades, fangde, are locally stable for small disturbances

but not necessarily for large ones, and vice-versa.

Therefore, the strategy in implementing continuation aifierbation methods is to follow one solution
branch as one or more parameters are varied to locate difumgaoints. The emerging branches are then
followed to construct a more complete picture of the systgmachics (bifurcation diagram). Furthermore,
other advantages of continuation methods, compared whtkr dime history or frequency domain methods,
are their efficiency and accuracy in following the solutioarches as well as in detecting and identifying
the bifurcation points. The different types of bifurcatsathat can occur in equilibria or periodic orbits are
not discussed in this paper; the reader is referred to geleata such as reference [36] for more background

on the subject.

There are several freely available continuation softwatke different levels of maturity and robustness.



AUTO [37], Continuation Core (COCO) [38], MATCONT [39] and.CMATCONT [39] are examples of

the most widely used packages. In this analysis, the caatiimiand bifurcation software AUTO was used.
AUTO is open source software for continuation and bifumaproblems of ordinary differential equations,
originally developed by Eusebius Doedel, with subsequexjpntontributions by several people where it is
currently available on a number of platforms [37, 40]. Besidnany other types of equations, AUTO can

perform extensive bifurcation analysis of ordinary difetial equations (ODESs) of the form:

X(t) = f(xt),p), xeO"peOMf:0"xO"™—0O" 1)

subject to initial conditions, boundary conditions, antkgral constraints. Hereis the state vector angd
denotes one or more parametensandm are the numbers of states and parameters respectivelyti@gua
(1) is written in the generic (nonlinear) state-space fowhere the state-derivatives are functions of the

states and some parameters.

The main type of steady solution which describes the rotadédbehavior in the conventional forward
flight operating envelope is a periodic orbit (limit cycldwions). Conventionally, helicopter rotor models
have a constant rotor speed and are written in the non-aoton®form, in that the independent variable
appears explicitly in the equations. In fact, the blade atimangle is a non-dimensional form of the time
variablet. Unlike in helicopters, the rotor in forward autorotatioasha variable rotational speed. Hence
the rotor is not forced to rotate at a fixed frequency and tadédhzimuthal anglg would then need to be

modelled as state variable. The rotor in forward autoroteis therefore a self-excited dynamical system.

I\V. Description of Experiment
The experiments were performed in the University of Bridtal speed open jet wind tunnel (see
Figure 2(a)). The wind tunnel is a closed return system with@3m long open working section. The
diameter of the jet is 3ft 6in (1.1m) and the maximum attaieatelocity is about 33m/s. The experimental
rig (see Figure 2(b)) comprises a two bladed teeter rotonoirildiameter. The blades are rigidly connected
and free to flap about a hinge located at the shaft axis. Thetskeof the rotor rig, including the hub
system, is modified from a radio controlled helicopter. Tla@fing angle of the blades is measured using

a magnetic encoder which has a resolution dB50+ 0.07°. The pitch of each blade is monitored using
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Fig. 2 (a) Schematic view of the autogyro rig in the open jet wid tunnel. (b) The autogyro experimental rig; the

sphere above the rotor houses the wireless system and safetgchanism.

different magnetic encoders that are connected to eacle biada pulley and tooth belt system, resulting
in a total pitch resolution also of. 05° +0.07°. The signals from these three sensors are transmitted via

ZigBee wireless telemetry to a Personal Computer.

The rotor speed and azimuthal position are monitored usingptical encoder connected to the rotor
shaft. This encoder is connected to the PC via a dSPACE auerf41]. A six component load cell
(JR3-100M40A [42]) fitted below the fuselage is used to meathe forces and moments acting on the rotor
rig. The airframe is designed to represent a scaled verditimeoMagni VPM-16 autogyro, modified by
having a closed cockpit. The purpose of this airframe is teecthe components of the rotor support frame
and provide a smoother aerodynamic shape, and hence wagsighed to match the scale of the rotor
dimensions. Finally, a safety mechanism is implementeddagnt damage to the rotor rig should the blade
motions become unstable. This mechanism is located in tioe hob and uses two spring loaded valves
which are released by a mechanical locking system when cieatdy a blade exceeding the maximum

allowed flapping angle of 23

The procedure was to monitor the rotor speed and blade flg@rigles in autorotation, as the wind
speed(), shaft angle@gaft) or blade collective pitch angl®{, ) were varied. The first series of tests were
conducted at a collective pitch angle 6f 1n each test, the shaft angle was inclined at a chosen vahere
the blade flapping angle and rotational speed were recorsl¢kearotor was subjected to different wind
speeds, taken at 1 m/s intervals. The aerodynamic forcemantents were also measured. At every wind

speed value, the rotor was allowed enough time to settle dowteady autorotation, then the readings for

10



the flapping angle and rotational speed were recorded foe80nsls and the readings for the aerodynamic
forces were recorded for 6 seconds. These experiments e@eated twice to ensure reproducibility of the
results. The rotor often required to be pre-rotated (by hamnaking string wound around the shaft) for au-

torotation to take place. This set of experiments was reglat collective pitch angles 6f1°, 0°, 2° and 3.

