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PERFECT SAMPLING FOR NONHOMOGENEOUS MARKOV
CHAINS AND HIDDEN MARKOV MODELS

BY NICK WHITELEY1 AND ANTHONY LEE

University of Bristol and University of Warwick

We obtain a perfect sampling characterization of weak ergodicity for
backward products of finite stochastic matrices, and equivalently, simulta-
neous tail triviality of the corresponding nonhomogeneous Markov chains.
Applying these ideas to hidden Markov models, we show how to sample ex-
actly from the finite-dimensional conditional distributions of the signal pro-
cess given infinitely many observations, using an algorithm which requires
only an almost surely finite number of observations to actually be accessed.
A notion of “successful” coupling is introduced and its occurrence is char-
acterized in terms of conditional ergodicity properties of the hidden Markov
model and related to the stability of nonlinear filters.

1. Introduction. With the introduction of their famous Coupling From the
Past (CFTP) algorithm, Propp and Wilson (1996) showed how to use a form of
backward coupling to simulate exact samples from the invariant distribution of an
ergodic Markov chain in a.s. finite time. Foss and Tweedie (1998), in part appealing
to a construction of Murdoch and Green (1998), showed that existence of an a.s.
finite backward coupling time characterizes uniform geometric ergodicity of the
Markov chain in question. The present papers extends these ideas in the context
of nonhomogeneous Markov chains, a setting which to date has received little
attention, perhaps due to a lack of appropriate formulation or applications.

Our contribution is to present such a formulation and apply the insight which
we develop about nonhomogeneous chains to hidden Markov models (HMMs),
for which we obtain a perfect sampling characterization of conditional ergodicity
phenomena, that is, ergodic properties of the signal process in the HMM under
its conditional law given the observations, along the lines of those addressed by
van Handel (2009). Even for HMMs with finite state space, conditional ergodicity
and the connection to perfect sampling can be subtle, due to the delicate interplay
between the observations and signal in the HMM, and the fact that the ergodic
theory of nonhomogeneous Markov chains, which governs the behavior of the
signal when conditioned on observations, is considerably more complicated than
that of homogeneous chains.
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1.1. Nonhomogeneous Markov chains and backward products. One of the key
notions underlying CFTP is that if an ergodic Markov chain were initialized in-
finitely far in the past and run forward in time, its state at the present would be
distributed exactly according to the invariant distribution of the chain. In order to
give an overview of our main results, we need to identify a suitable and somewhat
elementary generalization of this notion.

Let T := Z
− ∪ {0} be the set of nonpositive integers and let M = (Mn)n∈T be

a sequence of Markov kernels on a finite set E = {1, . . . , s}, so for each x ∈ E,
Mn(x, ·) is probability distribution on E. One may construct a nonhomogeneous
Markov chain (Xn)n∈T with paths in ET and transitions given by M in the sense
that Xn |Xn−1 ∼Mn(Xn−1, ·), as soon as there exists a sequence π = (πn)n∈T of
absolute probabilities: a family of probability distributions with the property that
for all n ∈ T and x ∈E, ∑

z∈E

πn−1(z)Mn(z, x)= πn(x).

Indeed one can then readily define a consistent family of finite dimensional distri-
butions (P(n)

π )n∈T,

P(n)
π (Xn = xn, . . . ,X0 = x0) := πn(xn)

0∏
k=n+1

Mk(xk−1, xk),(1.1)

giving rise via the usual Kolmogorov extension argument to a probability measure
Pπ over paths in ET; one can think of (Xn)n∈T running forward in time from the
distant past toward zero.

Now for k ∈ T define recursively

Mk,k := Id, Mn−1,k

(
x, x′

) :=∑
z∈E

Mn(x, z)Mn,k

(
z, x′

)
, n≤ k.(1.2)

With k ∈ T fixed, (Mn,k)n≤k are called backward products, since they can be writ-
ten in terms of matrix multiplications to the left: Mn−1,k =MnMn,k .

Questions of existence and uniqueness of π , and thus of Pπ , are answered with
the following long-established facts, which hold for any sequence of Markov ker-
nels M = (Mn)n∈T on a finite state space E; see Seneta [(2006), Section 4.6] and
references therein for an accessible introduction.

