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Rater Accuracy and Training Group Effects in Expert and Supervisor-Based Monitoring 

Systems 

  

ABSTRACT 

This study evaluated rater accuracy with rater-monitoring data from high stakes examinations 

in England. Rater accuracy was estimated with cross-classified multilevel modeling. The data 

included face-to-face training and monitoring of 567 raters in 110 teams, across 22 

examinations, giving a total of 5,500 data points. Two rater-monitoring systems (Expert 

consensus scores and Supervisor judgment of correct scores) were utilized for all raters. 

Results showed significant group training (table leader) effects upon rater accuracy and these 

were greater in the expert consensus score monitoring system. When supervisor judgment 

methods of monitoring were used, differences between training teams (table leader effects) 

were under-estimated. Supervisor-based judgments of raters’ accuracies were more widely 

dispersed than in the Expert consensus monitoring system. Supervisors not only influenced 

their teams’ scoring accuracies, they over-estimated differences between raters’ accuracies, 

compared with the Expert consensus system. Systems using supervisor judgments of correct 

scores and face-to-face rater training are, therefore, likely to under-estimate table leader 

effects and over-estimate rater effects.  

 Keywords: rater accuracy, multilevel modelling, rater monitoring, rater training, table effects 
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Rater Accuracy and Training Group Effects in Expert and Supervisor-Based Monitoring 

Systems 

 

INTRODUCTION 

Accuracy in rating of students’ performances for high-stakes examinations is typically 

monitored, so that assessment organisation staff can take decisions about raters’ scoring 

performances.  When poor accuracy is identified, actions might be taken on individual 

students’ scores, raters might be subjected to further training or the rater’s employment might 

be terminated.  Rater accuracy is the most studied of a group of rater effects, which also 

include leniency or severity, ‘halo’ effects, central tendency and consistency. By rater 

accuracy, we mean the absolute difference between the rater’s score and the correct score. In 

this study, we investigated accuracy effects. Little research has been conducted on the 

monitoring systems themselves that are used to evaluate raters and rating quality.  This paper 

presents such a study and relates it to the effects of group training upon raters in face-to-face 

environments.   

Two rater quality check systems used simultaneously in high stakes examinations in 

England were compared (Table 1). Both systems were applied across all of the examinations 

and raters. In the ‘Expert-based monitoring system’, correct scores were generated by the 

Principal Examiner and in the ‘Supervisor-based monitoring’ system, correct scores were 

generated by the rating team supervisors. The study involved a within-group comparison, as 

the raters and supervisors used both monitoring systems. 

 Individual students’ work included in the monitoring was rated under only one 

system. One of our research questions was whether the different quality assurance systems 

would produce the same rank-ordering of raters’ accuracy, as researchers have recently been 

interested in the stability of measures of rater effects over time or over subjects (e.g., 
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Congdon & McQueen, 2000; Hoskens & Wilson, 2001; Harik et al., 2009; Lamprianou, 

2006; Myford & Wolfe, 2009). The data included 22 examinations, with different styles of 

scoring rubric. ‘Analytic’ rubrics require scores for different elements of the response, which 

are aggregated, whilst ‘holistic’ rubrics require a single judgment of an overall score, even if 

that single judgment takes into account performances on elements of the response. In keeping 

with previous literature (e.g., Hartog and Rhodes, 1936; Klein et al., 1998; Chi, 2001), we 

also expected a significant mean difference between analytic and holistic rubrics, with greater 

accuracy for analytic scoring. Correct scores are easier to define with analytic rubrics in 

subjects with less ambiguous answers, such as mathematics compared with subjects such as 

English with more debatable ‘correct’ scores and holistic rubrics. 

 

<Insert Table 1 > 

 

Team training effects 

There are few studies on the implications of training raters in teams, although this is common 

practice. In a study of quality checks on a mathematics high school examination,  Wilson & 

Case (2000) found significant supervisor group training (‘table leader’) effects, but could not 

establish an association with the subsequent behaviour of raters within teams. Hoskens & 

Wilson (2001) also found supervisor effects in their analysis of rating quality checks for a 

high school Economics examination, with one team of raters being significantly more severe. 

They acknowledged that multilevel modelling (Raudenbush and Bryk, 2002; Goldstein, 

2011; Snijders and Bosker, 2012) would be a better approach for estimating team training 

effects in rater accuracy with data of this kind (p. 134) and this is the analysis method used in 

the current research. Specifically, we estimated cross-classified multilevel models (Leckie, 
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2013; Rasbash and Goldstein, 1994; Raudenbush, 1993), which explicitly recognised the 

non-hierarchical aspects of the data.  