It is worth noting that some measurements were not possildetal unforeseen rotor shaft vibration
(shaft resonance), which often occurred when the rototedtelose to average speeds of 500 rpi %),
960 rpm (-1%) and 1270 rpm+1%). The last two frequencies were the most potentially dangeones
for the rotor and hence it was not practical to keep the rgigsng at those speeds if excessive vibration
occurred. Operating the rig close to these frequenciesadieoted the accuracy of the measurement, which
resulted in the largest discrepancies in rotor speed andafigfe. Excluding those cases, the maximum
scatter in the measured rotor speed was about 35rpm. Whéneasaximum scatter in the flapping angle

amplitudes was about 1.5 deg.

The next step of the experiment was to identify, within thadvspeed range, any areas where the blade
dynamics change. This was done in two stages. Firstly, bgsitiyating the rotor behaviour at the high
and low limits of achievable wind speeds. Secondly, by pbitg the rotor velocity during the normal
autorotation regimes. This was simply done by introducingval of friction for a short period of time to

slow the rotor down.

V. Experimental Bifurcation Analysis
Figure 3 depicts the variation of the rotational speed anmgpitay angle at steady autorotation state.
Since the recorded flapping data was periodic with rotor attinposition, the average peak values for
each cycle were computed over the period of the data reaprdirhese peak values of the oscillating
flapping angle were plotted in Figure 3 for different tunreded values and rotor shaft angles. For the rotor
velocity, the averaged mean values were used instead, @r towdninimize the effects of the once per rev
contributions. In steady autorotation, the amplitude @f thtor velocity oscillation (lead-lag rate) is very

small, so peak and mean values can be used interchangedbbutvaffecting the analysis, particularly,
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Fig. 3 Variation of rotor velocity and blade flapping angle with tunnel wind speed and rotor shaft angle (labelled)
for B, = 1°. Peak values for steady oscillations are plotted against wil speed for different shaft angles. The

solid markers define the wind speed value below which the rotacan not sustain steady autorotation.

when comparing with the numerical results. The best-fit earfor the measured data were also plotted.
These curves were extrapolated to obtain an illustratidghefotor speed and peak flapping angle variations
at higher wind speeds. Figure 3 illustrates that the ratati@elocity increased almost linearly with the
forward wind speed, while the flapping angle had an inverksioaship with the wind speed. This shows
that the more flow that went through the rotor the faster itexd but at the same time it affected the flow

environmentin a way that forced the steady state flappingpanrgplitude to reduce for higher speeds.

The experiment also revealed that at each setting of shgle aautorotation was not possible below a
certain wind speed value, which indicated the presence afstability point. In other words, the presence
of a bifurcation point. Instead, regardless of how high lfirithe permissible range) or low the initial value
of the rotor speed was, the blades’ rotational speed alwagayed and the flapping oscillation diverged
until the blades made contact with the safety mechanisngiwhias then activated (See Figure 4). It should
be noted that it was difficult to precisely determine the mimm autorotation wind speed, particularly with
the adverse effects of tunnel flow perturbations: the inktyalpoints illustrated in Figure 3 were located

within a+1.5 m/s band of the stated wind speed value.

The subsequent experiment was to test the ability of the totautorotate at flow speeds higher than

the minimum autorotation airspeed, but in this case stftiom different low initial rotor velocities at each

12



flow speed. To achieve a level of control in the initial rotpeed values, the rotor is first operated in stable
autorotation after setting the appropriate wind tunnekspeNext, a level of frictional torque is applied at
the rotor shaft to reduce the rotor speed down to the desake@vThe top of the wireless telemetry shroud
was found to be the best place to apply this resisting torgaeevery wind speed and shaft angle setting, a
rotor speed threshold was found, above which the rotor wilhble to achieve steady autorotation. Figure 4
depicts the results for different attempts of initial rospeed conditions when the shaft angle was set to
7°. By repeating the tests a number times, it was possible toalefirotor speed boundary that separates
the two rotor scenarios (presented by a red dashed line uré-i¢). At this boundary, the behaviour of
the rotor appears to be steady but due to flow disturbances| imeve away from this point either to
the stable autorotation state or the blade flapping diveagesactivates the safety mechanism. This rotor
speed boundary together with the corresponding peak flg@pigle variation represent an unstable periodic

branch of a rotor dynamics in autorotation.

The diagrams in Figure 4 resemble experimental bifurcadiagrams of the physical teetering rotor.
They show the presence of stable and unstable autorotatioclies, which get connected at the bifurcation
point. Because of the latter and also because of the uniidined transient behaviour of the blades at speeds
below the bifurcation point wind speed, the instabilityqtaoiesembles #old bifurcation point: it defines the
minimum wind speed value for which steady autorotation exist. Moreover, the approach used to find

the above bifurcation diagrams is typically known dw ate-force bifurcation method.

