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On the Nonlinear Dynamics of a Rotor in Autorotation: a

Combined Experimental and Numerical Approach

D. Rezgui1 and M. H. Lowenberg2

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom

This article presents a systematic assessment of the use of numerical continuation and bifurcation

techniques in investigating the nonlinear periodic behaviour of a teetering rotor operating in forward

autorotation. The aim is to illustrate the potential of these tools in revealing complex blade dynamics,

when used in combination (not necessarily at the same time) with physical testing. We show a simple

procedure to promote understanding of an existing but not fully understood engineering instability

problem, when uncertainties in the numerical modelling andconstraints in the experimental testing

are present. It is proposed that continuation and bifurcation methods can play a significant role in

developing numerical and experimental techniques for studying the nonlinear dynamics not only for

rotating blades but also for other engineering systems withuncertainties and constraints.

Keywords: bifurcation, continuation, autorotation, stability, autogyro.

I. Introduction

The development of many accurate nonlinear numerical models of dynamical systems in engineering

involve a level of experimental updating, ‘correcting’ or tuning, for example: the incorporation of para-

metric equations or experimentally-derived correction factors. The extent to which these models are valid

depends on the level of understanding of the behaviour of thephysical system, which is — in turn — man-

ifested in the modelling strategy and complexity together with any assumptions and experimental corrections.

In the aerospace sector, the use of nonlinear methods such ascontinuation and bifurcation tools

1 Email: djamel.rezgui@bristol.ac.uk
2 Email: m.lowenberg@bristol.ac.uk
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is becoming more widespread. In particular, it is increasingly adopted to investigate nonlinear aircraft

flight dynamics and control problems. However, the application of continuation and bifurcation methods

has been limited to a small number of helicopter dynamical problems, such as flight mechanics [1–7],

ground resonance [8, 9] and examination of the rotor vortex ring state [10]. Furthermore, almost all of the

investigations whichutilize these nonlinear tools can be regarded as research studies and it is still hard to

find these tools widely adopted in industry for production aircraft. Recently, In recent years, the nonlinear

aeroelastic stability of helicopter rotor blades was investigated by Rezguiet al. [11, 12], using numerical

continuation and bifurcation techniques. This investigation showed that these techniques are powerful in the

identification of instability scenarios of rotor blades anduncovering the multiple solution structure driven by

the nonlinearities in the rotor system. However, this work focused mainly on the applicability of the methods

to investigate the effects of nonlinearities for standard helicopter blade stability problems. Nevertheless,

this work led to the first practical application of the continuation and bifurcation methods for certification

of production aircraft, which contributed towards the latest Release-To-Service of the AW159/Wildcat

helicopter [13].

Unlike fixed wing aircraft, rotorcraft produce lift by spinning a number of blades about a rotor shaft,

where each blade can constitute a separate dynamical systemwith its own degrees of freedom and hence

its own behaviour. Creating an accurate numerical model forrotor dynamical analysis is very demanding

due to the complexity of the aerodynamics and the structuralproperties of the rotor. For example, if the

aerodynamics of the flow field is to be accurately represented, then all of the following characteristics need

to be properly modelled: unsteady flows, compressibility, non-uniform inflow, reverse flow region, wakes,

etc. Of course, this would substantially increase the modeldimension. To carry out rapid blade stability

analysis, however, it is customary to make use of a number of assumptions in order to reduce the size of

the model to a practical level. This carries the risk of obtaining erroneous results, in particular in areas of

fluid-structure interaction that have not been studied before, such as highly nonlinear regimes or novel rotor

configurations.

On the other hand, the numerical tools used for bifurcation analysis can vary from simple brute-force
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time-integration techniques to the so-called numerical continuation methods. However, the accuracy and

the correctness of the results produced by these tools are greatly dependent on the fidelity and validity of

the nonlinear dynamical models used. In 2008, Sieber and Krauskopf [14] presented a novel experimental

continuation technique that does not require an accurate numerical model. Instead, the physical model of

the system under investigation is interrogated by the technique to produce the bifurcation diagrams, which

describe its nonlinear behaviour. This experimental technique is often known ascontrol-based continuation

and can follow both stable and unstable solution branches (equilibria and periodic) as well as detect bifurca-

tion points. There has been a number of studies in recent years that utilized the control-based continuation

method for various purposes [15–20]. However, although these studies have already demonstrated how

powerful the control-based continuation approach can be intracing solution branches, without the need to

know the underlying mathematical equations of the systems studied, the implementation of this method to

more complex systems, such as fluid-structure interaction problems, can be challenging. In particular, if it

difficult to achieve sufficient control of the required parameters because of constraints or limitations at the

level of the physical system or the experimental setup.

In recent years, the stability of rotor blades in autorotation was investigated using numerical continuation

and bifurcation methods, and wind-tunnel testing. In [21],the coexistence of stable and unstable branches

in the behaviour of autogyro rotors was demonstrated, both numerically and experimentally (not at the same

time as in control-based continuation approach). The implications of such nonlinear behaviour on stability of

autogyros from an engineering and flight safety perspectivewere discussed in [22]. In this paper, we revisit

the not fully understood problem of autogyro blade flap-rotation instability, using experimental testing in

conjunction with a numerical continuation and bifurcationanalysis. The purpose is to highlight the bene-

fits of the combined numerical-experimental approach in studying the dynamics of nonlinear fluid-structure

problems. First, the blade flapping instability problem in autorotation is introduced with an overview of the

principal challenges. Then, a description of the experimental apparatus and procedure are presented followed

by a discussion of the obtained results. Finally, evaluation of the extent to which the continuation and bi-

furcation methods have helped in uncovering the physics underlying unstable blade behaviour is illustrated

through a combination of numerical and experimental results.
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II. Autogyros and Instability of Rotor Blade in Autorotatio n

Autorotation is a phenomenon whereby the rotor can sustain rotation relying only on the aerodynamic

forces of the airflow passing through it. This process is exploited in aircraft, known as autogyros, to

produce lift. For simplicity, the basic aerodynamics in autorotation can be viewed by considering the flow

environment around one blade: in the general case, a certainsection of the blade is absorbing energy from

the airflow and the rest of the blade is adding energy to the flow. Hence, at the equilibrium condition, the

net torque on the rotor shaft is zero and this constitutes steady autorotation. The autogyro achieves an

autorotation state by slightly tilting the rotor disc backward allowing the air to flow upward and through the

rotor blades as the aircraft moves forward (see figure 1). To thrust the aircraft forward, an engine-driven

propeller is typically used either in a tractor (puller) or pusher configuration [23].

(a) Autogyro (b) Helicopter

Fig. 1 The autogyro rotor (a) provides lift using the phenomenon of autorotation by tilting the rotor backward.

The propulsion is offered by a separate engine-driven propeller. Whereas, the helicopter rotor (b) provides both

lift and thrust. Figure adapted from [23].