 

Aims 

Previous studies have shown that concealing prime scoring reduces the agreement level 

between the prime and second raters (McVey, 1975; Murphy, 1979). Here, we investigated 

the following research questions: 

 Would there be stable rater accuracy effects across the two monitoring systems? 

 Does analytic scoring produce greater rater accuracy? 

 Will team training accuracy effects be observed? 

 Will the Supervisor-based monitoring system produce greater observed rater 

accuracy? 

 

 

METHOD 

Assessments 

A-level examinations are normally taken at age 18 (year 13) of high school following a two-

year subject-based course. They are the main qualifications taken for access to university in 

England. First available in 1951, assessment processes are well established. Naturally, there 

have been many reforms to the curriculum, assessment design and administrative processes in 

their history. Assessment formats vary, but those included in the study were all written 

examinations, taken under controlled conditions. Questions were either short answer or 

extended answer and rubrics varied from generic descriptors to model answers. Essay-style 

questions were common. 

 



RATER ACCURACY AND TRAINING GROUP EFFECTS 

6 

Raters and training 

A-level raters are usually practicing teachers of the subject and of the curriculum being 

assessed. Most raters have successfully scored an A-level assessment previously. Supervisors 

are selected on the basis of their ability to score to an acceptable standard (as measured 

through monitoring systems), as well as their aptitude for managing a team and typically have 

a number of years’ scoring experience for a specific examination. The Principal Examiner is 

normally selected following national advertisement of the post, typically has a number of 

years’ experience in scoring or examining, and is often a senior member of staff in a school.  

 In this study, face to face training took place on a single day for each question paper. 

Raters were organised into teams of approximately five and a supervisor headed each team. 

Principal Examiners gave introductory presentations to train the raters on interpretation of the 

question papers and rubrics and this was followed by team discussion of scoring students’ 

work, using exemplar student performances which contained the Principal Examiners’ correct 

scores that had also been agreed with the supervisors in the prior supervisor training event.  

 

Data 

Data were collected from Assessment and Qualifications Alliance A-level 2003 examination 

scoring. Scoring was paper-based and monitoring was conducted on paper, with scripts being 

sent to supervisors through the post. Data from the training phase of scoring were collated 

and analysed: raters were required to submit ten candidates’ work (scripts) to their 

supervisors, who re-scored them, giving feedback to the raters and taking a decision about the 

quality of their prime scoring. Although ten scripts were normally scored, the sample was 

extended where there were doubts about a rater’s performance. All data from examinations 

using both of these systems with large entries were included. 
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 Five of the ten scripts for each rater were from the Expert-based system: photocopied 

scripts, with correct scores produced by the Principal Examiner. These photocopied scripts 

were also used to train the supervisors and were intended as a method of ensuring consistency 

across the population of supervisors. Obviously, the correct scores were not revealed during 

the raters’ training, but the principles of scoring the work were discussed. The remaining 

sample of five scripts for each rater was from the Supervisor-based system: original scripts, 

double scored by the rater’s supervisor. If extended sampling of a rater’s scoring needed to be 

carried out, additional original scripts were requested from the raters. If doubts remained 

about the quality of raters’ scoring, raters’ employment might be terminated at this stage. All 

of the data, from successful and unsuccessful raters were included in the study. Further 

operational checks on the scoring were conducted at later stages in the process, but did not 

form part of this research. 

 A total of 5,500 quality assurance checks were collected for the study across 22 

question papers, 110 supervisors and 567 raters. To facilitate comparison across question 

papers, absolute score differences between the scores allocated to the scripts by the raters and 

the supervisors were calculated and then converted to percentages of the maximum score for 

that paper. For example, a discrepancy of one score point resulted in a five percentage point 

difference in English Literature (where there was a maximum score of 20) but only a one 

percentage point difference in Physics (where there was a maximum score of 100). Absolute 

score differences were used to represent accuracy; score differences would have indicated 

severity and leniency, which was not the focus of the study. 

 

Samples of students’ work in the Expert-based monitoring system 

The Principal Examiner for each question paper selected students’ work for the photocopied 

scripts. The sample of these was selected to generate good training material: covering a range 
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of scores and optional questions where appropriate. However, the photocopied scripts were 

selected under time pressure and there were just five of them for each question paper. 