Furthermore, from the above experiments, two other isseesl o be clarified. The first is related
to the behaviour of the rotor at a wind speed below that of tifierdation point. It seemed during the
experiments that all attempts to operate the rotor in th@senlind speed cases ended up by activating the
safety mechanism due to the large flapping angle before tbespeed decayed to a halt and not the opposite
way around. This could mean that the rotor at low speed miglatttsacted to another stable periodic branch
that resides beyond the limit of the maximum flapping anglécd@rse if that is the case then the system
features important multi-attractor characteristics aadde continuation and bifurcation methods are really

an essential tool for investigating its dynamics, when {hygrapriate numerical rotor model is available.
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Fig. 4 Experimental bifurcation diagram showing projections in (a) the rotational velocity and (b) the flapping an-
gle for the autorotating rotor, 84,5t = 7° and 6, = 1°. The hollow blue circles represent the starting conditions
from which stable steady autorotation states were achievedrhe solid blue circles denote stable steady autorota-
tion (stable limit cycles). The red dots are the attempts whe autorotation was not possible. The red dashed line
represents the unstable autorotation steady states (undtée limit cycles), identified using a brute-force bifurcation

approach. The arrows indicate the direction of the trajectaies’ transient behaviour.

The second issue concerns the location of the bifurcatiant ps the shaft angle was changed. Figure 5
is a 2-parameter experimental bifurcation diagram and shbat the wind speed value at which the fold
bifurcation occurs increases as the shaft angle is redudad.implies that the fold bifurcation points also
specify the minimum permissible shaft angle required fdoeatation at those wind speed values. In order
to clarify the effects of the above results on autogyro fliggtformance, the average aerodynamic lift values
generated by the rotor are superimposed as contours in the figure. Figure 5 illustrates that the fold
bifurcation line lies in an area where the rotor producesvalues of lift (below 1N to just above 3N). This
shows that when the rotor is unloaded by reducing the shafeasr the flow wind speed, its stability will
be determined by whether or not the fold bifurcation linerisssed. Furthermore, the higher the wind speed
the higher the minimum lift value generated by the rotor. sTimeans that the minimum permissible lift
value increases at higher wind speed. This is an importanttreecause, at high speed flight, the autogyro
pilot has to reduce the shaft angle to maintain the lift an@yitebalance or to further off-load the rotor for
specific manoeuvres. Thus, if the shaft angle is reducedgimsai that the fold bifurcation point is reached

then the rotor will not be able to sustain stable autorotatinod hence, the blades will start to flap in a

14



Shaft Angle (degrees)

Autorotation is
not possible in this

5 region

Fold bifurcation line in

q U L L two parameter space L

10 12 14 16 18 20 30

Wind speed (m/s)

Fig. 5 Rotor lift contour plot imposed on a 2-parameter expeimental bifurcation diagram with respect to wind

speed and shaft angle. The lift is given in Newton. The bladeodlective pitch angle is1°.

oscillatory divergent manner.

Finally, the effects of varying the collective pitch anglasinvestigated. The shaft angle chosen for this
case wa®gaft = 7°. Attempts to get the the rotor to autorotatdgj < —2° andB, > 4° did not succeed
over the available speed range of the tunnel. Figure 6 defiiet variation of rotor lift in the blade pitch
angle and the wind speed parameter plane. In this case, Ithbifarcation line still lies in an area where
the rotor produces low values of lift but the range of valeelatively bigger (below ON to just above 7N)
than the range shown in Figure 5. Furthermore, it can be $eintthe range of 11 m/s and 17.5 m/s, two
bifurcation points at every wind speed exist; one at a snaléctive pitch angle and another at a higher
angle. For example, & = 16 m/s, two fold bifurcation points exist at approximatély = —0.9° and
2.5°. From this plot, one can easily visualize the appropridigrbation diagram for the case 0f= 16 m/s,
when the pitch angle is taken as the continuation paramieigure 7 depicts this bifurcation diagram. For
8.0 = 0° and 2, the mean rotor speeds and the peak flapping angles at theblentanch were found in
a similar way to that used in Figure 4. Figure 7 clearly illagts that autorotation is only possible within a

range of blade pitch angle, which is dependent on wind speddhaft angle. At the limits of this range,
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there were two bifurcations that define the points after Whie torque balance in the rotor can no longer
be achieved. This type of bifurcation diagram is usuallyezthhnisola. The above results represent a new
qualitative interpretation of autorotating rotor statyili The multi-attractor nature of nonlinear dynamical
systems suggests that the instabilities identified aboukeldead to new attractors that will constitute a more

global view of the system behaviour than has previously lazaiiable.
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Fig. 6 Lift contour plot imposed on an experimental bifurcation diagram with respect to wind speed and collective

pitch angle at shaft angle of7°.