FACT 1. There always exists at least one sequence of absolute probabilities

FACT 2. There exists a unique sequence of absolute probabilities if and only
if the backward products of M are weakly ergodic, meaning

lim
n→−∞Mn,k(x, z)−Mn,k

(
x′, z

)= 0 ∀k ∈ T,
(
z, x, x′

) ∈E3,(1.3)



3046 N. WHITELEY AND A. LEE

in which case

lim
n→−∞Mn,k(x, z)− πk(z)= 0 ∀k ∈ T, (z, x) ∈E2,(1.4)

where π = (πn)n∈T is the unique sequence of absolute probabilities for M .

1.2. Perfect sampling and characterizations of weak ergodicity. Our basic al-
gorithmic goal, when weak ergodicity holds, is to obtain exact draws from each
πn. This can be achieved with a very modest generalization of Propp and Wil-
son’s method. The only existing works on perfect simulation for nonhomogeneous
chains which we know of are Glynn and Thorisson (2001) and Stenflo (2008),
which respectively provide perfect sampling methods for Markov chains condi-
tioned to avoid certain states, and products of transition matrices subject to a par-
ticular uniform regularity assumption, which we discuss in more detail later. Our
first goal is to develop more general insight into how the feasibility of CFTP for
nonhomogeneous chains is related to various ergodic properties of M and Pπ .

Inspired by Foss and Tweedie’s (1998) characterization of uniform geomet-
ric ergodicity for a homogeneous chain in terms of the existence of a success-
ful (meaning a.s. finite) backward coupling time, we assert that “success” in the
nonhomogeneous case is for not just one, but all of a particular countably infinite
family of coupling times to be a.s. finite. Our first main result, Theorem 1, shows
that success so-defined of our coupling is equivalent to weak ergodicity, as in (1.3),
which is weaker than the assumption of Stenflo (2008), and if successful our cou-
pling delivers a sample from each member of the then unique sequence of absolute
probabilities (πn)n∈T in a.s. finite time.

We extend this ergodic characterization in Theorem 2, by showing that unicity
of a sequence of absolute probabilities, hence weak ergodicity, hence success of
our coupling, is also equivalent to the simultaneous tail triviality condition

Pπ(A)= Pπ(A)2 = Pπ̃ (A)
(1.5)

∀(π, π̃,A) ∈�M ×�M ×
⋂
n∈T

σ(Xk;k ≤ n),

where �M is the set of all sequences of absolute probabilities for M .

1.3. Hidden Markov models and conditional ergodicity. Our motivation for
considering nonhomogeneous chains and condition (1.5) stems from hidden
Markov models, which are widely applied across econometrics, genomics, signal
processing and many other disciplines as they provide flexible and interpretable
means to model dependence between observed data in terms of an unobserved
Markov chain. We take a slightly nonstandard perspective in that an HMM is
for us a process (Xn,Yn)n∈T on a nonpositive time horizon, where the signal
X = (Xn)n∈T is a possibly homogeneous Markov chain with paths in ET, and
the observations Y = (Yn)n∈T are conditionally independent given X, with each
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Yn valued in a Polish space F and having a conditional distribution given X which
depends only on Xn.

With the law of (Xn,Yn)n∈T then written as P, a standard task in applications of
HMMs is to calculate conditional distributions of the form P(Xn ∈ · | σ(Yk;k ∈ I ))

where I is some finite subset of T. These distributions are immediately useful
for inference about the signal process and for making predictions about future
observations given those recorded up to the present. For example, if one ex-
tends the HMM onto a positive time horizon by introducing (X1, Y1) such that
P(X1 = x,Y1 ∈ · | FX ∨ FY ) = M(X0, x)G(x, ·), where FX = σ(Xk;k ∈ T),
FY = σ(Yk;k ∈ T), and M and G are probability kernels respectively from E

to itself and from E to F , then for any I ⊂ T,

P
(
Y1 ∈ · | σ(Yk;k ∈ I )

)
(1.6)

=∑
x,x′

P
(
X0 = x | σ(Yk;k ∈ I )

)
M
(
x, x′

)
G
(
x′, ·).

When calculating such distributions in order to make predictions, it is desirable
to impart as much information from the past as possible. For example, the mean-
square optimal FY -measurable predictor of Y1 is, of course, the conditional ex-
pectation E[Y1 | FY ]. However, exact calculation of P(X0 ∈ · | FY ), or indeed
P(Xn ∈ · | FY ) for any n ∈ T, requires an infinite number of observations to be
recorded and in general cannot be accomplished in finite time.