Although a non-random process, the Principal Examiners attempted to select representative 

examples of students’ work.  

 

Samples of students’ work in the Supervisor-based monitoring system 

Original scripts for re-scoring were selected by raters. Raters were likewise asked to submit 

scripts that represented a range of scores. It is possible that raters selected their sample of five 

original scripts carefully, to portray their scoring performance favourably. However, this was 

not a practical proposition, as raters were also under time pressure - to have their scoring 

vetted and be cleared to continue scoring. Further, Pinot de Moira et al. (2002) found very 

little change in rater scoring accuracy from the first to the final samples of A-level raters’ 

scoring and Leckie and Baird (2011) reported similar findings for national examinations in 

England. So, original scripts included in the study were expected to be scored equally well as 

those scored later in the rater’s allocation of students’ work, despite the fact that sampling of 

scripts scored later in the marking period was not always conducted by the rater. 

 

 

Analysis 

Figure 1 displays the complex multilevel data structure using a classification diagram 

(Browne et al., 2001) separately for the Expert-based (Figure 1a) and Supervisor-based 

(Figure 1b) quality control systems. In the figure, the absolute score differences form level 1 

of the data hierarchy. For each quality control system, there are five absolute score 

differences per rater and so absolute score differences are said to be nested within raters at 

level 2 in the data hierarchy. However, a complication arises in the Expert-based quality 
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control system as, for all raters on any given paper, the five absolute score differences related 

to the same five photocopied scripts. Thus, these absolute score differences are also 

separately nested within photocopied scripts at level 2 in the data hierarchy. This is not the 

case for original scripts, as each original script was scored by a different rater. Photocopied 

scripts are said to be cross-classified with raters at level 2 while the original scripts are 

confounded with the absolute score differences at level 1. In both quality control systems, 

raters are then nested within teams at level 3 where each team is led by a supervisor. Finally, 

teams are nested within question papers at the highest level in the data hierarchy, level 4. 

 

<Insert Figure 1.> 

 

 A cross-classified multilevel model was fitted to the data (Leckie, 2013; Rasbash and 

Goldstein, 1994; Raudenbush, 1993). The response variable was the absolute score 

difference, which had a positive skew. Therefore, it was modelled on the log scale 

(Tabachnick and Fidell, 2007) so that the multilevel random effects better approximated the 

normality assumptions of the model (Goldstein, 2011). The log of zero is undefined and so a 

small positive constant of 0.5 was added to the response to facilitate the analysis. Choosing 

different values of this constant can be expected to yield slightly different model results. 

This, however, is readily studied, and in our analysis altering this constant makes little 

difference to any substantive conclusions. A description of the fixed and random parts of the 

model is presented in the Appendix. 

 Model fixed effects regression coefficients allowed us to test the hypotheses that 

score discrepancies were smaller for the Supervisor-based system than for the Expert-based 

system and that they were larger for subjects with holistic rubrics than those with analytic 

rubrics. The random part of the model included separate random effects variance components 
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for the two systems. With that, it was possible to examine the extent to which the degree of 

scoring accuracy varied across training teams and the extent to which it varied across the 

raters within their teams. Further, the variance components allowed us to examine whether 

there were differences in these patterns across the two rater monitoring systems.  We fitted all 

models in the MLwiN multilevel modelling software (Rasbash et al. 2009) where we called 

MLwiN from within Stata (StataCorp, 2015) using the runmlwin command (Leckie and 

Charlton, 2013). 

 

RESULTS 

Descriptive analysis 

Table 2 presents the mean absolute score difference for each question paper separately for the 

two systems. The table shows that, for 17 out of the 22 question papers, the mean absolute 

score differences were, on average, lower for the Supervisor-based system than for the 

Expert-based system. Thus, raters, on average, scored closer to the correct scores when they 

were set by supervisors (i.e., original scripts) than when the correct scores were set by the 

Principal Examiner in the Expert-based system (i.e., photocopied scripts). Supervisors did not 

double score blind and so the correct score that they assigned to each original script was very 

likely influenced by the rater’s prime score, as seen in previous studies (McVey, 1975; 

Murphy, 1979). 

 

<Insert Table 2> 

 

 Table 2 additionally shows that mean absolute score differences were notably higher 

for subjects with holistic rubrics than for subjects with analytic rubrics. Across both 

monitoring systems, the mean absolute score difference for subjects with analytic rubrics 
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ranged from just 1.1 to 3.4 while for subjects with holistic rubrics they ranged from 2.4 to 

9.8. Thus, raters, on average, scored further from the correct scores on question papers with 

holistic rubrics than on question papers with analytic rubrics. 