VI. Description of Rotor Model

It is apparent that the rotor behaviour is very nonlinear tirad analyzing such a system numerically
necessitates the use of nonlinear analysis methods withnzemeal model that can capture the fold
bifurcation seen in the wind tunnel tests. What makes thpe tyf investigation even more difficult is the
fact that the number of parameters involved together wighdifferent flight manoeuvres and rotor types
that need to be considered is large. From an engineeringgeige it is important to be able to perform
numerous quick analyses in order to minimize the problenedsion to a manageable level. For this reason,
it was necessary in this investigation to create a low or@alinear rotor model that nevertheless retains

acceptable fidelity in the aerodynamic and dynamic reptatiens. Since the focus here is on flap-rotation
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Fig. 7 Experimental bifurcation diagram showing projections in (a) rotational velocity and (b) flapping angle, for
an autorotating rotor. 6. is the continuation parameter, 6g2¢t = 7° and U = 16 m/s. The solid blue line is a
curve-fit through experimental data points (solid blue cirdes) denoting stable steady autorotation (stable limit

cycles). Similarly, the empty red data points and red dashedurve-fit represent the unstable autorotation steady

state (unstable limit cycles).

instability (coupled flapping motion with blade rotationcait the main rotor shaft) — as opposed to, say,
blade divergence and flutter or blade/pitch-link coupliygamics — it is adequate to assume rigid blades
and to consider degrees of freedom both in the plane of ootand normal to it. The omission of blade

elastic characteristics reduces complexity and allowgeassight into the blade dynamics.

The model developed for this study represents the dynani@swo-bladed rigid teetering rotor. It is
in nonlinear continuous state-space form f(x,0) wherex € R" is the state vectod € R™ is a vector oin
parameters (e.g. blade pitch angle, wind speed, etc.)fasthe set o nonlinear equations (equations of
motion, inflow model, etc.). The formulation as a set of noedir continuous ordinary differential equations
(ODE’s) makes it amenable to the application of bifurcatoalysis. The following simplifying assumptions
— demonstrated to provide reasonable model performanpefot autorotating rotors [43] — are adopted in

the aerodynamic representation:

e Two-dimensional steady aerodynamicsA 2-D individual blade element approach is adopted. The
lift, drag and pitching moment of each element are calcdlatemerically using nonlinear look-up

tables as functions of angle of attack and Reynolds numbegpefimental data for a NACA0015
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aerofoil section is used for each blade element [44]; sihds of interest to investigate the high
advance ratio condition, in which reverse flow is expecteddour over a portion of the rotor disc,

the look-up tables cover the whole 36@nge of angle of attack.

e Unsteady flow and vortex shedding effects ignoredWhilst unsteady flow characteristics such as
dynamic stall clearly play an important role in rotor aerodsnics, the instability mechanisms of
interest here are expected to exist even when these arectesjler'his assumption was made in the

interest of reducing model complexity and hence computdtines.

e Compressibility effects neglectedBecause the blade tip speed is generally low in autorotatien
at high forward speed due to low rotor speed, compressilaffects were neglected but they can be

easily incorporated in the look-up tables.

e Blade/blade and blade/hub interactions ignored.Again, these were neglected for the purpose of

simplicity and efficiency in generating solutions.

e Tip losses approximated .t is assumed that the lift forces at the tip and blade roaicedo zero. For

this analysis, a tip loss factor of 97% is used; other tipdesare ignored.

Rather than describing flapping by its Fourier componenthéinon-rotating frame, the individual
flapping coordinatep, is retained for each blade and also its azimuthal positlonFor the teeter rotor,
both blades are assumed to be rigidly connected and heneshavlapping degree of freedom; also, blade
rotation together with blade lead-lag motion are represshy the same state variable, namely the rotational
degree of freedom around the shaft axis, The flapping coordinate for the bladgs,is dependent orp.

The differential equations of motion for the rotor in botte tliapping and the rotation senses are second
order, giving a total of four rotor stateg({), B andB), which are allocated for each rotor blade according
to Table 1. A compact form of the model equations is preseintéghpendix A, while the full derivation of

the equations can be found in reference [45].

The induced flow through the rotor is captured via a threte fit-Peters dynamic wake model [46—49].
This representation forces a linear distribution of theuitetl velocity along the rotor disc radius and a

sinusoidal variation along its azimuth. The model was oadly developed for powered helicopter rotors,
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Table 1 Allocation of state values for the rotor blades

States State value for blade 1 State value for blade 2

Y Y+

0 v
B B B
p p B

and modified by Houston for rotors in autorotation [50-52].