Although autogyros were proved to provide significant advantages relative to other aircraft types, the

greater operational envelope of the helicopter has relegated their use almost entirely to sport enthusiasts;

hence they are less familiar to the wider public. The autogyro fraternity knows, through experience, that a

rotor operating in high speed edgewise flight can exhibit rather undesirable characteristics in the form of

blade flapping instability or rapid rotor speed decay, especially if it is lightly loaded (low thrust coefficient).

However, the mechanism governing this potentially very dangerous behaviour is poorly understood and a

better understanding of the lifting rotor dynamics that canlead to such wayward behaviour is required.
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The lack of understanding of autogyro stability together with inadequately trained pilots resulted in a

number of fatal accidents. In an attempt to categorise the autogyro crashes on the basis of their causes,

the Popular Rotorcraft Association identified Aircraft Instability –where the aircraft becomes unstable and

uncontrollable– as one of the two major contributions to theaccident record [24]. Violent blade flapping

leading to in-flight rotor blades strike on other aircraft components is one manifestation of this, along with

the loss of rotor speed. These outcomes are directly relatedto the rotor blade stability and are the focus of

this paper.

A. Blade Flapping in Autorotation

Like in helicopters, the blades of an autogyro rotor are allowed to flap to avoid the problems of lift

asymmetry. The flapping behaviour of the blade in forward flight will create an oscillatory motion, in a way

that the peak flapping amplitude of the oscillation is achieved over the nose of the aircraft and the minimum

is achieved over the rear of the aircraft. This results in therotor tip-path plane being tilted back as viewed

from the side of the aircraft. This rotor disc tilt increaseswith forward speed [23], which in turn increases

the flow rate through the rotor. This means that rotor shaft angle (the hub plane angle) can be reduced

even further to keep steady level flight. In forward flight, the aerodynamic forces provide excitation to the

flapping blade, primarily at once per revolution and hence establish a periodic forcing in the rotor system.

The flapping oscillatory motion of the blade also induces cyclic forces in the plane of rotation, due to the

conservation of angular momentum of the blade. These forcesare called Coriolis forces and they require the

incorporation of lead-lag hinges at the blade root to allow blade motion in the plane of rotation to eliminate

structural fatigue. Finally, as well as the aerodynamic andCoriolis forces, there are the centrifugal and

gravitational forces acting on the blade.

B. Stability Autorotation State

It was seen that autorotation is a phenomenon that relies on balancing the aerodynamic torque acting

along the blade. Hence, it is logical to investigate if an autorotation state is always achievable. Of course

if it can not be sustained during flight then this will be regarded as a form of instability. The stability of

the autorotation state was first investigated in axial descent by Wimperis [25] in 1920. He showed that the
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autorotational state of a rotating blade section is dependent on the local inflow angle and the local angle

of attack, as well as the section’s aerofoil characteristics manifested in the lift and drag coefficients. This

was investigated using the so calledautorotational diagram and it was shown that both the accelerating and

decelerating forces acting on on the blade section are stabilizing. It was also shown that there is a maximum

pitch angle above which autorotation is not possible, regardless of the inflow angle value. This represents

the stall condition, which only causes a decelerating forceto exist. However, although the autorotational

diagram can be used for a single blade section, constructinga similar diagram for the whole rotor blade is

very complicated. This is because autorotation equilibrium in this case is determined by the cumulative

effects of the forces and flow velocities acting along the blade. Similarly, constructing an autorotation

diagram for the forward flight case is also challenging due tothe oscillatory behaviour of the blade and

indeed for any blade section.

Nikolsky and Seckel [27] extended the above analysis to rotors in axial autorotation. They considered

the effect of stalling on the stability of autorotation. They showed that when stall effects are included, two

trim solutions can be found. The first represents the normal stable autorotation state, while the other is an

unstable autorotation condition. The analysis also revealed that for small blade incidences, the stability of

the blade is evident. However, for higher blade incidences,there is a risk that flow disturbances can cause the

blades to stall, because of the unstable trim points being close to the normal autorotation state. Nikolsky and

Seckel also illustrated that there is a maximum angle (about8.8◦ for the example rotor used) above which

axial autorotation cannot exist.

C. Blade Stability in Autorotation

As far back as 1936, Wheatley[26] found that autogyro rotor lead-lag oscillations are mainly the direct

effects of blade flapping (Coriolis forces) and that the influence of the aerodynamic forces in the plane of

rotation are secondary. Understanding the lead-lag motionof an autorotating rotor can help in knowing the

amount of damping required by the blade. The analysis was also endorsed by flight test validations. In 1978,

Wei and Peters [28] used perturbation and Floquet methods tostudy the blade lag stability in autorotation,

including the effects of advance ratio (ratio of aircraft forward speed to blade tip speed), blade elastic
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coupling, blade in-plane natural frequency and rotor trim condition. This analysis revealed that blades

operating in the autorotation condition are considerably less stable compared to the powered flight regime.

This study was, however, limited to cases of advance ratios less than 0.5.

Floros and Johnson [29, 30] investigated aspects of blade flap-lag stability and found that it was difficult

to find trim solutions above an advance ratio of 2. They also identified that the trim solution in autorotation

is not unique, which raises the question whether a manoeuvrecould cause the rotor to change abruptly

between different states. Rigsby [31] also used Floquet analysis to investigate the stability of an autorotating

rotor. Although the results identified some areas where the stability is reduced, the analysis did not predict

any form of blade instability.

Another source of rotor instability in autogyros is the interaction between the blade elastic forces with

the aerodynamic and inertial forces. Although the aeroelastic effects are not the subject of this paper, it is

worth mentioning that there is a strong coupling between therotor speed and the blade degrees of freedom

in bending and twist [32, 33], and that blade elasticity can drastically reduce the rotor stability [29].

Finally, there is extremely limited experimental researchin the available literature that addresses blade

stability for autogyro rotors, most testing focusing instead on performance and flying qualities. De Silva [34]

performed wind tunnel tests to quantify the extent of flapping at high advance ratios. The tests showed

that as the advance ratio increases, the amplitude of the blade flapping angles increases first linearly and

then exponentially, depending on the rotor disc loading. However, the results of the experiments did not

distinguish between real flapping instability and high flapping angles. On the other hand, Wheatley and

Bioletti [35] confirmed one of the basic concepts about autorotation stability by conducting wind tunnel tests

using a 10 foot diameter rotor. The tests showed that there isa critical angle of attack (rotor tilt) below

which the rotor can self autorotate and above which the rotorwould rotate in the reverse direction. However,

since the rotor had only one degree of freedom, azimuthal rotation, then it was inevitable to spin either in

autorotation or in a reverse direction.
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III. Continuation and Bifurcation Methods for Rotating Bla des

The basic idea of numerical continuation and bifurcation techniques is the calculation of the steady

solutions of a dynamical system as one of its parameters, called the continuation parameter, is varied across

a pre-defined range. The computed solutions construct a number of branches that could be either stable or

unstable. To determine the stability, either an eigen or Floquet analysis is carried out at each computed

solution, depending on the nature of the solution. For instance, in hover the blade behavior can be considered

to be in equilibrium (fixed points), hence an eigen analysis is carried out for stability, whereas in forward

flight, the blades behave in a periodic manner (limit cycles)due to the rotor lift asymmetry, hence Floquet

theory is used to determine the stability.

