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Abstract

Breast cancer patients with diabetes respond less well to chemotherapy; in keeping with this we
determined previously that hyperglycaemia induced chemo-resistance in estrogen receptor (ERa)
positive breast cancer cells and showed that this was mediated by fatty acid synthase (FASN).
More recent evidence suggests that the effect of metabolic syndrome and diabetes is not the
same for all subtypes of breast cancer with inferior disease-free survival and worse overall
survival only found in women with ERa positive breast cancer and not for other subtypes. Here
we examined the impact of hyperglycaemia on ERa negative breast cancer cells and further
investigated the mechanism underlying chemo-resistance in ERa with a view to identifying
strategies to alleviate hyperglycaemia-induced chemo-resistance. We found that hyperglycaemia-
induced chemo-resistance was only observed in ERa breast cancer cells and was dependent upon
the expression of ERa as chemo-resistance was negated when the ERa was silenced.
Hyperglycaemia induced an increase in activation and nuclear localisation of the ERa that was
downstream of FASN and dependent on the activation of mitogen activated protein kinase
(MAPK). We found that Fulvestrant successfully negated the hyperglycaemia-induced chemo-
resistance, whereas Tamoxifen had no effect. In summary our data suggests that the ERa may be
a predictive marker of poor response to chemotherapy in breast cancer patients with diabetes. It
further indicates that anti-estrogens could be an effective adjuvant to chemotherapy in such
patients and indicates the importance for the personalised management of breast cancer
patients with diabetes highlighting the need for clinical trials of tailored chemotherapy for

diabetic patients diagnosed with ERa positive breast cancers.
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Introduction

Breast cancer is the most common malignancy in women with a lifetime risk of 1 in 8. In all
Western societies women who present with breast cancer are increasingly likely to also suffer
from co-morbid conditions such as diabetes and obesity due to the increasingly high prevalence
of these conditions in the general population. In a study of over a thousand women treated for
breast cancer at MD Anderson Cancer Centre in Houston, 30% were found to be obese and a
further 32% overweight (Litton, et al. 2008). In addition the prevalence of metabolic syndrome in
patients with breast cancer has been reported to be between 39-50% (Healy, et al. 2010;
Stebbing, et al. 2012).

For all cancers, the co-morbidity of type 2 diabetes has been reported to be associated with poor
prognosis and reduced survival: with a mean survival period of 10.4 years for those with diabetes
and 14.3 years for those without (Currie, et al. 2012). In women with breast cancer, having
metabolic syndrome was also associated with more aggressive tumour characteristics (Healy et
al. 2010) and being obese confers worse overall survival (Litton et al. 2008).

Evidence also suggests that the effect of metabolic syndrome and diabetes is not the same for all
subtypes of breast cancer. In a study of women involved in three large trials, inferior disease-free
survival and worse overall survival was only identified in women with estrogen receptor (ERa)
positive breast cancer and not for other subtypes (Sparano, et al. 2012). A recent study found
that hyperglycaemia was the only feature associated with metabolic syndrome that was
associated with disease progression following chemotherapy in a cohort of women with breast
cancer (73% of whom had ERa positive tumors) (Stebbing et al. 2012).

In an attempt to identify the mechanisms underlying these in vivo clinical observations we
previously investigated the impact of raised glucose levels on chemo-sensitivity of ERa positive
breast cancer cells. We found that hyperglycaemia induced chemo-resistance in these cells, but

not in non-malignant breast epithelial cells, and showed that this was mediated by increased
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activity of the enzyme fatty acid synthase(FASN) which synthesises fatty acids (with glucose as
the main substrate) (Zeng, et al. 2010). In keeping with the current clinical data (Stebbing et al.
2012), we found that hyperglycaemia-induced chemo-resistance was observed in ERa positive
but not in ERa negative breast cancer cells. We further determined that a functional ERa was
required to mediate the hyperglycaemia-induced chemo-resistance and finally that anti-

estrogens may be an effective adjuvant to chemotherapy in breast cancer patients with diabetes.
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Materials and Methods

Reagents and antibodies

All chemicals were purchased from Sigma (Poole, Dorset, UK). All siRNAs and the transfection
reagent, HiPerFect were purchased from Qiagen (Crawley, W. Sussex, UK).