Scrutiny of the overall model equations can show that the ehadntains geometric, inertial and
aerodynamic nonlinearities and bifurcation analysis igdaal tool for the study of the system stability and
its dependence on parameter variations. The model is suffigismooth, despite the look-up tables, for
implementation in numerical continuation software; AUT@&slproved to be both versatile and efficient in

this work. The model was implemented in MATLAB, and AUTO was from within this environment.

The model is seventh order, the state vector bairg [y, U, B, [3, Vo, Vs, Ve]T. A number of the
model parameters can be used as continuation parameteveveig to understand the rotor stability during
operational conditions, the main parameters of concerfiawespeed (), blade collective pitch angl®{)
and rotor shatft tilt angle relative to the floWga1t); the latter is subsequently referred to as simply ‘shaft

angle’.

VII.  Numerical Analysis
The experimental results presented in Section V clearlyafestnate that the blade dynamics in autoro-
tation is nonlinear. The obtained experimental bifuraatitagrams illustrate that the loss of instability for
lightly loaded rotors can be understood as the consequdraygeoating near fold bifurcations. In order to
understand these experimental results, particularly heyoe experiment limitations (for example, higher
wind speed or higher flapping angles), a numerical analyascarried out. The appropriate physical rotor
properties were adapted in the numerical rotor model. Thegry objective of this investigation is to eval-

uate the numerical model correlation to the experimengalltg, in particular its ability to capture the fold
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bifurcation points of the rotor.

A. Model Tuning

The blade dimensions, mass and aerofoil aerodynamic deasdics of the experimental autogyro
blade were used in the numerical model. Initial spot chedlksgutime history simulations predicted rotor
speed values much greater than those values achieved intuvindl tests. The main reason for this large
difference in rotor speed is believed to be the simple aarandyc representation used in the model. This
discrepancy in rotor speed also led to dissimilarities reotispects of the model, notably the rotor flapping
angle and forces produced by the rotor. Further scrutinjhefresults revealed that the high value of the
predicted autorotational speed is related to the poor asitim of the rotor aerodynamic torque, which

caused the torque balance to be realised at a higher roted $pan that experimentally measured.

Therefore, it was necessary to correct for some of the aeadic characteristics that were not
accounted for or were not accurately modelled. For instaaceurate blade tip and root losses, blade-to-
blade interaction, unsteady aerodynamics including dyoatall, airframe and tunnel interaction effects,
inaccurate rotor downwash, etc. For simplicity, it was dedito use a friction term in the rotation sense
of the rotor to correct for those mis-represented charisties. The use of this crude assumption was not
expected to produce an exact match between the numericaharhysical model for all the rotor states.
However, the rationale was that this correction would nauitee discrepancy gap and produce a reasonable
match in rotor speed, at the same operating parameterutithcreasing the complexity of the model.
Furthermore, in reality, an amount of resisting torque wasent in the rotor shaft due to friction in the hub

bearings and the swash plate.

The frictional torque correction term is assumed propaogldo the rotational blade velocity:

Trriction = Z -Q (2)

where{ = f1(Bsnaft) + f2(6co1 ) is & friction ratio and is a function of both the shaft and thedk collective

pitch angles. The following functions fdi and f, were found to provide a reasonable fit to the experimental
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data:

f1(Bshaft) = 1073 (—0.22503 ¢, + 2.9%chatt — 2.94) (3)

f2(Beol) = 1073+ (0.45021) (4)

where the shaft and blade pitch angles in the above equadiens degrees. The tuning of the friction
coefficient{ was based on trimming the rotor model by only matching thekpetor velocities to those
found in the experiment at the stable autorotation brancheshould be noted that it was not possible to
trim the numerical model at low values of forward speed (Wel®m/s for shaft angle of°7and pitch of
1deg). However, this was resolved by extrapolating the ex@stal rotor speed values above the 30m/s
limit of the wind tunnel. As it will be discussed in the follamg section, the reason for not achieving trim
at low flow speeds was because the location of the fold poititémnumerical model was sensitive to the
torque coefficient. Finally, the nonlinear least squarezeumethod in Matlabl(sgnonl i n) was used to fit
the torque coefficient data gathered to the function desdrib Equations (3) and (3). Furthermore, one
has to bear in mind that even if the rotor speed is well turteglpther states are not expected to be closely
matched because of this crude experimental correction.edexythe aim was to be able to produce at least

a qualitative agreement in the topology of the bifurcati@agdam.