Nevertheless, under certain conditions, our perfect sampling method makes it
possible to obtain an exact draw from P(Xn ∈ · | FY ) using an algorithm which
runs for |Tn| time-steps and uses only (Yk;k = Tn,Tn + 1, . . . ,0), where Tn is a
T-valued random time, the details of which we make precise later. If with n= 0,
the resulting sample from P(X0 ∈ · | FY ) is denoted X�

0 and one also samples
Y �

1 ∼
∑

x M(X�
0, x)G(x, ·), then by (1.6) with I = T, Y �

1 is distributed exactly
according to the “ideal” predictive conditional distribution P(Y1 ∈ · |FY ).

The connection to Sections 1.1–1.2 arises from the facts that

P
(
Xn ∈ · |FY ∨ σ(Xk;k < n)

)
= P

(
Xn ∈ · |FY ∨ σ(Xn−1)

)
= P

(
Xn ∈ · | σ(Yk;k ≥ n)∨ σ(Xn−1)

)
, P-a.s.,

that is, conditional on the observations, the signal process X is a nonhomogeneous
Markov chain, and its conditional transition probabilities at time n depend on Y

only through (Yk)k≥n. Moreover, for any y ∈ FT we can calculate and sample
from each of a family of Markov kernels My = (M

y
n )n∈T, with MY

n (Xn−1, ·) a
version of P(Xn ∈ · | σ(Yk;k ≥ n)∨σ(Xn−1)), for which conditional probabilities
of the form P(Xn ∈ · | FY ) define a sequence of absolute probabilities, and Tn

as mentioned above is one of a collection of coupling times arising from CFTP
applied to My .
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Building from the considerations of Section 1.2, our attention then turns to the
question of how success of our HMM sampling scheme, meaning that every Tn is
conditionally a.s.-finite given Y , is related to the ergodic properties of the HMM.
Compared to the setup of Sections 1.1–1.2, we have to handle the additional com-
plication here that each P(Xn ∈ · | FY ), MY

n and success itself depend on Y . Our
main result in this regard, Theorem 3, establishes that success for P-almost all
Y is equivalent to the following condition, which can be considered the HMM-
counterpart of (1.5): there exists an event H ∈FX ⊗FY with P(H)= 1 such that
for all ω= (x, y) ∈H ,

PFY

(ω,A)= PFY

(ω,A)2 ∀A ∈ ⋂
n∈T

σ(Xk;k ≤ n)(1.7)

and

PπY(ω)(A)= PFY

(ω,A)
(1.8)

∀(πY(ω),A
) ∈�MY(ω) × ⋂

n∈T
σ(Xk;k ≤ n).

Here, with � := ET × FT, PFY : � × FX → [0,1] is a probability kernel such
that for all A ∈ FX , PFY

(ω,A) = P(A | FY )(ω), P-a.s.; �MY(ω) is the set of all
sequences of absolute probabilities for MY(ω); and PπY(ω)(·) is the measure on
FX under which (Xn)n∈T is a Markov chain with transitions MY(ω) and absolute
probabilities πY(ω).

Condition (1.7) can be interpreted as meaning that the signal process is condi-
tionally ergodic given the observations, and is a key condition in studies of stability
with respect to initial conditions of nonlinear filters; see van Handel (2009) and ref-
erences therein. Condition (1.8) can be understood as meaning that any probability
measure which makes the signal process a Markov chain with transitions MY(ω)

must have the same tail behavior as P(· |FY )(ω).
The remainder of the paper is structured as follows. Some notation and other

preliminaries are given in Section 2. Section 3 reviews existing literature on perfect
sampling for nonhomogeneous chains, gives the details of the coupling method
and describes its connection to weak ergodicity. Section 4 addresses tail triviality.
Section 5 addresses the HMM setup. In Section 6, we discuss examples of HMMs
for which our sampling method is not successful, either through failure of (1.7) or
(1.8). We provide verifiable sufficient conditions for successful coupling, discuss
sampling when only finitely many observations are available and numerically illus-
trate how the coupling can be influenced by the observation sequences. We discuss
an approach to the simulation of multiple dependent samples using a single run of
the perfect simulation and numerically investigate its computational efficiency.
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2. Preliminaries. Throughout the paper, E = {1, . . . , s} is a finite set, which
we endow with the discrete topology, and the corresponding Borel σ -algebra, that
is, the power set of E, is denoted by B(E). For any two probability distributions
μ,ν on E we write the total variation distance as