Cell Culture

The human breast cancer cell lines MCF7, T47D, MDA-MB-231 and Hs578T were purchased from
ATCC that authenticates using short tandem repeat (STR) DNA profiles and the cells were used for
a maximum of 10 passages. They were maintained as described before (MclIntosh, et al. 2010;
Zeng et al. 2010).

Dosing protocols

Cells were seeded in normal (5mM) glucose-containing growth media for 24 hours and then
switched to either high (25mM) a or normal (5mM) glucose-containing serum free media for a
further 48 hours with or without a MAPK inhibitor, U0126 (30um) or for 24 hours prior to dosing
with chemotherapy drugs doxorubicin (0-40pM ), paclitaxel (0-300uM) or C2-ceramide (0-30uM)
in the presence or absence of target siRNA to the ERa, fatty acid synthase (FASN) or non-silencing
(ns) siRNA (as described previously (Foulstone, et al. 2013; Zeng et al. 2010)) or, Tamoxifen (1uM)
or Fulvestrant (100nM). We used two siRNAs to silence both ERa and FASN: the second siRNA we
used in this study for FASN is illustrated in supplementary figure 1.

Cell viability

This was determined by trypan blue dye exclusion assay as outlined before (Mclntosh et al. 2010;
Zeng et al. 2010). We confirmed apoptotic cell death by assessing the cleavage of poly (ADP-
ribose) polymerase (PARP) using Western immunoblotting as described previously (Thomas, et al.

2009).
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Cell Fractionation Assay

Cytoplasmic and nuclear fractions were separated with NE-PER Nuclear and Cytoplasmic
Extraction Kit (Thermo Scientific, Cat#78835), following the manufacturers’ instructions. Protein
content of fractionated proteins and whole cell lysates were assessed using a BCA protein assay
reagent kit (Pierce: Rockford, IL, USA) and then run on either 8/12% SDS-PAGE and transferred to
a Hybond-C nitrocellulose membrane (GE Healthcare, Bucks,UK) as previously described (Zeng et
al. 2010). Membranes were probed with p-ER(1:500), p-MAPK (1:1000), MAPK { 1:500), tubulin
(1:5000), lamin (1:1000), GAPDH (1:5000), B-actin (1:10000), FASN (1:1000) and ERa (1:750),
PARP (1:1000), following the manufacturers’ instructions. Tubulin and lamin were used as
markers for identifying cytoplasmic and nuclear cell fractions respectively. Secondary antibodies
conjugated to peroxidise were used: anti-mouse for p-ERa (1:1500), tubulin (1:5000), lamin
(1:2000), GAPDH (1:5000), FASN (1:5000), ERa (1:1500), PARP (1:2000) and B-actin (1:10000).
Chemiluminescence was detected using the Chemi-Doc-IT Imaging (UVP, Biorad) and analysed
using Vision Works Analysis Software (UVP Inc., Upland, Ca, USA).

Chromatin Immunoprecipitation assay (ChIP)

ChIP was performed using the Imprint Immunoprecipitation kit (Cat# CHP1) from Sigma Aldrich as
described before (Biernacka, 2013). Briefly, after DNA-protein crosslinking with formaldehyde,
samples were sonicated and immunoprecipitated with a ChIP grade anti-ERa antibody (Millipore,
Cat# 17-603). Anti-RNA polymerase Il and mouse IgG supplied with the kit were used as positive
and negative controls respectively. 5% input DNA was used for quantification. PCR (HotStarTaq
Plus PCR Kit from Qiagen) was performed with purified DNA. The following primers were used for
Cyclin D1 (CCND1): forward (-1039) AACAAAACCAATTAGGAACCTT, reverse (~770)
ATTTCCTTCATCTTGTCCTTCT (as reported in Zheng, 2013(Zheng, et al. 2013)) After 38cycles, PCR

products were detected by 2% agarose gel electrophoresis, stained with midori Green (Nippon
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Genetics, # MGO4) and analysed by Bio-Plex Imaging system from Bio-Rad (Serial No.

731BR0O1508).