A bifurcation is the qualitative change in the system behavior as a parameter is varied. In other words,

when the stability of a system is changed or lost, the system bifurcates. The points at which these stability

changes happen are called bifurcation points. When the system is nonlinear, new solution branches may

emerge from the bifurcation points, leading to the presenceof multiple solutions for the same set of system

parameters. The identification of these different solutionbranches helps to uncover the global dynamics of

the system. Of particular interest is when the blades, for example, are locally stable for small disturbances

but not necessarily for large ones, and vice-versa.

Therefore, the strategy in implementing continuation and bifurcation methods is to follow one solution

branch as one or more parameters are varied to locate bifurcation points. The emerging branches are then

followed to construct a more complete picture of the system dynamics (bifurcation diagram). Furthermore,

other advantages of continuation methods, compared with other time history or frequency domain methods,

are their efficiency and accuracy in following the solution branches as well as in detecting and identifying

the bifurcation points. The different types of bifurcations that can occur in equilibria or periodic orbits are

not discussed in this paper; the reader is referred to general texts such as reference [36] for more background

on the subject.

There are several freely available continuation software with different levels of maturity and robustness.
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AUTO [37], Continuation Core (COCO) [38], MATCONT [39] and CL_MATCONT [39] are examples of

the most widely used packages. In this analysis, the continuation and bifurcation software AUTO was used.

AUTO is open source software for continuation and bifurcation problems of ordinary differential equations,

originally developed by Eusebius Doedel, with subsequent major contributions by several people where it is

currently available on a number of platforms [37, 40]. Besides many other types of equations, AUTO can

perform extensive bifurcation analysis of ordinary differential equations (ODEs) of the form:

ẋ(t) = f (x(t), p), x ∈ ℜn, p ∈ ℜm, f : ℜn
×ℜm

−→ ℜn (1)

subject to initial conditions, boundary conditions, and integral constraints. Herex is the state vector andp

denotes one or more parameters.n andm are the numbers of states and parameters respectively. Equation

(1) is written in the generic (nonlinear) state-space form,where the state-derivatives are functions of the

states and some parameters.

The main type of steady solution which describes the rotor blade behavior in the conventional forward

flight operating envelope is a periodic orbit (limit cycle solutions). Conventionally, helicopter rotor models

have a constant rotor speed and are written in the non-autonomous form, in that the independent variablet

appears explicitly in the equations. In fact, the blade azimuth angleψ is a non-dimensional form of the time

variablet. Unlike in helicopters, the rotor in forward autorotation has a variable rotational speed. Hence

the rotor is not forced to rotate at a fixed frequency and the blade azimuthal angleψ would then need to be

modelled as state variable. The rotor in forward autorotation is therefore a self-excited dynamical system.

IV. Description of Experiment

The experiments were performed in the University of Bristollow speed open jet wind tunnel (see

Figure 2(a)). The wind tunnel is a closed return system with a1.68m long open working section. The

diameter of the jet is 3ft 6in (1.1m) and the maximum attainable velocity is about 33m/s. The experimental

rig (see Figure 2(b)) comprises a two bladed teeter rotor of 1m in diameter. The blades are rigidly connected

and free to flap about a hinge located at the shaft axis. The skeleton of the rotor rig, including the hub

system, is modified from a radio controlled helicopter. The flapping angle of the blades is measured using

a magnetic encoder which has a resolution of 0.15◦± 0.07◦. The pitch of each blade is monitored using
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(a)

Wireless system & 

safety mechanism

Teeter angle sensor

Autogyro tail

Support wires
T−shaped support strut 

Load cell

Autogyro fuselage

Pitch angle sensor

Blade

(b)

Fig. 2 (a) Schematic view of the autogyro rig in the open jet wind tunnel. (b) The autogyro experimental rig; the

sphere above the rotor houses the wireless system and safetymechanism.

different magnetic encoders that are connected to each blade via a pulley and tooth belt system, resulting

in a total pitch resolution also of 0.15◦± 0.07◦. The signals from these three sensors are transmitted via

ZigBee wireless telemetry to a Personal Computer.

The rotor speed and azimuthal position are monitored using an optical encoder connected to the rotor

shaft. This encoder is connected to the PC via a dSPACE interface [41]. A six component load cell

(JR3-100M40A [42]) fitted below the fuselage is used to measure the forces and moments acting on the rotor

rig. The airframe is designed to represent a scaled version of the Magni VPM-16 autogyro, modified by

having a closed cockpit. The purpose of this airframe is to cover the components of the rotor support frame

and provide a smoother aerodynamic shape, and hence was not designed to match the scale of the rotor

dimensions. Finally, a safety mechanism is implemented to prevent damage to the rotor rig should the blade

motions become unstable. This mechanism is located in the rotor hub and uses two spring loaded valves

which are released by a mechanical locking system when contacted by a blade exceeding the maximum

allowed flapping angle of 23◦.

The procedure was to monitor the rotor speed and blade flapping angles in autorotation, as the wind

speed (U), shaft angle (θsha f t) or blade collective pitch angle (θcol) were varied. The first series of tests were

conducted at a collective pitch angle of 1◦. In each test, the shaft angle was inclined at a chosen value,where

the blade flapping angle and rotational speed were recorded as the rotor was subjected to different wind

speeds, taken at 1 m/s intervals. The aerodynamic forces andmoments were also measured. At every wind

speed value, the rotor was allowed enough time to settle downto steady autorotation, then the readings for
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the flapping angle and rotational speed were recorded for 30 seconds and the readings for the aerodynamic

forces were recorded for 6 seconds. These experiments were repeated twice to ensure reproducibility of the

results. The rotor often required to be pre-rotated (by handor using string wound around the shaft) for au-

torotation to take place. This set of experiments was repeated for collective pitch angles of−1◦, 0◦, 2◦ and 3◦.

It is worth noting that some measurements were not possible due to unforeseen rotor shaft vibration

(shaft resonance), which often occurred when the rotor rotated close to average speeds of 500 rpm (±1%),

960 rpm (±1%) and 1270 rpm (±1%). The last two frequencies were the most potentially damaging ones

for the rotor and hence it was not practical to keep the rotor spinning at those speeds if excessive vibration

occurred. Operating the rig close to these frequencies alsoaffected the accuracy of the measurement, which

resulted in the largest discrepancies in rotor speed and flapangle. Excluding those cases, the maximum

scatter in the measured rotor speed was about 35rpm. Whereas, the maximum scatter in the flapping angle

amplitudes was about 1.5 deg.