‖μ− ν‖ := sup
A⊂E

∣∣μ(A)− ν(A)
∣∣

= 1

2

∑
x∈E

∣∣μ(x)− ν(x)
∣∣,

and for a Markov kernel K on E we write Dobrushin’s coefficient

β(K) := max
(x,x′)∈E2

∥∥K(x, ·)−K
(
x′, ·)∥∥,

(2.1)
= 1− min

(x,x′)∈E2

∑
z∈E

min
{
K(x, z),K

(
x′, z

)}
.

Throughout Sections 2–4, we fix an arbitrary collection of Markov kernels M =
(Mn)n∈T on E and we add slightly to the definitions of (1.2) the convention that
Mn,k = Id whenever k ≤ n, n ∈ T.

We shall make extensive use of the following proposition, which expands on
Fact 2, providing characterizations of weak ergodicity in terms of Dobrushin’s
coefficient.

PROPOSITION 1. The following are equivalent:

1. for all k ∈ T and (x, x′, z) ∈E3, limn→−∞Mn,k(x, z)−Mn,k(x
′, z)= 0,

2. card(�M)= 1,
3. for all k ∈ T, limn→−∞ β(Mn,k)= 0,
4. there exists a strictly decreasing subsequence (ni)i∈N of T such that

∞∑
i=0

1− β(Mni+1,ni
)=∞,

and when any (and then all) of conditions 1–4 hold,

lim
n→−∞Mn,k(x, z)− πk(z)= 0 ∀k ∈ T, (z, x) ∈E2,(2.2)

where π = (πn)n∈T is the unique sequence of absolute probabilities for M .

For proof of (1)⇔ (2) and (2.2), see Seneta (2006), Theorem 4.20, (1)⇔ (3) is
immediate from the definition of β(·) and for proof of (1)⇔(4) see Seneta (2006),
Theorem 4.18.

To connect with the perhaps more familiar case of homogeneous chains, con-
sider the case E = {0,1} and Mn(x,1− x)=M(x,1− x)= 1. For all α ∈ (0,1),
π2n(0)= α = 1−π2n(1), π2n−1(0)= 1−α = 1−π2n−1(1), n ∈ T is a sequence
of absolute probabilities, so that there are infinitely many sequences of absolute
probabilities for M , even though there is a unique stationary distribution.
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3. Perfect sampling for nonhomogeneous chains.

3.1. Background. We now review the existing literature on perfect sampling
for nonhomogeneous Markov chains. Glynn and Thorisson [(2001), Section 5] for-
mulated a perfect sampling algorithm for a finite state-space chain conditioned to
remain in some set over a given time window and termination of their algorithm in
a.s. finite time follows from assumptions they make about the conditioned process.
Stenflo (2008) devised a perfect sampling procedure for nonhomogeneous back-
ward products of stochastic matrices and showed that, when there exists a constant
c > 0 such that

inf
n∈T

∑
x′∈E

min
x∈E

Mn

(
x, x′

)≥ c,(3.1)

the limit limn→−∞Mn,0(x, ·) exists, is independent of x, and defines a probability
distribution on E, from which the algorithm of Stenflo (2008) produces a sample.

When (3.1) holds, straightforward calculations show that c ≤ 1 and by (2.1),
supn∈T β(Mn) ≤ 1− c, so part 4 of Proposition 1 holds and limn→−∞Mn,0(x, ·)
is of course a member of the unique sequence of absolute probabilities. However,
part 4 of Proposition 1 is clearly a weaker condition than (3.1).