3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) ASSAY

The MTT assay was performed as described previously (Gill, et al. 1997; Perks, et al. 2003) .
Briefly, cells were seeded into 96-well plates at 7500 (MCF7) or 22500 (T47D and MDA-MB-231)
cells and treated with the chemotherapeutic drugs, doxorubicin, paclitaxel and ceramide for 48
hrs. Cells were incubated with 7.5mg/ml| MTT solution for 3 hrs at 37°C. The reaction was
stopped by the addition of 50ul stop solution (0.1M HCL+ 10% Triton-100) at room temperature

for 20 minutes. The absorbance at 590nm was measured using an ELISA plate reader.

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) Assay

Cells were incubated with an MTS (2mg/ml, Promega, cat# G1118)/PMS (0.92mg/ml, Sigma
P9625) solution at a ratio of 20:1 for 3 hrs at 37°C. 200ul of cell medium was used to measure the
absorbance at 490nm with an ELISA plate reader. The cells remain viable for further analysis
using this assay as opposed to the MTT assay and so we used the MTS assay for experiments in

which we also wished to assess cell number and viability.

Statistical Analysis
Data were analysed with SPSS 12.0.1 for Windows using one-way ANOVA followed by least
significant difference (LSD) post-hoc test. A statistically significant difference was considered to

be present at P< 0.05.
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Results

Hyperglycaemia-induced chemo-resistance is only observed in ERa positive breast cancer cells.

We demonstrated previously that ERo. positive breast cancer cells, MCF7 and T47D, were
resistant to cell death induced by chemotherapeutics (doxorubicin, paclitaxel and ceramide)
when exposed to high levels of glucose (Zeng et al. 2010). With MCF7 cells Fig 1A confirms these
previous data and Fig 1B also shows that the MTT assay also indicates the differential effects
induced by altered levels of glucose: increasing doses of C2 reduced metabolic activity more
effectively in normal compared to high glucose conditions. Using both the MTT assay and cell
counting in this study we found that in contrast to the ERo positive breast cancer cells, ERa
negative Hs578T (Fig 1C & D) and MDA-MB-231 (Fig 1E & FiglF) cells exhibited no chemo-
resistance following exposure to doxorubicin, paclitaxel or ceramide in high compared to normal
glucose conditions. With Hs578T cells ceramide was able to induce cell death at 10 uM and not
at the lower doses as demonstrated by the induction of PARP cleavage (insert Fig 1C), this
confirms that any differential effects in response to ceramide in relation to the levels of glucose
at the lower doses of ceramide as observed in the dose response (Fig 1C) were not related to the
induction of cell death. We characterised the growth of the cells when exposed to normal and
high levels of glucose and found that basal cell growth of ERa positive and negative cells was
unaffected over 48 hours by changes in the levels of glucose (supplementary Fig2: A-D). Having
observed chemoresistance in high glucose in the ERa positive breast cancer cells, we chose MCF-
7 cells and assessed changes in glucoce uptake and expression of the key glucose transporters,
GLUTs 1 and 12. We found that there was a 1.1-fold increase in glucose uptake in 25mM glucose
that was associated with an increase in expression of GLUT 1 (p<0.05) and GLUT 12 (p<0.05).

Clearly other glucose transporters are likely to play a role (supplementary Fig3 A-C).
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Silencing the ERa alleviates chemo-resistance in hyperglycaemic conditions in ERa positive
breast cancer cells.

Having observed that hyperglycaemia only induced chemo-resistance in ERa positive breast
cancer cells, we next investigated if the presence of the ERa was required. With MCF7 cells, we
found that in the presence of the ns siRNA, hyperglycaemic conditions reduced the ability of
doxorubicin to induce cell death compared to euglycaemic conditions (from 31% to 23%; p=0.05)
(Fig 2A) whereas with the ERa silenced, the hyperglycaemia-induced chemo-resistance was
negated (Fig.2A). Similarly with T47D cells (Fig2B), in the presence of the ns siRNA,
hyperglycaemic conditions reduced the ability of doxorubicin to increase cell death compared to
euglycaemic conditions (from 24% to 18%; p<0.05) (Fig 2B) whereas with the ERa silenced, the
hyperglycaemia-induced chemo-resistance was negated (Fig. 2B). With MCF7 and T47D cells we
also showed that in the presence of the ns siRNA that high glucose reduced the ability of
doxorubicin to decrease metabolic activity (from 0.43 fold to 0.26 fold and from 0.37 fold to 0.06;
p=0.05: p<0.05 respectively) (Figs 2C & 2D) and that this was negated in each cell line when the
ERa was silenced (Figs 2C & 2D respectively).