The next step of the experiment was to identify, within the wind speed range, any areas where the blade

dynamics change. This was done in two stages. Firstly, by investigating the rotor behaviour at the high

and low limits of achievable wind speeds. Secondly, by perturbing the rotor velocity during the normal

autorotation regimes. This was simply done by introducing alevel of friction for a short period of time to

slow the rotor down.

V. Experimental Bifurcation Analysis

Figure 3 depicts the variation of the rotational speed and flapping angle at steady autorotation state.

Since the recorded flapping data was periodic with rotor azimuth position, the average peak values for

each cycle were computed over the period of the data recording. These peak values of the oscillating

flapping angle were plotted in Figure 3 for different tunnel speed values and rotor shaft angles. For the rotor

velocity, the averaged mean values were used instead, in order to minimize the effects of the once per rev

contributions. In steady autorotation, the amplitude of the rotor velocity oscillation (lead-lag rate) is very

small, so peak and mean values can be used interchangeably without affecting the analysis, particularly,
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Fig. 3 Variation of rotor velocity and blade flapping angle with tunnel wind speed and rotor shaft angle (labelled)

for θcol = 1◦. Peak values for steady oscillations are plotted against wind speed for different shaft angles. The

solid markers define the wind speed value below which the rotor can not sustain steady autorotation.

when comparing with the numerical results. The best-fit curves for the measured data were also plotted.

These curves were extrapolated to obtain an illustration ofthe rotor speed and peak flapping angle variations

at higher wind speeds. Figure 3 illustrates that the rotational velocity increased almost linearly with the

forward wind speed, while the flapping angle had an inverse relationship with the wind speed. This shows

that the more flow that went through the rotor the faster it rotated but at the same time it affected the flow

environment in a way that forced the steady state flapping angle amplitude to reduce for higher speeds.

The experiment also revealed that at each setting of shaft angle, autorotation was not possible below a

certain wind speed value, which indicated the presence of aninstability point. In other words, the presence

of a bifurcation point. Instead, regardless of how high (within the permissible range) or low the initial value

of the rotor speed was, the blades’ rotational speed always decayed and the flapping oscillation diverged

until the blades made contact with the safety mechanism, which was then activated (See Figure 4). It should

be noted that it was difficult to precisely determine the minimum autorotation wind speed, particularly with

the adverse effects of tunnel flow perturbations: the instability points illustrated in Figure 3 were located

within a±1.5 m/s band of the stated wind speed value.

The subsequent experiment was to test the ability of the rotor to autorotate at flow speeds higher than

the minimum autorotation airspeed, but in this case starting from different low initial rotor velocities at each
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flow speed. To achieve a level of control in the initial rotor speed values, the rotor is first operated in stable

autorotation after setting the appropriate wind tunnel speed. Next, a level of frictional torque is applied at

the rotor shaft to reduce the rotor speed down to the desired value. The top of the wireless telemetry shroud

was found to be the best place to apply this resisting torque.For every wind speed and shaft angle setting, a

rotor speed threshold was found, above which the rotor will be able to achieve steady autorotation. Figure 4

depicts the results for different attempts of initial rotorspeed conditions when the shaft angle was set to

7◦. By repeating the tests a number times, it was possible to define a rotor speed boundary that separates

the two rotor scenarios (presented by a red dashed line in Figure 4). At this boundary, the behaviour of

the rotor appears to be steady but due to flow disturbances it will move away from this point either to

the stable autorotation state or the blade flapping divergesand activates the safety mechanism. This rotor

speed boundary together with the corresponding peak flapping angle variation represent an unstable periodic

branch of a rotor dynamics in autorotation.

The diagrams in Figure 4 resemble experimental bifurcationdiagrams of the physical teetering rotor.

They show the presence of stable and unstable autorotation branches, which get connected at the bifurcation

point. Because of the latter and also because of the unidirectional transient behaviour of the blades at speeds

below the bifurcation point wind speed, the instability point resembles afold bifurcation point: it defines the

minimum wind speed value for which steady autorotation willexist. Moreover, the approach used to find

the above bifurcation diagrams is typically known as abrute-force bifurcation method.

Furthermore, from the above experiments, two other issues need to be clarified. The first is related

to the behaviour of the rotor at a wind speed below that of the bifurcation point. It seemed during the

experiments that all attempts to operate the rotor in these low wind speed cases ended up by activating the

safety mechanism due to the large flapping angle before the rotor speed decayed to a halt and not the opposite

way around. This could mean that the rotor at low speed might be attracted to another stable periodic branch

that resides beyond the limit of the maximum flapping angle. Of course if that is the case then the system

features important multi-attractor characteristics and hence continuation and bifurcation methods are really

an essential tool for investigating its dynamics, when the appropriate numerical rotor model is available.
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Fig. 4 Experimental bifurcation diagram showing projections in (a) the rotational velocity and (b) the flapping an-

gle for the autorotating rotor, θsha f t = 7◦ and θcol = 1◦. The hollow blue circles represent the starting conditions

from which stable steady autorotation states were achieved. The solid blue circles denote stable steady autorota-

tion (stable limit cycles). The red dots are the attempts where autorotation was not possible. The red dashed line

represents the unstable autorotation steady states (unstable limit cycles), identified using a brute-force bifurcation

approach. The arrows indicate the direction of the trajectories’ transient behaviour.

The second issue concerns the location of the bifurcation point as the shaft angle was changed. Figure 5

is a 2-parameter experimental bifurcation diagram and shows that the wind speed value at which the fold

bifurcation occurs increases as the shaft angle is reduced.This implies that the fold bifurcation points also

specify the minimum permissible shaft angle required for autorotation at those wind speed values. In order

to clarify the effects of the above results on autogyro flightperformance, the average aerodynamic lift values

generated by the rotor are superimposed as contours in the same figure. Figure 5 illustrates that the fold

bifurcation line lies in an area where the rotor produces lowvalues of lift (below 1N to just above 3N). This

shows that when the rotor is unloaded by reducing the shaft angle or the flow wind speed, its stability will

be determined by whether or not the fold bifurcation line is crossed. Furthermore, the higher the wind speed

the higher the minimum lift value generated by the rotor. This means that the minimum permissible lift

value increases at higher wind speed. This is an important result because, at high speed flight, the autogyro

pilot has to reduce the shaft angle to maintain the lift and weight balance or to further off-load the rotor for

specific manoeuvres. Thus, if the shaft angle is reduced enough so that the fold bifurcation point is reached

then the rotor will not be able to sustain stable autorotation and hence, the blades will start to flap in a
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Fig. 5 Rotor lift contour plot imposed on a 2-parameter experimental bifurcation diagram with respect to wind

speed and shaft angle. The lift is given in Newton. The blade collective pitch angle is1◦.

oscillatory divergent manner.