3.2. The coupling. Consider �ξ := (Es)T with product σ -algebra F ξ :=
(B(E)⊗s)⊗T. Define the coordinate process ξ = (ξx

n ;x ∈E,n ∈ T), ξx
n :�ξ →E,

and let Q be the probability measure on (�ξ ,F ξ ),

Q(dξ) :=⊗
n∈T

⊗
x∈E

Mn

(
x, ξx

n

)
dξx

n ,

where dξx
n is counting measure on E, so that(

ξx
n ;x ∈E,n ∈ T

)
are independent under Q,(3.2)

Q
(
ξx
n = x′

)=Mn

(
x, x′

)
,

(
n,x, x′

) ∈ T×E2.(3.3)

For each n ∈ T, define the random map

�n : x ∈E �−→�n(x) := ξx
n ∈E,(3.4)

and the compositions

�n,k :=�k ◦�k−1 ◦ · · · ◦�n+1, n < k ∈ T,(3.5)

so, for example, �n,n+2(x)=�n+2(�n+1(x))=�n+2(ξ
x
n+1)= ξ

ξx
n+1

n+2 , etc., and it
is easily checked that

Q
(
�n(x)= x′

)=Mn

(
x, x′

)
and Q

(
�n,k(x)= x′

)=Mn,k

(
x, x′

)
.(3.6)

Now define the {−∞} ∪T-valued coalescence times

Tk := sup{n < k : image of �n,k is a singleton}, k ∈ T,(3.7)

with Tk := −∞ when the set {n < k : image of �n,k is a singleton} is empty.
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REMARK 1. Note that in the time-homogeneous case, Mn =M0 for all n ∈ T,
the coalescence times Tn are identically distributed and the random maps �n are
i.i.d.

The main result of this section is the following theorem.

THEOREM 1. Any (and then all) of Proposition 1 conditions 1–4 hold if and
only if the coupling is successful, meaning that for all n ∈ T,

Q(Tn >−∞)= 1 ∀n ∈ T.(3.8)

Furthermore, if (3.8) holds, then Q(�Tn,n(x) ∈ ·)= πn(·) for all x ∈E and n ∈ T,
where (πn)n∈T is the unique sequence of absolute probabilities for M .

REMARK 2. As in the case of CFTP for time-homogeneous chains, if instead
of (3.2) one allows dependence between (ξx

n ;x ∈ E), then it is possible to con-
struct M and Q such that the backward products of M are weakly ergodic, but
Q(Tn = −∞) = 1 for all n; see, for example Häggström (2002), Chapter 10. On
the other hand, under (3.2), the situation is more clear-cut in the sense that the “if
and only if” part of Theorem 1 holds. However, it should be noted that couplings
involving dependence between (ξx

n ;x ∈ E) may lead to more computationally ef-
ficient algorithms in some situations, especially when the number of states s is
large.

The proof of Theorem 1 is composed of Propositions 2 and 3, which follow
Lemma 1.

LEMMA 1. If for some x� ∈ E, minx∈E Mn,k(x, x∗) ≥ ε > 0, then Q(Tk ≥
n)≥ εs .

PROOF. We have, with An,k(j) := {�n,k(1)= x∗, . . . ,�n,k(j)= x∗},
Q(Tk ≥ n)≥Q

(
�n,k(1)= x∗, . . . ,�n,k(s)= x∗

)=Q
(
An,k(s)

)
.

We shall prove by an inductive argument that Q(An,k(s)) ≥ εs , the inductive hy-
pothesis being that, with j ∈ {2, . . . , s},

Q
(
An,k(j − 1)

)≥ εj−1,(3.9)

which is validated in the case j = 2 by the assumption of the lemma. Since
Q(An,k(j) | An,k(j − 1)) = Q(�n,k(j) = x∗ | An,k(j − 1)), to show that (3.9)
holds with j − 1 replaced by j , it is enough to establish

Q
(
�n,k(j) �= x∗ |An,k(j − 1)

)≤ 1− ε.(3.10)
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To this end, we need more some notation. Define Qn,k :E × (2E)k−n→[0,1] as

Qn,k(x, Sn+1, . . . , Sk)

:=Q
(
�n+1(x) /∈ Sn+1,�n,n+2(x) /∈ Sn+2, . . . ,�n,k(x) /∈ Sk

)

= ∑
(xn+1,...,xk)∈S�

n+1×···×S�
k

Mn+1(x, xn+1)

k∏
i=n+2

Mi(xi−1, xi),

where the final equality is easily deduced from (3.3). Thus, Qn,k(x, Sn+1, . . . , Sk)

is the probability that a Markov chain evolving according to M from time n to k

starting at x avoids, for each i ∈ {n+ 1, . . . , k}, the set Si at time i. It follows from
the nonnegativity of each Mi that for any sequence of subsets Sn+1, . . . , Sk−1 of E

and any points x, x′ ∈E,

Qn,k

(
x,Sn+1, . . . , Sk−1,

{
x′
}) ≤Qn,k

(
x,∅, . . . ,∅,

{
x′
})

(3.11)
=Q

(
�n,k(x) �= x′

)
.