The western blot (Fig 2E) shows effective silencing of the ERa in both MCF7 and T47D cells in 5
and 25mM glucose conditions. The blot for PARP also confirms the chemo-resistant effect of high
glucose by showing a clear reduction in doxorubicin-induced PARP cleavage in the ns

hyperglycaemic compared to the ns euglycaemic conditions with both cell lines.

Hyperglycaemia increases phosphorylation and nuclear localization of ERa

Using cellular fr-actionation followed by Western blotting, we examined alterations in the
localisation and phosphorylation of ERa. With MCF7 cells (Fig 3A & B), following exposure to high
levels of glucose, we observed a shift in the localisation of the ERa with the ratio of ERa in
cytoplasmic and nuclear part reduced from 1.9 to 0.8 (p<0.05). As ERa nuclear localisation is

concomitant with an increase in ERa phosphorylation, we assessed changes in one of the key ERa

9
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phosphorylation sites: ser''®, We observed that high levels of glucose increased total levels of
ERa ser ™8 phosphorylation and that as anticipated there was a 1.6 fold increase in ERa ser '8
phosphorylation in the nucleus (p<0.01). Similarly with T47D cells (Fig 3A & B) we observed a shift
in the localisation of the ERa with the ratio of ERa in cytoplasmic and nuclear part reduced from
1.4 to 1.1 (P<0.05) concomitant with a 1.4 fold increase ERa ser ''® phosphorylation in the

nucleus (p<0.05).

Hyperglycaemia increases nuclear ERa binding to a target gene, cyclin D1 (CCND1)

As a further confirmation of the increased nuclear localisation of the ERa, we chose to assess
alterations in the association of ERa with one of its known target genes, cyclin D1, CCND1. Using
ChIP assay we found that high levels of glucose caused a 2.7 fold increase (p<0.05) with MCF7
cells and an 11.7 fold increase (p<0.05) with T47D cells (Fig 3C & D) in the association of ERa with

the CCND1 gene.

118

The hyperglycamia-induced increase in ERa ser * phosphorylation is downstream of fatty acid

synthase (FASN)

We had shown previously in ERa positive breast cancer cells that hyperglycaemia-induced
chemo-resistance was dependent upon FASN (Zeng et al. 2010). Having now demonstrated a role
for the ERa in hyperglycaemia-induced chemo-resistance, we silenced FASN using siRNA in both
MCF7 (Fig 4A) and T47D (Fig 4B) cells to determine any impact on the ERa and levels of ERa ser
118 phosphorylation. We found that silencing FASN reduced levels of the ERa in both normal and

high glucose and reduced the ability of hyperglycaemia to activate ERa ser *® phosphorylation

(Fig 4C) suggesting that FASN is acting upstream of the ERa.

10
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FASN regulates p-ERa (ser118) levels via the MAPK pathway

Having observed that the effect of hyperglycaemia on the phosphorylation of the ERa was
downstream of FASN, we next wished to elucidate the mechanism through which FASN regulated
p-ERa ser **® levels. With MCF-7 cells, we found that in the presence of the non-silencing FASN
siRNA, hyperglycaemic conditions increased p-MAPK levels (x 1.8 fold increase; p=0.01) compared
to euglycaemic conditions and that this was negated when FASN was silenced (Fig 5A & B). To
determine whether MAPK signalling pathway was required for the hyperglycaemia-induced
increase in ERa ser ' phosphorylation, we used U0126, a MAPK inhibitor. As illustrated in Fig 5C
and D, treatment with U0126 completely blocked the ability of hyperglycaemia to activate ERa
ser 8 phosphorylation. Taken together, these results indicate that FASN regulates p-ERa

(ser118) levels via activation of MAPK.

Fulvestrant blocks but Tamoxifen has no effect on hyperglycaemia-induced chemo-resistance

Having shown that silencing the ERa using siRNA negated chemo-resistance induced by high
glucose, we then assessed the effects of blocking the estrogen receptor in a more clinically
relevant manner by using two anti-estrogens, Fulvestrant (selective estrogen receptor down
regulator, SERD) and Tamoxifen (selective estrogen receptor modulator, SERM). We first ensured

we were using effective doses of each of the drugs.