B. Bifurcation Analysis

Figure 8 shows two projections of the bifurcation diagramegated using the tuned model, with wind
speed as continuation parameter. Note that all solutian$rait cycles, for which the maximum amplitude
is shown for each state variable component (rotor veloaity #apping angle). The continuation started
from a periodic orbit at wind speed of 60m/s, which is therugtl to trace out the first stable autorotation
branch. As shown in Figure 8, the end of this branch is a foldrbation point which is the birth of an
unstable branch. By increasing the wind speed a second fiid i3 found, where in this case the branch
turns back and becomes stable once again. This second tatittmobranch is characterised by higher
flapping angle amplitude and slower rotational velocityntttze first stable autorotation region. As the wind
speed is decreased this second autorotation branch leggigysiat abranch point bifurcation and two new

unstable periodic branches are formed. The flapping anglehgshows this latter result more clearly than
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the graph of rotor velocity. Because of the bifurcation déaxy geometry near this point, it is usually called
a pitch-fork bifurcation and it is associated with the breakdown of symmetry in theadyinal system. At
slightly increased wind speed, both branches bifurcateatfold bifurcation points resulting in two new

stable branches (branches 3 and 4, see Figure 8).

Like the experimental bifurcation diagram of Figure 4, thewe results confirm the presence of the fold
bifurcation, although located at higher wind speed valliégse results illustrate that the qualitative stability
characteristics of a rotor in autorotation can be predjatdtbn continuation and bifurcation techniques are
adapted, even though the numerical model is relatively lirapd of low order. Furthermore, similar results
(not shown here) confirm that the wind speed value at whiclidldebifurcation points exist increases as the
shaft angle is reduced. Therefore, the boundary of rotbilgtacan also be constructed by plotting the fold

bifurcation line in the two parameter space of the wind speetithe shaft angle [22].
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Figure 8 shows that in the wind speed range of 27m/s to 56ra/sotior can autorotate at two different
rotational speeds. This means that if the rotor speed gtatiglly from a lower value than that of the
unstable branch, then the rotor states will get attractedrd the second stable branch and the rotor should
be able to achieve autorotation, but at lower rotationaédpeéHowever, the problem with the latter is the
high flapping oscillation (at least 18n amplitude). This could be the reason why in the experiaent
results in Section V there was no sign of such rotor behawdoge the safety mechanism will not allow it
to happen. Furthermore, the existence of a second folddaifion point means that the rotor can undergo
hysteresis-like behaviour. This happens when the rotonitglly autorotating along the second stable
branch and if the wind speed is increased above 56 m/s thewsltucity will jump from about 1300 rpm to

over 3000 rpm (see right green arrow in Figure 8).

In Figure 8, the second stable branch bifurcates to effelgtivvo new stable branches (the parameter
range of unstable branches 3 and 4 is very small and it woulcebedifficult to achieve any experimental
match). The new stable branches (3 and 4) extend from a wieddspalue of 36m/s to less than 5m/s.
Interestingly, even though these two branches trace diftdtapping angle amplitudes, they have the same
rotational velocity. The flapping angle and the rotatiomeded graphs for blade 1 at branch 3 are exactly the
same as those of blade 2 at branch 4 lagged by.180nilarly, the flapping angle and the rotational speed
graphs for blade 2 at branch 3 are exactly the same as thodadaf b at branch 4 lagged by 180What
is more interesting is that, for the same branch, blade 2 doeepeat the same behaviour as blade 1 after
180 as is the case in a normal autorotation regime. This is prbibedoss of symmetry between the blades

of the teetering rotor and as previously mentioned, it isaratteristic of the pitch-fork bifurcation point.

Finally, to determine if the new tuned model can also prosid&lar behaviour to that of wind tunnel
test when the blade collective pitch angle is varied, a cwotion run was performed f@a1t = 7° and
U = 30 m/s, taking the collective pitch as the continuation peter. Figure 9 depicts that this results
in a qualitatively similar bifurcation diagram to that oimad using the experimental measurements (see
Figure 7). The results clearly confirm that autorotation mdygpossible within a range of blade pitch

angle, the limits of which depend on wind speed and shafteangl the limits of this range, there are two
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Fig. 9 Bifurcation diagram showing projections in (a) rotational velocity and (b) flapping angle, for the numer-

ical model. B is the continuation parameter, B4t = 7° and U = 30 m/s. The blue solid dotted lines denote

stable steady autorotation (stable branch 1). The red daslteline with hollow diamonds represents the unstable

autorotation steady state (unstable branch 1).

bifurcations that define the points beyond which autorotais impossible. This bifurcation diagram also
confirms that the stable and unstable branches constitusalan Note that the stable autorotation branch

pertains to branch 1 of Figure 8.

It can be seen in Figure 9 that the maximum collective pitaylefor autorotation to exist is less than
2°. This obviously is less than expected for this rotor andtit@ight that the reason for this low value is the
simple tuning procedure that was implemented in this amalys general, both experimental and numerical
results confirmed the dependence of fold bifurcation orectilte pitch. Blade twist as well as blade aerofoil
shape are also parameters that can influence the bladétgtabd, hence, can be considered for design of

more stable rotor blades in autorotation.