 

Multilevel analysis 

Table 3 reports model results. In the fixed part of the model, taking the exponential of the 

intercept (0.663) (and subtracting 0.5) gives the median absolute score difference for the 

Expert-based system with an analytic rubric. This predicted value is 1.4 (exp(0.663)-0.5) and 

so the median absolute score difference was 1.4 percentage score points away from the 

correct score set by the Principal Examiner. The median absolute score difference for the 

three other combinations of script and rubric type can be similarly predicted and are 1.0 

(exp(0.663-0.229)-0.5) for the Supervisor-based system with analytic rubrics, 2.7 

(exp(0.663+0.490)-0.5) for the Expert-based system with holistic rubrics, and 2.0 (exp(0.663-

0.229+0.490)-0.5) for Supervisor-based system with holistic rubrics. However, the 

interaction between monitoring system and rubric type is not presented in the model, as it 

was non-significant.   

 

<Insert Table 3.> 

 

 The main effect for the Supervisor-based system (-0.229) is negative and significant 

(2
1=6.71, p=0.010), while the main effect for holistic rubrics (0.490) is positive and 

significant (2
1=14.08, p=0.001). These results, which take into account the complex 

clustering in these data, support those indicated by the descriptive statistics presented in 

Table 2: absolute score differences are significantly smaller for the Supervisor-based system 

compared with the Expert-based system and they are significantly larger for scripts with 
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holistic rubrics compared to those with analytic rubrics. Furthermore, these findings are as 

anticipated. 

 The random part of the model decomposes the variation in log absolute score 

differences that is unexplained by the fixed effects into separate variance components due to 

papers, training teams, raters, scripts and residual error variation. This decomposition is done 

separately for each monitoring system. The extent to which a given variance component is 

large compared to the other components of variation indicates the relative contribution of that 

component to the overall unexplained variation. To ease this interpretation of the variance 

components, we therefore present them in Table 4 together with variance partition 

coefficients (each component of variation divided by the total variation). 

<Insert Table 4.> 

 We start by interpreting the variance components for the Expert-based system. We 

will then interpret the variance components for the Supervisor-based system and contrast 

these results with each other. For the Expert-based system, Table 4 shows that the paper 

variance (0.106) accounts for 7% of the unexplained variation in log absolute score 

differences. Thus, some question papers were more accurately scored than others even after 

adjusting for the large fixed effect of rubric type. 

 The training team variance (0.224) is large and accounts for 16% of the unexplained 

variation in log absolute score differences; some teams scored substantially more accurately 

than others. Importantly, this variability in team accuracy was not due to differences in 

supervisors’ re-scoring standards as supervisors did not set the correct scores in the Expert-

based system. This suggests that during training, supervisors created scoring cultures within 

their teams that differed in scoring standards from that specified by the Principal Examiner.  

 The rater level variance (0.082) accounts for just 6% of the unexplained variation in 

log absolute score differences. Thus, raters’ average log absolute score discrepancies did not 
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vary much from other raters in their teams. Furthermore, the rater variance of 0.082 was 

considerably lower than the training team variance of 0.224. This indicates that the degree of 

scoring inaccuracy varied much more across teams than it did across the raters within these 

teams. In other words, raters scored relatively similarly within teams. 

 The script level variance (0.026) is very small and accounts for only 2% of 

unexplained variation in log absolute score differences. Thus, having adjusted for question 

paper, training team and rater effects, scripts differed very little in how accurately they were 

scored. That is, average score discrepancies were fairly similar across scripts and so all 

scripts were scored with broadly the same degree of accuracy. 

 The residual error variance (0.998) accounts for 69% of the unexplained variation 

and, as is common in studies of scoring accuracy, is by far the largest component of 

unexplained variation (see, for example, Leckie and Baird, 2011 and Pinot de Moira et al., 

2002). Idiosyncrasies of the interaction between raters and students’ performances are 

represented by the residual error variance. 

 Table 4 shows that the estimated variance components for the Supervisor-based 

system differed substantially from those for the Expert-based system. However, only the 

training team variances and rater variances differ significantly by system (2
1=7.04, p=0.008 

and 2
1=5.77, p=0.016 respectively); the differences observed for the question paper 

variances and the residual variances are not statistically significant (2
1=1.30, p=0.255 and 

2
1=1.58, p=0.209, respectively). We therefore limit our discussion to the training team and 

rater variance components.  