With fig 6A & B and Fig 7A & B we show that Fulvestrant and Tamoxifen (respectively) effectively
blocked estrogen-induced ERa ser **# phosphorylationin both MCF7 and T47D cell lines. We also
confirmed in both cell lines that Fulvstrant down-regulates the ERa and Tamoxifen stabilises it as
reported in the literature (supplementary fig 13 B&C). Having identified effective doses of both
drugs we investigated if either Fulvestrant or Tamoxifen would negate hyperglycaemia-induced
chemo-resistance as we had observed when the estrogen receptor was artificially silenced using

siRNA. Fig 6C & 6D indicate that hyperglycaemia-induced resistance to doxorubicin-induced cell

11
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death (18 % to 11% p <0.01 and 13% to 7% respectively) was blocked by Fulvestrant in both MCF7
and T47D breast cancer cells. In contrast Fig 7C (MCF7) & D (T47D) show that Tamoxifen was

ineffective in negating the hyperglycaemia-induced chemo-resistance in either cell line.
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Discussion

The current report has determined that hyperglycaemia-induced chemo-resistance only occurs in
breast cancer cell lines that possess a functional ERa and has identified that the ERa is key in
mediating this hyperglycaemia-induced chemo-resistance. We believe that our novel data may
explain important clinical observations: in a study of women involved in three large trials, inferior
disease-free and overall survival was only found in women with ER positive breast cancer and not
for other subtypes(Sparano et al. 2012). In addition, that hyperglycaemia was the only feature
associated with metabolic syndrome that was linked with disease progression following
chemotherapy in a cohort of women with breast cancer (73% of whom had ER positive
tumors)(Stebbing et al. 2012). It has been reported that estrogen receptors are important
regulators of components of the glycolytic pathway and contribute to the Warburg effect in
cancer cells(Cai, et al. 2012). Our data indicate that the ERa is also an important determinant of
how metabolic conditions specifically affect breast cancer cells and their response to
chemotherapy. We clearly observed that silencing the ERa in ERa positive breast cancer cells
negated hyperglycaemia-induced chemo-resistance; consistent with these findings we
determined that exposing ERa negative breast cancer cells to different levels of glucose did not
influence chemo-sensitivity. The ERa has been linked to chemo-resistance previously: Tokuda et
al showed that silencing the ERa in MCF7 breast cancer cells enhanced sensitivity to paclitaxel
(Tokuda, et al. 2012). This study was only performed under hyperglycaemic conditions and in that
context their results were consistent with our findings.

As the ERa can be located at numerous sites within the cell we assessed if exposure to high
glucose impacted on the localisation of the ERa. We found that hyperglycaemia increased the
relative amounts of ERa in the nucleus compared to the cytoplasm. The ERa needs to be
phosphorylated to translocate to the nucleus: in keeping with the ERa localisation data we

118

observed a significant increase in phosphorylation of ERa at ser™°, To corroborate these findings
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we assessed the level of ERa binding to one of its known target genes, cyclin D1 when exposed to
different levels of glucose: as anticipated based on the localisation and phosphorylation data, we
found an increase in association of the ERa with the cyclin 1 gene when ERa positive breast
cancer cells were exposed to high levels of glucose. Ross-Innes et al assessed the dynamics of ERa
binding to DNA in clinical breast cancer samples and found that differential ERa binding was
associated with clinical outcome in breast cancer: ERa bound to different sites and with different
affinities depending on the stage(Ross-Innes, et al. 2012). In light of these novel findings our data
may suggest that breast cancer patients with altered metabolism may have tumour cells with
altered ERa/DNA binding patterns that may contribute to chemo-resistance.