Finally, the effects of varying the collective pitch angle was investigated. The shaft angle chosen for this

case wasθsha f t = 7◦. Attempts to get the the rotor to autorotate atθcol ≤−2◦ andθcol ≥ 4◦ did not succeed

over the available speed range of the tunnel. Figure 6 depicts the variation of rotor lift in the blade pitch

angle and the wind speed parameter plane. In this case, the fold bifurcation line still lies in an area where

the rotor produces low values of lift but the range of values is relatively bigger (below 0N to just above 7N)

than the range shown in Figure 5. Furthermore, it can be seen that in the range of 11 m/s and 17.5 m/s, two

bifurcation points at every wind speed exist; one at a small collective pitch angle and another at a higher

angle. For example, atU = 16 m/s, two fold bifurcation points exist at approximatelyθcol = −0.9◦ and

2.5◦. From this plot, one can easily visualize the appropriate bifurcation diagram for the case ofU = 16 m/s,

when the pitch angle is taken as the continuation parameter.Figure 7 depicts this bifurcation diagram. For

θcol = 0◦ and 2◦, the mean rotor speeds and the peak flapping angles at the unstable branch were found in

a similar way to that used in Figure 4. Figure 7 clearly illustrates that autorotation is only possible within a

range of blade pitch angle, which is dependent on wind speed and shaft angle. At the limits of this range,
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there were two bifurcations that define the points after which the torque balance in the rotor can no longer

be achieved. This type of bifurcation diagram is usually called anisola. The above results represent a new

qualitative interpretation of autorotating rotor stability. The multi-attractor nature of nonlinear dynamical

systems suggests that the instabilities identified above could lead to new attractors that will constitute a more

global view of the system behaviour than has previously beenavailable.
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Fig. 6 Lift contour plot imposed on an experimental bifurcation diagram with respect to wind speed and collective

pitch angle at shaft angle of7◦.

VI. Description of Rotor Model

It is apparent that the rotor behaviour is very nonlinear andthat analyzing such a system numerically

necessitates the use of nonlinear analysis methods with a numerical model that can capture the fold

bifurcation seen in the wind tunnel tests. What makes this type of investigation even more difficult is the

fact that the number of parameters involved together with the different flight manoeuvres and rotor types

that need to be considered is large. From an engineering perspective it is important to be able to perform

numerous quick analyses in order to minimize the problem dimension to a manageable level. For this reason,

it was necessary in this investigation to create a low order nonlinear rotor model that nevertheless retains

acceptable fidelity in the aerodynamic and dynamic representations. Since the focus here is on flap-rotation
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Fig. 7 Experimental bifurcation diagram showing projections in (a) rotational velocity and (b) flapping angle, for

an autorotating rotor. θcol is the continuation parameter, θsha f t = 7◦ and U = 16 m/s. The solid blue line is a

curve-fit through experimental data points (solid blue circles) denoting stable steady autorotation (stable limit

cycles). Similarly, the empty red data points and red dashedcurve-fit represent the unstable autorotation steady

state (unstable limit cycles).

instability (coupled flapping motion with blade rotation about the main rotor shaft) — as opposed to, say,

blade divergence and flutter or blade/pitch-link coupling dynamics — it is adequate to assume rigid blades

and to consider degrees of freedom both in the plane of rotation and normal to it. The omission of blade

elastic characteristics reduces complexity and allows easier insight into the blade dynamics.

The model developed for this study represents the dynamics of a two-bladed rigid teetering rotor. It is

in nonlinear continuous state-space form ˙x = f (x,δ) wherex ∈R
n is the state vector,δ ∈R

m is a vector ofm

parameters (e.g. blade pitch angle, wind speed, etc.) andf is the set ofn nonlinear equations (equations of

motion, inflow model, etc.). The formulation as a set of nonlinear continuous ordinary differential equations

(ODE’s) makes it amenable to the application of bifurcationanalysis. The following simplifying assumptions

– demonstrated to provide reasonable model performance output for autorotating rotors [43] – are adopted in

the aerodynamic representation:

• Two-dimensional steady aerodynamics.A 2-D individual blade element approach is adopted. The

lift, drag and pitching moment of each element are calculated numerically using nonlinear look-up

tables as functions of angle of attack and Reynolds number. Experimental data for a NACA0015
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aerofoil section is used for each blade element [44]; since it is of interest to investigate the high

advance ratio condition, in which reverse flow is expected tooccur over a portion of the rotor disc,

the look-up tables cover the whole 360◦ range of angle of attack.

• Unsteady flow and vortex shedding effects ignored.Whilst unsteady flow characteristics such as

dynamic stall clearly play an important role in rotor aerodynamics, the instability mechanisms of

interest here are expected to exist even when these are neglected. This assumption was made in the

interest of reducing model complexity and hence computation times.

• Compressibility effects neglected.Because the blade tip speed is generally low in autorotationeven

at high forward speed due to low rotor speed, compressibility effects were neglected but they can be

easily incorporated in the look-up tables.

• Blade/blade and blade/hub interactions ignored.Again, these were neglected for the purpose of

simplicity and efficiency in generating solutions.

• Tip losses approximated.It is assumed that the lift forces at the tip and blade root reduce to zero. For

this analysis, a tip loss factor of 97% is used; other tip losses are ignored.

Rather than describing flapping by its Fourier components inthe non-rotating frame, the individual

flapping coordinate,β, is retained for each blade and also its azimuthal position,ψ. For the teeter rotor,

both blades are assumed to be rigidly connected and hence have one flapping degree of freedom; also, blade

rotation together with blade lead-lag motion are represented by the same state variable, namely the rotational

degree of freedom around the shaft axis,ψ. The flapping coordinate for the blades,β, is dependent onψ.

The differential equations of motion for the rotor in both the flapping and the rotation senses are second

order, giving a total of four rotor states (ψ, ψ̇, β andβ̇), which are allocated for each rotor blade according

to Table 1. A compact form of the model equations is presentedin Appendix A, while the full derivation of

the equations can be found in reference [45].

The induced flow through the rotor is captured via a three-state Pitt-Peters dynamic wake model [46–49].

This representation forces a linear distribution of the induced velocity along the rotor disc radius and a

sinusoidal variation along its azimuth. The model was originally developed for powered helicopter rotors,
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Table 1 Allocation of state values for the rotor blades

States State value for blade 1 State value for blade 2

ψ ψ ψ+π

ψ̇ ψ̇ ψ̇

β β −β

β̇ β̇ −β̇

and modified by Houston for rotors in autorotation [50–52].

Scrutiny of the overall model equations can show that the model contains geometric, inertial and

aerodynamic nonlinearities and bifurcation analysis is anideal tool for the study of the system stability and

its dependence on parameter variations. The model is sufficiently smooth, despite the look-up tables, for

implementation in numerical continuation software; AUTO has proved to be both versatile and efficient in

this work. The model was implemented in MATLAB, and AUTO was run from within this environment.

The model is seventh order, the state vector beingx = [ψ, ψ̇, β, β̇, ν0, νs, νc]
T . A number of the

model parameters can be used as continuation parameters. However, to understand the rotor stability during

operational conditions, the main parameters of concern areflow speed (U), blade collective pitch angle (θcol)

and rotor shaft tilt angle relative to the flow (θsha f t); the latter is subsequently referred to as simply ‘shaft

angle’.