Now with j ∈ {2, . . . , s} as in (3.10), introduce the notation

xn,k,j := (xn+1,1, . . . , xn+1,j−1, . . . , xk−1,1, . . . , xk−1,j−1),

which is a point in E(k−n−1)(j−1) =:En,k,j , and

B(xn,k,j ) := {�n+1(1)= xn+1,1, . . . ,�n,k−1(j − 1)= xk−1,j−1
}
.

Using (3.2), (3.3) and the fact that for any x, x′ ∈ E and m ∈ {n + 1, . . . , k},
{�n,m(x)=�n,m(x′)} ⊂ {�n,k(x)=�n,k(x

′)}, it follows by some elementary but
tedious manipulations that

Q
(
�n,k(j) �= x∗ | B(xn,k,j )∩An,k(j − 1)

)

=Qn,k

(
j,

j−1⋃
i=1

{xn+1,i}, . . . ,
j−1⋃
i=1

{xk−1,i}, {x∗}
)
,

so,

Q
(
�n,k(j) �= x∗ |An,k(j − 1)

)

= ∑
xn,k,j∈En,k,j

Qn,k

(
j,

j−1⋃
i=1

{xn+1,i}, . . . ,
j−1⋃
i=1

{xk−1,i}, {x∗}
)

(3.12)
×Q

(
B(xn,k,j ) |An,k(j − 1)

)
≤Qn,k

(
j,∅, . . . ,∅,

{
x∗
})=Q

(
�n,k(j) �= x∗

)≤ 1− ε,

where the penultimate inequality and final equality are from (3.11), and the final
inequality follows from the hypothesis of the lemma. Thus the inductive hypothe-
sis (3.9) holds with j − 1 replaced with j , and the proof of the lemma is complete.

�



PERFECT SAMPLING FOR NONHOMOGENEOUS MARKOV CHAINS 3053

PROPOSITION 2. If any of Proposition 1’s conditions 1–4 hold, then for all
n ∈ T, Q(Tn >−∞)= 1.

PROOF. Under the hypothesis of the proposition, there is only one member
of �M , denote it by π = (πn)n∈T. Since the (πn)n∈T are probability distribu-
tions, for each n there must exist some x�

n ∈ E such that πn(x
�
n) ≥ s−1 (recall

E = {1, . . . , s}). Now fix ε ∈ (0, s−1). By (2.2), for each k ∈ T there exists n < k

such that

Mn,k

(
x, x�

k

)≥ πk

(
x�
k

)− (s−1 − ε
)≥ ε > 0 ∀x ∈E.

We may then define (ki)i∈N a strictly decreasing subsequence of T, with k0 := 0
and

ki+1 := sup
{
n < ki :Mn,ki

(
x, x�

ki

)≥ ε ∀x ∈E
}
,

so that by construction

inf
i∈Nmin

x∈E
Mki+1,ki

(
x, x�

ki

)≥ ε > 0.

Lemma 1 then gives

sup
i∈N

Q(Tki
≤ ki+1)≤ 1− εs.(3.13)

We now wish to apply this bound to control the tails of the coalescence times Tn.
To this end, first note that for any n, k, k′ ∈ T, k′ < k < n,

{Tn ≥ k} ∪ {Tk ≥ k′
}⊆ {Tn ≥ k′

}
and since the events {Tn ≥ k} and {Tk ≥ k′} are independent, we have

Q
(
Tn < k′

)≤Q(Tn < k)Q
(
Tk < k′

)
.(3.14)

Now fix n ∈ T. Since (ki)i∈N is strictly decreasing, there exists some i(n) such that
ki(n) < n. Then by repeated application of (3.14), we find that for any � > i(n),

Q(Tn < k�)≤Q(Tn < ki(n))

�−1∏
j=i(n)

Q(Tkj
< kj+1).(3.15)

Now (3.13) provides an upper bound for the j -indexed terms in (3.15), and then
taking �→∞ we find Q(Tn >−∞)= 1, which completes the proof of the propo-
sition. �

REMARK 3. If one has available quantitative convergence information in ad-
dition to (2.2), then the inequalities (3.14), (3.15) and Lemma 1 could be used to
bound the moments of the Tn.