For the Supervisor-based system, the training team variance (0.103) is significantly smaller 

than that for the Expert-based system (0.224). In contrast, the rater variance (0.157) for the 

Supervisor-based system is significantly larger than that for the Expert-based system (0.082). 

Thus, in the Supervisor-based system, when supervisors set the correct scores, there was 
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significantly less variation in absolute score differences between teams, but significantly 

more variation between raters, within their teams. In other words, when supervisors set the 

correct scores, teams appear more similar to one another than when the Principal Examiners 

set the correct scores. However, supervisors judged their raters to vary considerably more in 

scoring accuracy when they set the correct scores than when the Principal Examiner set the 

correct scores. 

 Table 3 also presents the covariance between the training team effects for the two 

systems. The covariance (0.063) is positive and statistically significant (2
1=6.63, p=0.010), 

however the corresponding correlation of 0.41 (0.063/(0.244x0.103)) is moderate. Thus, 

teams which scored more accurately than average in the Expert-based system more often than 

not scored more accurately than average for the Supervisor-based system and vice versa, but 

this would by no means always be the case. Table 3 also presents a positive and statistically 

significant covariance (0.068) between the rater effects for the two systems. The 

corresponding correlation of 0.60 (0.068/(0.082x0.157)) is moderately high and so raters 

that, within their teams, scored more accurately than average under one monitoring system 

tended to also do so under the other system. However, the fact that the correlation is not 

higher again highlights that the choice of quality control mechanism could lead to 

inconsistent descriptions of raters’ levels of scoring accuracy. 

 Figure 2 presents predicted absolute score differences for teams, together with 95% 

confidence intervals, separately for the two systems. We centre these predictions around the 

median predicted absolute score difference in each system. Note that these predictions reflect 

differences between teams which remain, even after adjusting for question paper, rubric type 

and all other factors in the model. The figure clearly shows that, not only is the predicted 

median absolute score difference for the Supervisor-based system less than it is for the 

Expert-based system (denoted by the horizontal lines), but the predicted absolute score 
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differences for teams vary less for the Supervisor-based system than for the Expert-based 

system. The figure also shows that the vast majority of team predicted absolute score 

differences were not significantly different from the median team (denoted by the horizontal 

lines), although more were significantly different from the median for the Expert-based 

system. The imprecision of these team predictions largely reflects the small size of teams: the 

average team had only five raters. 

<Insert Figure 2.> 

 Figure 3 presents predicted absolute score differences for the raters, together with 

95% confidence intervals. Again we centre these predictions around the median predicted 

absolute score difference in each system. These predictions reflect differences between raters 

even after we have accounted for their team membership and all other factors in the model. 

The figure clearly shows that the predicted absolute score differences for raters vary more for 

the Supervisor-based system (original scripts) than for the Expert-based system (photocopied 

scripts). However, almost none of the rater predicted absolute score differences were 

significantly different from the median rater (denoted by the horizontal lines). This reflects 

the small number of scripts scored by each rater (approximately five). 

 

DISCUSSION 

We take each of our research questions in turn. First, only moderate stability of rater effects 

(r=0.6) was found across the two monitoring systems, somewhat worryingly suggesting that 

different impressions of rater performance could be given by the adoption of a particular 

system. Other studies too have shown instability in rater effects (Baird et al., 2013; Congdon 

& McQueen, 2000; Hoskens & Wilson, 2001; Harik et al., 2009; Lamprianou, 2006; Myford 

& Wolfe, 2009), which might be explained by small sample sizes in the monitoring checks.  

This study is the first to show instability across monitoring systems.  



RATER ACCURACY AND TRAINING GROUP EFFECTS 

16 

Second, as expected, analytic scoring generally produced greater scoring accuracy. Third, 

significant training group effects were found under both monitoring systems. This is the first 

study to show this as a general effect, rather than for a particular team, and it is the first to use 

multilevel modelling to do so. Fourth, as anticipated, the Supervisor-based monitoring system 

appeared to produce greater observed accuracy, which we explain by the fact that in this 

system supervisors can be influenced by the original scores given to students’ work. 