VII. Numerical Analysis

The experimental results presented in Section V clearly demonstrate that the blade dynamics in autoro-

tation is nonlinear. The obtained experimental bifurcation diagrams illustrate that the loss of instability for

lightly loaded rotors can be understood as the consequence of operating near fold bifurcations. In order to

understand these experimental results, particularly beyond the experiment limitations (for example, higher

wind speed or higher flapping angles), a numerical analysis was carried out. The appropriate physical rotor

properties were adapted in the numerical rotor model. The primary objective of this investigation is to eval-

uate the numerical model correlation to the experimental results, in particular its ability to capture the fold
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bifurcation points of the rotor.

A. Model Tuning

The blade dimensions, mass and aerofoil aerodynamic characteristics of the experimental autogyro

blade were used in the numerical model. Initial spot checks using time history simulations predicted rotor

speed values much greater than those values achieved in windtunnel tests. The main reason for this large

difference in rotor speed is believed to be the simple aerodynamic representation used in the model. This

discrepancy in rotor speed also led to dissimilarities in other aspects of the model, notably the rotor flapping

angle and forces produced by the rotor. Further scrutiny of the results revealed that the high value of the

predicted autorotational speed is related to the poor estimation of the rotor aerodynamic torque, which

caused the torque balance to be realised at a higher rotor speed than that experimentally measured.

Therefore, it was necessary to correct for some of the aerodynamic characteristics that were not

accounted for or were not accurately modelled. For instance, accurate blade tip and root losses, blade-to-

blade interaction, unsteady aerodynamics including dynamic stall, airframe and tunnel interaction effects,

inaccurate rotor downwash, etc. For simplicity, it was decided to use a friction term in the rotation sense

of the rotor to correct for those mis-represented characteristics. The use of this crude assumption was not

expected to produce an exact match between the numerical andthe physical model for all the rotor states.

However, the rationale was that this correction would narrow the discrepancy gap and produce a reasonable

match in rotor speed, at the same operating parameters, without increasing the complexity of the model.

Furthermore, in reality, an amount of resisting torque was present in the rotor shaft due to friction in the hub

bearings and the swash plate.

The frictional torque correction term is assumed proportional to the rotational blade velocity:

TFriction = ζ ·Ω (2)

whereζ = f1(θsha f t)+ f2(θcol) is a friction ratio and is a function of both the shaft and the blade collective

pitch angles. The following functions forf1 and f2 were found to provide a reasonable fit to the experimental
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data:

f1(θsha f t) = 10−3
· (−0.225θ2

sha f t +2.99θsha f t −2.94) (3)

f2(θcol) = 10−3
· (0.45θ0.7

col) (4)

where the shaft and blade pitch angles in the above equationsare in degrees. The tuning of the friction

coefficientζ was based on trimming the rotor model by only matching the peak rotor velocities to those

found in the experiment at the stable autorotation branches. It should be noted that it was not possible to

trim the numerical model at low values of forward speed (below 25m/s for shaft angle of 7◦ and pitch of

1deg). However, this was resolved by extrapolating the experimental rotor speed values above the 30m/s

limit of the wind tunnel. As it will be discussed in the following section, the reason for not achieving trim

at low flow speeds was because the location of the fold point inthe numerical model was sensitive to the

torque coefficient. Finally, the nonlinear least square curve method in Matlab (lsqnonlin) was used to fit

the torque coefficient data gathered to the function described in Equations (3) and (3). Furthermore, one

has to bear in mind that even if the rotor speed is well tuned, the other states are not expected to be closely

matched because of this crude experimental correction. However, the aim was to be able to produce at least

a qualitative agreement in the topology of the bifurcation diagram.

B. Bifurcation Analysis

Figure 8 shows two projections of the bifurcation diagram generated using the tuned model, with wind

speed as continuation parameter. Note that all solutions are limit cycles, for which the maximum amplitude

is shown for each state variable component (rotor velocity and flapping angle). The continuation started

from a periodic orbit at wind speed of 60m/s, which is then reduced to trace out the first stable autorotation

branch. As shown in Figure 8, the end of this branch is a fold bifurcation point which is the birth of an

unstable branch. By increasing the wind speed a second fold point is found, where in this case the branch

turns back and becomes stable once again. This second autorotation branch is characterised by higher

flapping angle amplitude and slower rotational velocity than the first stable autorotation region. As the wind

speed is decreased this second autorotation branch loses stability at abranch point bifurcation and two new

unstable periodic branches are formed. The flapping angle graph shows this latter result more clearly than
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Fig. 8 Bifurcation diagram projections in (a) rotor velocit y and (b) flapping angle, for the numerical rotor model

periodic orbit solutions at θsha f t = 7◦ and θcol = 1◦; the continuation parameter is the flow speed. Blue solid dotted

line is stable branch 1, blue line with solid triangles is stable branch 2, blue line with solid circles is stable branch

3 and blue line with crosses is branch 4. Red line with hollow diamonds is unstable branch 1, red line with hollow

triangles is unstable branch 2 and red line without markers is unstable branch 3 and 4. Green arrows illustrate

possibilities of rotor hysteresis.

the graph of rotor velocity. Because of the bifurcation diagram geometry near this point, it is usually called

a pitch-fork bifurcation and it is associated with the breakdown of symmetry in the dynamical system. At

slightly increased wind speed, both branches bifurcate at new fold bifurcation points resulting in two new

stable branches (branches 3 and 4, see Figure 8).

Like the experimental bifurcation diagram of Figure 4, the above results confirm the presence of the fold

bifurcation, although located at higher wind speed values.These results illustrate that the qualitative stability

characteristics of a rotor in autorotation can be predicted, when continuation and bifurcation techniques are

adapted, even though the numerical model is relatively simple and of low order. Furthermore, similar results

(not shown here) confirm that the wind speed value at which thefold bifurcation points exist increases as the

shaft angle is reduced. Therefore, the boundary of rotor stability can also be constructed by plotting the fold

bifurcation line in the two parameter space of the wind speedand the shaft angle [22].
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Figure 8 shows that in the wind speed range of 27m/s to 56m/s the rotor can autorotate at two different

rotational speeds. This means that if the rotor speed startsinitially from a lower value than that of the

unstable branch, then the rotor states will get attracted toward the second stable branch and the rotor should

be able to achieve autorotation, but at lower rotational speed. However, the problem with the latter is the

high flapping oscillation (at least 18◦ in amplitude). This could be the reason why in the experimental

results in Section V there was no sign of such rotor behavioursince the safety mechanism will not allow it

to happen. Furthermore, the existence of a second fold bifurcation point means that the rotor can undergo

hysteresis-like behaviour. This happens when the rotor is initially autorotating along the second stable

branch and if the wind speed is increased above 56 m/s the rotor velocity will jump from about 1300 rpm to

over 3000 rpm (see right green arrow in Figure 8).