We showed previously that hyperglycaemia-induced chemo-resistance was dependent upon fatty
acid synthase (FASN) (Zeng et al. 2010). Associations between the ERa and FASN have bee‘n
identified in breast cancer cells previously (Lupu and Menendez 2006). We delineated that our
new data, showing the important role of the ERa, was related to our previously defined signalling
pathway. Our data suggests that the effect of hyperglycaemia on the phosphorylation of the ERa
is downstream of FASN as silencing FASN reduced activation of the ERa: in addition that the
increased phosphorylation of the ERa. was mediated by MAPK activation downstream of FASN.
We then blocked the estrogen receptor in a more clinically relevant manner using two anti-
estrogens, Fulvestrant and Tamoxifen to assess their effectiveness in alleviating the resistance
induced by hyperglycaemic conditions. We found that Fulvestrant successfully negated the
hyperglycaemia-induced chemo-resistance, whereas Tamoxifen had no effect. We believe this
relates to how these two drugs act: Fulvestrant degrades the ERa whereas Tamoxifen stabilises
the protein. The mechanism by which Fulvestrant acts would be most comparable to our
experiments where we artificially silenced the ERa with siRNA.

In summary our data provides a mechanism to support the clinical studies indicating that women
with ERa positive breast cancer who also have diabetes respond less well to chemotherapy: it

suggests that the ERa may be a predictive marker of poor response to chemotherapy in breast
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cancer patients with diabetes. It further indicates that certain classes of anti-estrogen therapy
may prove effective adjuvants to chemotherapy in such patients but the specific type of anti-
estrogen needs to be considered carefully. Our data indicates the potential importance and
benefit of personalised medical therapy in the management of breast cancer, highlighting the
need for clinical trials of tailored chemotherapy for diabetic patients diagnosed with ERa positive

breast cancers.
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Figure Legends

Figure 1: Hyperglycaemia-induced chemo-resistance is only observed in ERa positive breast cancer
cells. A. Using trypan blue dye exclusion method, the percentage cell death was assessed in the ERa
positive MCF7 cells treated with chemotherapeutics (Doxorubicin 1uM p<0.01, Paclitaxel 1uM
p=0.01 and Ceramide 12uM p=0.01) in 5mM and 25mM glucose for 24 hours (n=3 experiments).
Changes in metabolic activity of the MCF-7 cells in 5mM and 25mM glucose in response to ceramide
(0- 20uM) was examined using an MTT assay (B) {(n=3 experiments, *: p<0.05). The metabolic activity
of the ERa negative Hs578T cells in 5mM and 25mM glucose in response to doxorubicin (DOX, O-
20pM), ceramide (C2, 0-30uM) and paclitaxel (Pac, 0-300uM) was examined with MTT assay (C) (n=3
experiments). Insert shows ceramide-induced PARP cleavage (85kD fragment) by Western blotting
(n=3 experiments). Percentage of cell death triggered by these drugs in 5mM and 25mM glucose was
assessed by trypan blue dye exclusion assay (D) (n=3 experiments). The change in metabolic activity
of another ERa negative cell line, MDA-MB-231 in 5mM and 25mM glucose exposed to the above

drugs is shown in (E) and percentage of cell death in (F) (n=3 experiments).

Figure 2: Silencing the ERa alleviates chemo-resistance in hyperglycaemic conditions in ERa positive
breast cancer cells, compared to the non-silencing siRNA control (ns). Percentage of cell death
induced by doxorubicin (DOX, 1uM in MCF7 and 5uM in T47D cells) was assessed in MCF7 (A) or
T47D (B) cells with or without ERa knocked down with 20nM siRNA in 5 or 25mM glucose (n=3
experiments). Changes of metabolic activity induced by doxorubicin (DOX) in MCF7 (C) or T47D (D)
cells were also measured with or without ERa silencing in 5 or 25mM glucose (n=3 experiments).
Effective ERa knocking down and PARP cleavage was shown in (E). B-actin probing was used as a

loading control (n=3 experiments).

Figure 3: Hyperglycaemia increases phosphorylation and nuclear localization of ERa and increases

nuclear ERa binding to a target gene, cyclin D1 (CCND1). Cell fractionation and Western blotting



were performed to examine cytoplasmic or nuclear location of ERa and p-ERa (ser'®) in MCF7 and
T47D cells (A) under 5 or 25mM glucose condition. Tubulin and Lamin A/C blots were used as
markers for cytoplasmic and nuclear compartments respectively (n=3 experiments,). The
densitometry measurements from the western blot are shown in (B, p<0.05). Chromatin
Immunoprecipitation assay (ChIP) was used to examine the changes in association of the ERa with
one of its target genes, cyclin D1 (CCND1) (C). 5% input was used as a quantification control (n=3
experiments). The relative enrichment of the CCND1 gene bound to ERa was quantified in (D,
p<0.05).