PROPOSITION 3. If for all n ∈ T, Q(Tn >−∞)= 1, then both of the follow-
ing hold:
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1. There exists a strictly decreasing subsequence (ni)i∈N of T such that∑∞
i=0 1− β(Mni+1,ni

)=∞, that is, condition 4 of Proposition 1 holds.
2. For all n ∈ T, Q(Xx

Tn
(n) ∈ ·) = πn(·) for all x ∈ E, where (πn)n∈T is the

unique sequence of absolute probabilities for M .

PROOF. Fix some δ > 0. Under the hypothesis, we have that for each n there
exists k ∈ T such that Q(Tn < k) < δ. We may therefore define (ki)i∈N a strictly
decreasing subsequence of T with k0 := 0,

ki+1 := sup
{
n < ki :Q(Tki

< n) < δ
}
,

so that by construction

sup
i∈N

Q(Tki
< ki+1) < δ.(3.16)

Now for any x, x′ ∈E, {Tki
≥ ki+1} ⊆ {�ki+1,ki

(x)=�ki+1,ki
(x′)} so

Q
(
�ki+1,ki

(x) �=�ki+1,ki

(
x′
))≤Q(Tki

< ki+1).

Combining this observation with (3.16) and (3.6), we obtain

β(Mki+1,ki
)=max

x,x′
∥∥Mki+1,ki

(x, ·)−Mki+1,ki

(
x′, ·)∥∥

=max
x,x′

sup
A⊂E

∣∣Q(�ki+1,ki
(x) ∈A

)−Q
(
�ki+1,ki

(
x′
) ∈A

)∣∣(3.17)

≤max
x,x′

Q
(
�ki+1,ki

(x) �=�ki+1,ki

(
x′
))

< δ ∀i ∈N,

where we have used the fact that for any two E-valued random variables X,X′
defined on a common probability space, supA⊂E |P(X ∈ A) − P(X′ ∈ A)| ≤
P(X �=X′) [Lindvall (2002), page 12]. From (3.17), we immediately have

∑
i 1−

β(Mki+1,ki
)=∞, which completes the proof of part (1).

For part (2), fix any n ∈ T, and note that on the event {Tn >−∞}, �Tn,n(x) is
well-defined as a random variable. When Q(Tn >−∞)= 1, we have by construc-
tion of the algorithm that limk→−∞�n+k,n(x)=�Tn,n(x), Q-a.s. Using (2.2), we
also have for any z ∈E, Q(�n+k,n(x)= z)=Mn+k,n(x, z)→ πn(z) as k→−∞,
hence Q(�Tn,n(x)= z)= πn(z). The proof is complete. �

4. Tail triviality and unicity of absolute probabilities. Let �X = ET, let
FX = B(E)⊗T be the product σ -algebra. Let X = (Xn)n∈T be the coordinate pro-
cess on �X and for I ⊂ T, define FX

I = σ(Xn;n ∈ I ). As in Section 1, for any
π ∈�M we let Pπ be the probability measure on (�X,FX) constructed from the
finite dimensional distributions (P(n)

π )n∈T given by

P(n)
π (Xn = xn, . . . ,X0 = x0) := πn(xn)

0∏
k=n+1

Mk(xk−1, xk).(4.1)
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Expectation w.r.t. Pπ is denoted by Eπ . The main result of this section is the fol-
lowing theorem, which via Proposition 1 gives an alternative characterization of
the success of the coupling in the sense of Theorem 1.

THEOREM 2. The following are equivalent:

1. card(�M)= 1.
2. Pπ(A)= Pπ(A)2 = Pπ̃ (A), ∀(π, π̃,A) ∈�M ×�M ×⋂n∈TFX]−∞,n].

When 1 holds, then obviously Pπ(A) = Pπ̃ (A). The proof of 1⇒ 2 is com-
pleted by Proposition 4. The implication 2⇒ 1 is the subject of Proposition 5.