In Figure 8, the second stable branch bifurcates to effectively two new stable branches (the parameter

range of unstable branches 3 and 4 is very small and it would bevery difficult to achieve any experimental

match). The new stable branches (3 and 4) extend from a wind speed value of 36m/s to less than 5m/s.

Interestingly, even though these two branches trace different flapping angle amplitudes, they have the same

rotational velocity. The flapping angle and the rotational speed graphs for blade 1 at branch 3 are exactly the

same as those of blade 2 at branch 4 lagged by 180◦. Similarly, the flapping angle and the rotational speed

graphs for blade 2 at branch 3 are exactly the same as those of blade 1 at branch 4 lagged by 180◦. What

is more interesting is that, for the same branch, blade 2 doesnot repeat the same behaviour as blade 1 after

180◦ as is the case in a normal autorotation regime. This is proof of the loss of symmetry between the blades

of the teetering rotor and as previously mentioned, it is a characteristic of the pitch-fork bifurcation point.

Finally, to determine if the new tuned model can also providesimilar behaviour to that of wind tunnel

test when the blade collective pitch angle is varied, a continuation run was performed forθsha f t = 7◦ and

U = 30 m/s, taking the collective pitch as the continuation parameter. Figure 9 depicts that this results

in a qualitatively similar bifurcation diagram to that obtained using the experimental measurements (see

Figure 7). The results clearly confirm that autorotation is only possible within a range of blade pitch

angle, the limits of which depend on wind speed and shaft angle. At the limits of this range, there are two

23



Collective Pitch Angle (degrees)

M
ax

im
um

R
ot

or
V

el
oc

ity
(r

pm
)

-0.5 0 0.5 1 1.5 2
950

1000

1050

1100

1150

1200

1250

1300

1350

(a)

Collective Pitch Angle (degrees)

M
ax

im
um

F
la

pp
in

g
A

ng
le

(d
eg

re
es

)

-0.5 0 0.5 1 1.5 2
4

4.5

5

5.5

6

6.5

7

7.5

8

(b)

Fig. 9 Bifurcation diagram showing projections in (a) rotational velocity and (b) flapping angle, for the numer-

ical model. θcol is the continuation parameter, θsha f t = 7◦ and U = 30 m/s. The blue solid dotted lines denote

stable steady autorotation (stable branch 1). The red dashed line with hollow diamonds represents the unstable

autorotation steady state (unstable branch 1).

bifurcations that define the points beyond which autorotation is impossible. This bifurcation diagram also

confirms that the stable and unstable branches constitute anisola. Note that the stable autorotation branch

pertains to branch 1 of Figure 8.

It can be seen in Figure 9 that the maximum collective pitch angle for autorotation to exist is less than

2◦. This obviously is less than expected for this rotor and it isthought that the reason for this low value is the

simple tuning procedure that was implemented in this analysis. In general, both experimental and numerical

results confirmed the dependence of fold bifurcation on collective pitch. Blade twist as well as blade aerofoil

shape are also parameters that can influence the blade stability and, hence, can be considered for design of

more stable rotor blades in autorotation.

VIII. Extended Experimental Analysis

In order to experimentally confirm the presence of a second stable branch, a wind tunnel test was

conducted. This time, the collective pitch angle was reduced to 0◦ since Figure 7 suggests that the rotor

would be able to rotate at slower speed and smaller flapping angle than the maximum allowed limit.

Interestingly, when the shaft angle was set to 7◦ the rotor was able to autorotate at about 100rpm at a

wind speed of 27m/s. Moreover, as the wind tunnel speed was very slowly increased to about 28.5m/s,
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the rotational speed increased slightly and in a steady manner to 120rpm, which proves the presence of

a second small stable branch. However, if the wind speed is raised to 29m/s, the rotor can no longer

sustain autorotation on this branch; instead, the rotational speed jumps very rapidly to over 950rpm. These

results are plotted in Figure 10 (a). The wind tunnel test sweep conducted at 0◦ shown in Figure 10 (b)

confirms that the branch characterised by the higher rotor speed value is the main stable autorotation

branch. Note that in the gradual wind tunnel sweep, it was notpossible to get the rotor to autorotate at

flow speeds above 22 m/s because of early onset of excessive vibrations. However, the rotor managed to

autorotate at 29m/s when the transient behaviour started from relatively very low initial rotor speed condition.
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Fig. 10 Rotor behaviour at two different stable autorotation branches for collective pitch angle of0◦. (a) Time

history from one stable autorotation solution to a second stable autorotation solution, for a shaft angle of7◦. (b)

Variation of rotor velocity with tunnel wind speed and rotor shaft angle (labelled).

The flapping amplitudes at branches 3 and 4 in Figure 8 are veryhigh. This makes it difficult to ex-

perimentally find a similar rotor behaviour due to the physical flapping limitations incorporated in the rotor

rig. However, with the collective pitch at 0◦ and the shaft angle set to 7◦, the blade starts rotating in an

anti-symmetric manner at lower speeds that in Figure 10. Forexample, in Figure 11, where the wind speed

is 25 m/s, the average of the flapping oscillation is no longer0◦: instead, it is about 7◦. This means that

the blades are not repeating the same flapping motion, as theydo in normal autorotation (where each blade

would be at the same flapping angle for the same azimuthal position, i.e. average flap amplitude zero).
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Fig. 11 Blade flapping behaviour after rotor loses symmetry.Shaft angle =7◦, blade pitch = 0◦ and wind tunnel

speed = 25 m/s.

IX. Conclusions

An evaluation of autogyro rotor stability by numerical continuation and bifurcation tools and using

wind tunnel experimentation has been undertaken. The case study of rotor blade instability in autorotation

was utilised to discuss the real engineering issues in predicting unstable behaviour of complex nonlinear

aero-mechanical systems. It was shown in this example that obtaining a valid rotor model is an essential part

of the investigation, although the continuation techniqueprovided a powerful tool to ease decision-making

in arriving at an improved low-order model during the analysis.