 Interestingly, and unexpectedly, there were larger group training effects in the Expert-

based monitoring system and larger within-group spread of rater accuracy effects in the 

Supervisor-based monitoring system. Thus, it appears that when supervisors were permitted 

to decide the correct score in response to the original rater’s score, they produced data that, 

compared with the Expert-based system, a) under-estimated overall rater inaccuracy, b) over-

estimated differences in accuracy between raters and c) under-estimated differences between 

groups in terms of accuracy. The mechanisms of findings a) and c) are likely to be the biasing 

effect of the original rater’s score, but b) is likely to be a bias caused by supervisor attempts 

to distinguish good and weak rater performances within their teams. However, the 

mechanism for production of group training effects under the Expert-based monitoring 

system is as yet unexplained. After all, in that system, supervisors simply applied the correct 

score supplied by the Principal Examiner. We therefore concluded that group effects were 

caused during discussion with supervisors (‘table leaders’) at the training meetings. Note that 

the training materials contained correct scores created by the Principal Examiner (Expert), so 

the effects of team discussion must have been powerful.  

As this study involved secondary data analyses of operational datasets, there were several 

limitations to the available data. Information regarding supervisors’ views of raters, and 

supervisors’ and raters’ backgrounds might have added to the study, as it would have been 

possible to investigate how these factors might have influenced the extent to which 
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supervisors took into account the raters’ views. This could have led to a rational explanation 

for the biasing effect of viewing the raters’ original scores, for example. 

 Raters knew that their performance was being monitored. We did not have data on 

random checks of scoring performance for which the raters were unaware of scrutiny. Our 

findings are therefore only generalizable to scoring if the training check data included in the 

current study were fair indicators of rating and checking behaviour. As indicated previously, 

there is some evidence to suggest that this is a reasonable assumption (Leckie and Baird, 

2011 and Pinot de Moira et al., 2002).   

 Our data included a small number of raters whose employment was terminated due to 

unacceptable levels of scoring accuracy. Therefore, the findings are likely to indicate higher 

levels of variability than the final operational scores. 

 Although there was variability in assessment formats and subjects included in this 

study, all of the data were drawn from A-level examinations taken in England, scored by 

experienced raters who were qualified teachers in the subjects. Research is needed to 

investigate whether the same effects are found in different contexts. Further, the small-scale 

nature of samples within particular subjects precluded their separate study, but it might be 

that Supervisor-based checks are sufficient for subjects such as mathematics with 

unambiguous, analytic rubrics. 

 

CONCLUSIONS 

The combination of cohesion to the supervisor scoring standard across teams and spread of 

raters within teams is likely to be caused by supervisors discriminating between their team 

members. In effect, their monitoring indicated that they were more attuned with some of the 

team members’ scoring than to others. Several processes could account for this, including a 

belief that their team represented a wider range of scoring abilities than was the case, or other 
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social and administrative factors influencing the degree to which the original marking had an 

influence upon the supervisors’ monitoring. Availability of original scores in the Supervisor-

based monitoring systems had a biasing effect that produced a lower estimate of rater 

deviance from correct scores, in the fixed effect.  A conclusion from this study is that face-to-

face training coupled with Supervisor-based monitoring is likely to under-estimate group 

training effects and over-estimate rater effects. These are important findings, as face-to-face 

training and Supervisor-based monitoring systems are still the norm in many examination 

settings for practical reasons. Although in many contexts monitoring of marking is still 

paper-based, two-thirds of marking in public examinations in England is now on-screen, in 

keeping with the expansion of marking technology in other settings, such as Hong Kong, 

Korea, Australia and the US (Ofqual, 2014). With the advent of technology in these systems, 

online training and Expert-based monitoring systems should produce more accurate 

depictions of rater severity effects. 
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APPENDIX 

A cross-classified multilevel model was fitted to the data (Leckie, 2013). This model is 

written below using the ‘classification’ notation of Browne et al. (2001), which avoids a 

proliferation of subscripts when many random classifications are present.  

𝑦𝑖 = 𝛽0 + 𝛽1𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑖 + 𝛽2ℎ𝑜𝑙𝑖𝑠𝑡𝑖𝑐𝑖 

+ (𝑢0question paper(𝑖)
(5)

+ 𝑢0training team(𝑖)
(4)

+ 𝑢0rater(𝑖)
(3)

+ 𝑢0script(𝑖)
(2)

+ 𝑒0𝑖) 𝑒𝑥𝑝𝑒𝑟𝑡𝑖 

+ (𝑢1question paper(𝑖)
(5)

+ 𝑢1training team(𝑖)
(4)

+ 𝑢1rater(𝑖)
(3)

+ 𝑒1𝑖) 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟𝑖                            

...(1) 