VIIl. Extended Experimental Analysis
In order to experimentally confirm the presence of a secoablestbranch, a wind tunnel test was
conducted. This time, the collective pitch angle was reduced® since Figure 7 suggests that the rotor
would be able to rotate at slower speed and smaller flappiggeathan the maximum allowed limit.
Interestingly, when the shaft angle was set totffe rotor was able to autorotate at about 100rpm at a

wind speed of 27m/s. Moreover, as the wind tunnel speed wasslewly increased to about 28.5m/s,
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the rotational speed increased slightly and in a steady eraton120rpm, which proves the presence of
a second small stable branch. However, if the wind speedisedao 29m/s, the rotor can no longer
sustain autorotation on this branch; instead, the rotatispeed jumps very rapidly to over 950rpm. These
results are plotted in Figure 10 (a). The wind tunnel testegweonducted at“Oshown in Figure 10 (b)

confirms that the branch characterised by the higher roteedypalue is the main stable autorotation
branch. Note that in the gradual wind tunnel sweep, it waspossible to get the rotor to autorotate at
flow speeds above 22 m/s because of early onset of excesbiations. However, the rotor managed to

autorotate at 29m/s when the transient behaviour startedrilatively very low initial rotor speed condition.
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Variation of rotor velocity with tunnel wind speed and rotor shaft angle (labelled).

The flapping amplitudes at branches 3 and 4 in Figure 8 arehighy This makes it difficult to ex-
perimentally find a similar rotor behaviour due to the phgkflapping limitations incorporated in the rotor
rig. However, with the collective pitch at’Gand the shaft angle set t¢,the blade starts rotating in an
anti-symmetric manner at lower speeds that in Figure 10.ekample, in Figure 11, where the wind speed
is 25 m/s, the average of the flapping oscillation is no lor@jerinstead, it is about This means that
the blades are not repeating the same flapping motion, agith#ynormal autorotation (where each blade

would be at the same flapping angle for the same azimuthdi@ugie. average flap amplitude zero).
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IX. Conclusions
An evaluation of autogyro rotor stability by numerical comiation and bifurcation tools and using
wind tunnel experimentation has been undertaken. The t¢adg sf rotor blade instability in autorotation
was utilised to discuss the real engineering issues in @iiadiunstable behaviour of complex nonlinear
aero-mechanical systems. It was shown in this example btairong a valid rotor model is an essential part
of the investigation, although the continuation technigtevided a powerful tool to ease decision-making

in arriving at an improved low-order model during the anilys

The systematic procedure suggested by this work involves tising continuation and bifurcation
analysis to narrow the area of search of the instability biela, using a low order model. Then, assuming
that bifurcation diagrams for a corresponding physicatesyscan be produced experimentally, efficient
use can be made of the experimental process to supplemenesdfhdthe numerical results as well as to
tune the numerical model. It was shown for the autogryo reystem that prediction of attractors beyond
the maximum flapping angle was possible and that the nunieeisalts are in good agreement with those
generated from experiments — at least qualitatively in tiglallr nonlinear region. The approach was able
to identify new blade behaviour arising from the nonlingeoif the system, namely asymmetric autorotation
branches following a pitch-fork bifurcation of the periodirbits (also verified experimentally). These have

not previously been characterised in this way.

26



The continuation method detected fold bifurcation and biapoints, which cannot be achieved by
other methods. Indeed, some approaches may mistakenlgsuggstable solutions in the region where
there should not be any solution, such as beyond a fold pdierevthere is no local solution branch. As
demonstrated for the rotor system, the combined numeeigadrimental procedure facilitates the construc-
tion of full bifurcation diagrams, even where state or pagten constraints exist. In this way, a compre-
hensive insight into the multi-attractor nature of the aotating blade behaviour was obtained; this pro-
vided a new explanation of autogyro rotor instability. Adtlgh not shown here, a further advantage of the
continuation-based approach is that information from ssh\@furcation diagrams can be merged to produce
a 3D bifurcation diagram. This can be used to establishlgtaboundaries in parameter space; alternatively,

two-parameter continuation can generate the stabilitipreg
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Appendix A: Rotor Model Equations
The full derivation of the equations of motion can be foundeference [45]. However, for completeness

a compact form of the equations used for the teetering rotoreproduced here:

<
|

(Ng,1+Ny2)/(2lbiadeCOSB) (5)
B = (Mg1—Mg2)/(2biae) 6)
where
Nyi = (Naeroj— Mb|ade(aﬁ3$fi‘)y) — (P cosp — R sinp;)
x(Q 4 Bi) — (ot )xsinBi — (afse),cosBi Iniade
Mgi = (Maero,i + Mblade((am?g,fit)xsmﬁi + (afT;%Tit)zCOSBi)) +
[(Pishaft COSBi - Rishaft sinBi)

x (P sinp; + K™ cospy) — (Uﬁ&%ﬂt)y} Iblade
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whereNy ; andMg; are the overall torque and flapping moment respectively adddlandNaeroj aNdMaero,
are the aerodynamic torque and flapping moment, respectaratach blad@ My age andlp age are the blade

mass moment and second moment of inertia respectii?ﬁ]i‘/f.t, tha“ andl%shalft are the angular velocities

of the rotor hub in the shaft axeaﬁsﬂit andaﬁ?ﬂf are the translational and angular acceleration vectors of
the hub in the shaft axes respectivedfl< is the angular acceleration vector of the hub in the rotar dies.
Finally, the state values are allocated for each rotor bé&derding to Table 1. Note that moments at the hub

about either the teetering or rotation axes due to factais as friction are assumed negligible at this stage.