The systematic procedure suggested by this work involves first using continuation and bifurcation

analysis to narrow the area of search of the instability behaviour, using a low order model. Then, assuming

that bifurcation diagrams for a corresponding physical system can be produced experimentally, efficient

use can be made of the experimental process to supplement andverify the numerical results as well as to

tune the numerical model. It was shown for the autogryo rotorsystem that prediction of attractors beyond

the maximum flapping angle was possible and that the numerical results are in good agreement with those

generated from experiments — at least qualitatively in the highly nonlinear region. The approach was able

to identify new blade behaviour arising from the nonlinearity of the system, namely asymmetric autorotation

branches following a pitch-fork bifurcation of the periodic orbits (also verified experimentally). These have

not previously been characterised in this way.
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The continuation method detected fold bifurcation and branch points, which cannot be achieved by

other methods. Indeed, some approaches may mistakenly suggest unstable solutions in the region where

there should not be any solution, such as beyond a fold point where there is no local solution branch. As

demonstrated for the rotor system, the combined numerical-experimental procedure facilitates the construc-

tion of full bifurcation diagrams, even where state or parameter constraints exist. In this way, a compre-

hensive insight into the multi-attractor nature of the autorotating blade behaviour was obtained; this pro-

vided a new explanation of autogyro rotor instability. Although not shown here, a further advantage of the

continuation-based approach is that information from several bifurcation diagrams can be merged to produce

a 3D bifurcation diagram. This can be used to establish stability boundaries in parameter space; alternatively,

two-parameter continuation can generate the stability regions.
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Appendix A: Rotor Model Equations

The full derivation of the equations of motion can be found inreference [45]. However, for completeness

a compact form of the equations used for the teetering rotor are reproduced here:

ψ̈ = (Nψ,1+Nψ,2)/(2Iblade cosβ) (5)

β̈ = (Mβ,1−Mβ,2)/(2Iblade) (6)

where

Nψ,i = (Naero,i −Mblade(a
sha f t
hub,i )y)− [(Psha f t

i cosβi −Rsha f t
i sinβi)

×(Qsha f t
i + β̇i)− (αsha f t

hub,i )x sinβi − (αdisc
hub )z cosβi]Iblade

Mβ,i = (Maero,i +Mblade((a
sha f t
hub,i )x sinβi +(asha f t

hub,i )z cosβi))+

[

(Psha f t
i cosβi −Rsha f t

i sinβi)

×(Psha f t
i sinβi +Rsha f t

i cosβi)− (αsha f t
hub,i )y

]

Iblade
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whereNψ,i andMβ,i are the overall torque and flapping moment respectively on bladei andNaero,i andMaero,i

are the aerodynamic torque and flapping moment, respectively for each bladei. Mblade andIblade are the blade

mass moment and second moment of inertia respectively.Psha f t
i , Qsha f t

i andRsha f t
i are the angular velocities

of the rotor hub in the shaft axes.asha f t
hub,i andαsha f t

hub,i are the translational and angular acceleration vectors of

the hub in the shaft axes respectively.αdisc
hub is the angular acceleration vector of the hub in the rotor disc axes.

Finally, the state values are allocated for each rotor bladeaccording to Table 1. Note that moments at the hub

about either the teetering or rotation axes due to factors such as friction are assumed negligible at this stage.

Zero lift line

Thrust

Rotor disc plane

Fig. 12 Schematic diagram illustrating the flow and force components for a blade element in autorotation.

A 2-D individual blade element approach is adopted. Each blade is divided into anN number of elements

and then the aerodynamic forces for each element are calculated numerically. The lift and drag forces acting

on each blade element can be computed by first evaluating the elemental flow velocities and angles of attack

(see Figure 12). The tangential and perpendicular components of resultant velocity at a blade element are

given by:

UT,elem =Velem (7)

UP,elem =Welem −νi cosβ (8)

whereVelem andWelem are the translational velocities of the blade element in therotation and flap directions

respectively, due to the kinematic motion of the blade.νi is the induced velocity at the blade element. The
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local angle of attack is given by:

αelem = θelem +φelem (9)

whereθelem is the elemental pitch angle andφelem is the elemental inflow angle, which can be calculated as

follows

φelem = atan2(UP,elem,UT,elem) (10)

whereatan2 is the ‘quadrant-arctangent’ function (atan2 function in MATLAB). The local pitch angleθelem

is a combination of all the local pitch angle contributions,in this case:

θelem = θcol +θpre.twist,elem (11)

whereθcol andθpre.twist,elem are the blade collective pitch and the blade local built-in twist. The elemental

lift, drag forces and pitching moment are then calculated assuming two dimensional steady flow.

δLelem =
1
2

ρU2
elemcelemδrelemCL,elem(αelem,Reelem,relem) (12)

δDelem =
1
2

ρU2
elemcelemδrelemCD,elem(αelem,Reelem,relem) (13)

whereρ, celem, Uelem =
√

U2
P,elem +U2

T,elem, δrelem, CL,elem andCD,elem are the local air density, the blade

elemental chord, the elemental resultant flow velocity, thewidth of the blade element, the lift and drag

coefficients at each element respectively.αelem andReelem are the elemental angle of attach and Reynolds

number respectively. The aerodynamic loads and moments foreach individual blade element are calculated

numerically using nonlinear look-up tables for lift and drag coefficients. Experimental data for a NACA0015

aerofoil section is used for each blade element [44]. The local forces acting on a blade element in the blade

coordinate system can therefore be determined from the elemental lift and drag forces.

Felem =

















0

δLelem sinφ− δDelem cosφ

−δLelem cosφ− δDelem sinφ

















(14)

Finally, the aerodynamic forces and moments acting upon thewhole blade at the hub are calculated by

summing up the whole elemental forces and moments for each blade.

Faero,hub =
N

∑
elem=1

Felem = [Xaero,Yaero,Zaero]
T (15)
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Maero,hub =
N

∑
elem=1

rhub → elem ×Felem = [Laero,Maero,Naero]
T (16)

whererhub → elem is the blade element position vector relative to the rotor hub. The thrustTaero and lift Lrotor

generated by the rotor can be calculated as follows:

Taero =
2

∑
i=1

−Zaero,i cosβ (17)

Lrotor = Taero cosθsha f t (18)

The 3-state inflow model is given as:

νi (r,ψ) = ν0+
r
R
(νs sinψ+νc cosψ) (19)

whereνi is the induced velocity at theith element of radiusr andR is the blade tip radius. The induced

velocity componentsν0, νs andνc are given in the wind axes by:

[τ]
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wind
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
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(20)

where

[τ] =

















4R
3πνT

0 −R tan(χ/2)
12νm

0 64R
45πνm(1+cosχ) 0

5R tan(χ/2)
8νT

0 64R
45πνm(1+cosχ)

















(21)

and

[L] =
1

ρπR3

















R
2νT

0 15π tan(χ/2)
64νm

0 −4
νm(1+cosχ) 0

15πR tan(χ/2)
64νT

0 −4cosχ
νm(1+cosχ)

















(22)

Taero, Laero andMaero are the thrust, the aerodynamic lateral and pitching moments respectively in the wind

axes and the skew angleχ can be obtained from:

χ = atan2(
√

u2
hub + v2

hub,(νi,m −whub)) (23)
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where the ‘quadrant-arctangent’ function (atan2 function in Matlab) is used to compute the correct value of

the wake skew angle.νT andνm are expressed as:

νT =
√

u2
hub + v2

hub +(νi,m −whub)2 (24)

νm =
u2

hub + v2
hub +(νi,m −whub)(2νi,m −whub)

νT
(25)

whereuhub, vhub andwhub are the flow velocity components relative to the rotor hub, and νi,m is the induced

velocity from momentum theory, which can be evaluated usingthe Glauert equation [53].
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