 

question paper(𝑖) ∈ (1, … , J(5)), training team(𝑖) ∈ (1, … , J(4)) 

rater(𝑖) ∈ (1, … , J(3)), script(𝑖) ∈ (1, … , J(2)) 

𝑖 = 1, … , N 

(
𝑢0question paper(𝑖)

(5)

𝑢1question paper(𝑖)
(5)

) ~N {(
0
0

) , (
𝜎𝑢0(5)

2

𝜎𝑢01(5) 𝜎𝑢1(5)
2 )} 

(
𝑢0training team(𝑖)

(4)

𝑢1training team(𝑖)
(4)

) ~N {(
0
0

) , (
𝜎𝑢0(4)

2

𝜎𝑢01(4) 𝜎𝑢1(4)
2 )} 

(
𝑢0rater(𝑖)

(3)

𝑢1rater(𝑖)
(3)

) ~N {(
0
0

) , (
𝜎𝑢0(3)

2

𝜎𝑢01(3) 𝜎𝑢1(3)
2 )} 

𝑢0script(𝑖)
(2)

~N(0, 𝜎𝑢0(2)
2 ) 

(
𝑒0𝑖

𝑒1𝑖
) ~N {(

0
0

) , (
𝜎𝑒0

2

0 𝜎𝑒1
2 )} 

 

The response variable 𝑦𝑖 is the 𝑖-th log absolute score difference. The model includes fixed 

effects for the intercept and for separate binary indicators for whether the script is from the 
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Supervisor-based system (supervisor = 1) or the Expert-based system (supervisor = 0) and 

whether the script has a holistic rubric (holistic = 1). The model has five classifications of 

random effects: absolute score difference, script, rater, training team and question paper. 

These classifications are numbered from one to five. Hence, the ‘(2)’, ‘(3)’, ‘(4)’, and ‘(5)’ 

superscripts and subscripts identify random effects that are associated with each of the 

classifications above the absolute score difference level where the ‘(1)’ superscripts and 

subscripts are implicit for convenience of notation.  

The classification function ‘training team(𝑖)’ denotes the training team associated 

with the 𝑖-th absolute score difference. Training teams are indexed from 1 to J(4) and 

𝑢0training team(𝑖)
(4)

 and 𝑢1training team(𝑖)
(4)

 are the different effects that the training team has on the 

𝑖-th absolute score difference for the Expert-based system and the Supervisor-based system. 

The classification functions and random effects for the other classifications are similarly 

defined.  

All random effects are assumed (bivariate) normally distributed, independent across 

classifications and independent of any predictor variables included in the model.  

For the Supervisor-based system, there is no script effect as each script is scored by only one 

rater. The script effect is therefore confounded with the level 1 residual. At level 1, the 

covariance is structurally zero as each absolute score difference belongs to either the Expert-

based system or the Supervisor-based system, but not both. 

Since ‘classification’ notation does not show the multilevel structure in the data, 

‘classification diagrams’ are typically presented in addition to the model equation (Browne et 

al., 2001). Figure 1a depicts a classification diagram for the complex cross-classified model 

structure assumed for the Expert-based system in the model equation. Figure 1b depicts the 

corresponding classification diagram for the four-level hierarchy assumed for Supervisor-

based system in the model equation. The diagrams have one node for each classification in 
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the model. Two nodes connected by an arrow indicate a nested relationship while two 

unconnected nodes indicate a crossed relationship. 

 

Estimation and Software 

The model was fitted using Markov chain Monte Carlo (MCMC) based algorithms as 

implemented in MLwiN (Browne, 2009; Rasbash et al., 2009). Initial values for all fixed part 

parameters and random part covariance parameters were set to zero, initial values for all 

random part variance parameters were set to 0.1. The model was run for a burn-in of 10,000 

iterations followed by a monitoring period of 100,000 iterations. We used hierarchical 

centring (Browne, 2009; Browne et al., 2009) to produce chains that exhibit better mixing. 

We use the standard default prior distributions provided by MLwiN: diffuse uniform priors 

for the fixed part parameters and minimally informative inverse Wishart priors for the 

random part covariance matrices. Informal visual assessments of the parameter chains and 

standard MCMC convergence diagnostics suggested that the sampler was run for sufficiently 

long. The effective sample size for every parameter chain exceeded 250. 