8 phosphorylation is downstream of

Figure 4: The hyperglycamia-induced increase in ERa (ser
fatty acid synthase (FASN). Using western blotting , the ERa and p-ERa (ser118) abundance were
assessed in MCF7 (A) or T47D (B) cells, with or without fatty acid synthase (FASN) knocked down
with 20nM siRNA (n=3 experiments). B-actin was probed as a loading control. Relative fold changes

118

of p-ERa (ser ) against total ERa were measured (C, (p<0.05)).

Figure 5. FASN regulates p-ERa (ser118) levels via activation of MAPK. Using western blotting, the
abundance of MAPK and p-MAPK were assessed in MCF-7 cells with or without FASN silenced with
20nM siRNA in 5 or 25mM glucose (n=3 experiments) (A). Relative fold changes of p-MAPK against
total MAPK were measured in (B, p<0.05). Effect of MAPK inhibition with U0126 on p-Era (ser118)
was assessed in MCF-7 cells treated with or without U0126 (30um) in 5 or 25mM glucose for 48
hours (n=3 experiments) (C). The densitometry measurements from the western blot are shown in

(D, p<0.05).

Figure 6: Fulvestrant blocks hyperglycaemia-induced chemo-resistance. MCF7 (A) and T47D (B) cells
were treated with the anti-estrogen Fulvestrant (Ful) 100nM 24 hours prior to treatment with 10nM

estrogen for 20 minutes, in 5 or 25mM glucose conditions. Western blotting was performed to show



protein abundance of ERa and p-ERa (ser'®). B-actin was probed as a loading control (n=3
experiments). Percentage of cell death induced by doxorubicin (DOX, 1uM in MCF7 and 5uM in T47D
cells) was assessed in MCF7 (C) or T47D (D) cells with or without 24h hours pre-treatment of 100nM

Fulvestrant in 5 or 25mM glucose (n=3 experiments).

Figure 7: Tamoxifen has no effect on hyperglycaemia-induced chemo-resistance. MCF7 (A) and T47D
(B) cells were treated with the anti-estrogen Tamoxifen (TAM) 1uM 1 hour prior to treatment with
10nM estrogen for 20 minutes, in 5 or 25mM glucose condition. Western blotting was performed to

118) B-actin was probed as a loading control (n=3

show protein abundance of ERa and p-ERa (ser
experiments). Percentage of cell death induced by doxorubicin (DOX) was assessed in MCF7 (C) or

T47D (D) cells with or without 1 hour pre-treatment of 1uM Tamoxifen in 5 or 25mM glucose (n=3

experiments).
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Supplementary Figure 1. A second siRNA sequence was used to silence FASN in MCF7 and T47D
cells under 5 or 25mM glucose condition (A) shows equivalent effective silencing of FASN (blot
representative of 3 repeats). Western blotting showing protein abundance of ERa in MCF7 and T47D
cells, treated with Fulvestrant (100nM) or Tamoxifen (1uM) for 24 hours, the same time length as
the exposure to the chemotherapeutics (B). B-actin was probed as a loading control (n=3

experiments).
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Supplementary figure 2: altered levels of glucose had no effect on basal cell growth in ERa. positive
or negative breast cancer cell lines. MCF7, T47D (ERa positive) and Hs578T and MDA-MB-231 (ERa
negative) cells were seeded in 5 mM glucose-containing growth media for 24 hours prior to being
exposed to 5mM and 25 mM-glucose containing serum free media for a further 48hrs. Total cell
number was assessed by cell counting. Each experiment was repeated in triplicate and performed at

least 3 times.
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Supplementary Figure 3 Hyperglycaemia increases glucose uptake. Glucose uptake was assessed
using tritiated 2-deoxyglucose in MCF-7 cells cultured in 5 or 25mM glucose condition for 48 hours
(n=3 experiments) (A). Hyperglycaemia upregulates glucose transporters. The mRNA levels of GLUT1
(B) and GLUT12 (C) were quantified using SYBR green based qPCR in MCF-7 cells cultured under 5 or

25mM glucose condition for 48 hours (n=3 experiments).
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Figure 6
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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