T ' Thrust
NOTE: Angles exaggerated for clarity Lift, L

Zero lift line\

Resultant velocity, U

Fig. 12 Schematic diagram illustrating the flow and force corponents for a blade element in autorotation.

A 2-D individual blade element approach is adopted. Eactibigdivided into atN number of elements
and then the aerodynamic forces for each element are cedduiamerically. The lift and drag forces acting
on each blade element can be computed by first evaluatindehmatal flow velocities and angles of attack
(see Figure 12). The tangential and perpendicular compsmémesultant velocity at a blade element are

given by:

l-JT,eI em — Vel em (7)

Updem = Waem — Vi COSB (8)

whereVgem andWyem are the translational velocities of the blade element inrdit@tion and flap directions

respectively, due to the kinematic motion of the bladeis the induced velocity at the blade element. The
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local angle of attack is given by:

Oglem = Beem + Petem 9)

whereBgen is the elemental pitch angle agdeny is the elemental inflow angle, which can be calculated as

follows

whereatan2 is the ‘quadrant-arctangent’ functicat @n2 function in MATLAB). The local pitch angl®gem

is a combination of all the local pitch angle contributioinsthis case:

eelem = ecol + epretvvist,elem (11)

where0Bc, andBpretwig,dem are the blade collective pitch and the blade local builtwist. The elemental

lift, drag forces and pitching moment are then calculatediasng two dimensional steady flow.

1
Olgem = EpuelzemcelemérelemCL,elem(aelem, Regem; Felem) (12)

1
O0Dgem = EpuelzemcelemérelemCD,elem(aelem, Regem; Felem) (13)

wherep, Caem, Udem = ‘/Uée,eerUTz,e,m, Sreems CLaem andCp aem are the local air density, the blade

elemental chord, the elemental resultant flow velocity, whéth of the blade element, the lift and drag
coefficients at each element respectivalyey, and Regem are the elemental angle of attach and Reynolds
number respectively. The aerodynamic loads and momenesafdr individual blade element are calculated
numerically using nonlinear look-up tables for lift and gliaefficients. Experimental data for a NACA0015
aerofoil section is used for each blade element [44]. Thellfmrces acting on a blade element in the blade

coordinate system can therefore be determined from theesiilift and drag forces.

0
Feem= | dLgem SINP— dDgem COSP (14)
—0OLgem COSP— ODgem SINQ
Finally, the aerodynamic forces and moments acting upomtiwe blade at the hub are calculated by

summing up the whole elemental forces and moments for eackebl
N
I:aero,hub = Z Fetem = [Xaero,YaermZaero]T (15)

dem=1

33



N

IV'aero,hub = Z Iub — elem X Felem = [Laem, Maerm Naero]T (16)
eem=1

wherernup s dem is the blade element position vector relative to the rotdr. fithe thrusiaeo and lift Lyogor

generated by the rotor can be calculated as follows:

2
Taero = lz—zaero,i cosp (17)

Lrotor = Taero COSBshart (18)

The 3-state inflow model is given as:

Vi (@) = vo + % (Vssiny +vccosy) (19)

wherev; is the induced velocity at th#" element of radius andR is the blade tip radius. The induced

velocity componentsgp, vs andv, are given in the wind axes by:

\.)O Vo Taero
Ve ] Ve | Maero |
wind wind wind
where
ﬂ 0 7Rtan(x/2)
3t 12vm
— 64R
5Rtan(x/2) 0 64R
8vT 45mvm(1+cosy)
and
R 0 15mtan(x/2)
T 64vm
1
- _ —4
=S 0  mesg O (22)
15mRtan(x/2) 0 —4cosK
64vT vm(1+cosX)

Taero» Laero andMagro are the thrust, the aerodynamic lateral and pitching mosn@spectively in the wind

axes and the skew anglecan be obtained from:

X = atanZy/Ud, + VA, (Vi.m— Whub)) (23)
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where the ‘quadrant-arctangent’ functia §n2 function in Matlab) is used to compute the correct value of

the wake skew angler andvy, are expressed as:

vr = \/ U2+ V2 + (Viim — Whup)2 (24)

= u%ub + Vﬁub + (Vi,m — Whub) (2Vi m — Whub)

= (25)

whereunyp, Vhup andwhyp are the flow velocity components relative to the rotor huld, am, is the induced

velocity from momentum theory, which can be evaluated uiegGlauert equation [53].
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