When we report the results, we present the means and standard deviations (SDs) of 

the monitoring iterations for each parameter. These quantities are analogous to the parameter 

estimates and standard errors obtained in frequentist analyses. 
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TABLES AND FIGURES 

 

Table 1 

Study 1 Rater Monitoring Systems 

 

 Expert-based system Supervisor-based system 

Rater’s original score Observable Observable 

Correct score 

assignment 

Principal Examiner Supervisor 

Selection of check 

sample 

Principal Examiner Rater 

Check sample Same 5 for all raters for an 

examination 

Different 5 for each rater 

Presentation of check 

sample 

Photocopied student work from 

current examination 

Original student work from 

current examination 

Training Face-to-face meetings on tables with the supervisor 

Scoring process Entire student’s script (all items) 
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Table 2 

Mean absolute score differences as a percentage of maximum mark 

 

Rubric Subject 

Question 

Paper 

n 

Expert-based 

System 

mean 

Supervisor-based 

System 

mean 

Teams 

n 

Raters 

n 

Checks 

n 

Analytic 

Biology 

1 1.8 1.5 9 49 489 

2 2.1 1.6 8 40 398 

3 3.4 2.4 4 16 160 

4 2.9 1.8 7 29 289 

Environmental 

science 

1 1.7 2.5 2 7 62 

2 2.7 1.6 2 7 70 

Maths 

1 2.4 1.1 3 15 150 

2 1.4 1.6 5 24 240 

3 2.7 1.8 2 8 80 

4 2.2 1.7 3 14 139 

Physics 

1 1.5 1.3 2 8 73 

2 2.5 2.6 2 11 110 

3 2.2 1.8 2 8 80 

4 2.2 1.6 2 9 90 

Holistic 

English 

literature 

1 3.0 3.8 6 24 236 

2 9.7 6.2 14 78 754 

3 3.3 3.3 8 64 549 

4 4.9 4.5 9 40 384 

History 

1 8.5 4.8 9 62 620 

2 5.3 2.4 3 8 80 

3 5.5 4.7 2 6 60 

Media Studies 1 9.8 5.8 6 40 387 

Overall    22 4.3 3.2 110 567 5,500 
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Table 3 

Cross-classified multilevel model for log absolute score differences 

 

Parameter Est. SE p 

    

Fixed part    

Intercept 0.663 0.109 <0.001 

Supervisor-based system (ref. Expert-based system) -0.229 0.088 0.010 

Holistic rubric (ref. analytic rubric) 0.490 0.131 <0.001 

    

    

Random part    

Expert-based system: question paper variance  0.106 0.049 0.031 

Expert- and Supervisor-based systems: question paper covariance     0.039 0.027 0.153 

Supervisor-based system: question paper variance 0.053 0.025 0.034 

    

Expert-based system: team variance 0.224 0.041 0.000 

Expert- and Supervisor-based systems: team covariance 0.063 0.024 0.010 

Supervisor-based system: team variance 0.103 0.026 <0.001 

    

Expert-based system: rater variance 0.082 0.017 <0.001 

Expert- and Supervisor-based systems: rater covariance 0.068 0.015 <0.001 

Supervisor-based system: rater variance 0.157 0.026 <0.001 

    

Expert-based system: script variance 0.026 0.011 0.013 

    

Expert-based system: residual variance 0.988 0.030 <0.001 

Supervisor-based: residual variance 1.043 0.031 <0.001 

 

Note: p-values are based on standard Wald tests and are therefore approximate for random-

part parameters. 
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Table 4 

Variance components and variance partition coefficients 

 

 Variance components Variance partition coefficients 

Classification 
Expert-based 

system 

Supervisor-based 

system 

Expert-based 

system 

Supervisor-based 

system 

Question paper 0.106 0.053 0.07 0.04 

Training team 0.224 0.103 0.16 0.08 

Rater 0.082 0.157 0.06 0.12 

Script 0.026 - 0.02 - 

Residual 0.998 1.043 0.69 0.77 

Total 1.436 1.338 1.00 1.00 
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Figure 1. Cross-classification data diagram: (a) Expert-based monitoring system (photocopied 

scripts) and (b) Supervisor-based monitoring system (original scripts). 

 

 

 

 

(a)  (b) 
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Figure 2. Predicted absolute score differences for teams presented with 95% confidence 

intervals, plotted separately by system. The horizontal lines denote the median absolute score 

difference in each system.
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Figure 3. Predicted absolute score differences for raters presented with 95% confidence 

intervals, plotted separately by system. The horizontal lines denote the median absolute score 

difference in each system. Note that for graphical clarity we have only plotted every fifth rater. 

 
 

 