PROPOSITION 4. If there exists π ∈ �M and A ∈ ⋂n∈TFX]−∞,n] such that
Pπ(A) ∈]0,1[, then card(�M) > 1.

PROOF. Let π and A be as in the statement of the proposition and with
Z(ω) := IA(ω)/Pπ(A), define a new probability measure P̃ on (�X,FX) by
P̃(dω) := Z(ω)Pπ(dω), that is, P̃(·) = Pπ(· | A). Define also the sequence of
marginal distributions π̃ = (π̃n)n∈T, π̃n(·) := P̃(Xn ∈ ·). We are going to show
that π̃ ∈�M and π̃ �= π , thus proving card(�M) > 1 as desired.

The Markov property of X under Pπ and the fact that Z is measurable w.r.t.
to
⋂

nFX]−∞,n] combine to give Eπ [Z | FX[n,0]] = Eπ [Z | σ(Xn)], P-a.s., so, for
each n ∈ T, there exists a measurable function hn on E, uniquely defined and
nonnegative πn-almost everywhere, such that hn(Xn)= Eπ [Z | FX[n,0]], P-a.s. We

then have, for any n ∈ T and (xn, . . . , x0) ∈E|n|+1,

P̃
({

ω :Xn(ω)= xn, . . . ,X0(ω)= x0
})

=
∫
{ω:Xn(ω)=xn,...,X0(ω)=x0}

Z(ω)dPπ

=
∫
{ω:Xn(ω)=xn,...,X0(ω)=x0}

Eπ

[
Z |FX[n,0]

]
(ω)dPπ(4.2)

=
∫
{ω:Xn(ω)=xn,...,X0(ω)=x0}

hn

(
Xn(ω)

)
dPπ

= hn(xn)πn(xn)

0∏
k=n+1

Mk(xk−1, xk).

From (4.2), we immediately deduce three facts. First, for each n ∈ T and x ∈ E,
π̃n(x)= hn(x)πn(x). Second, π̃ ∈�M . Third, the finite dimensional marginals of
P̃ coincide with those of Pπ̃ , so by a monotone class argument, P̃= Pπ̃ .

It remains to prove that π̃ �= π . Yet again by a monotone class argument, note
that for any μ,ν ∈ �M , if for all n ∈ T, P(n)

μ = P(n)
ν , then Pμ = Pν . We have
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already seen that P̃= Pπ̃ , and by construction, P̃ �= Pπ , so by applying the contra-
positive of the implication in the previous sentence, there must exist some n ∈ T

such that P(n)
π �= P(n)

π̃
, which is only possible if there exists some x such that

πn(x) �= π̃n(x). This completes the proof. �

PROPOSITION 5. If for all (π, π̃,A) ∈�M ×�M ×⋂n∈TFX]−∞,n], Pπ(A)=
Pπ(A)2 = Pπ̃ (A), then card(�M)= 1.

PROOF. Fix arbitrarily x ∈ E, k ∈ T and let π be any member of �M . For
any n ≤ k, we have Pπ(Xk = x | FX]−∞,n]) = Mn,k(Xn, x), Pπ -a.s. and since
FX]−∞,n] ↘

⋂
n∈TFX]−∞,n], a classical martingale convergence theorem [Doob

(1953), page 331, Theorem 4.3] dictates that limn→−∞Pπ(Xk = x | FX]−∞,n]) =
Pπ(Xk = x | ⋂n∈TFX]−∞,n]), Pπ -a.s. Under the hypothesis of the proposition,
Pπ(A) ∈ {0,1} for all A ∈ ⋂n∈TFX]−∞,n], and by construction Pπ(Xk = x) =
πk(x), so we obtain

lim
n→−∞Mn,k(Xn, x)= πk(x), Pπ -a.s.(4.3)

Now choose any π̃ ∈�M . Repeating the above argument, we obtain

lim
n→−∞Mn,k(Xn, x)= π̃k(x), Pπ̃ -a.s.,(4.4)

and since Ax := {limn→−∞Mn,k(Xn, x)= πk(x)} ∈⋂n∈TFX]−∞,n], the hypothe-
sis of the proposition dictates Pπ(Ax)= Pπ̃ (Ax), so from (4.3) and (4.4) we find
πk(x)= π̃k(x). Since x and k were arbitrary, we have thus established π = π̃ , and
since π and π̃ were arbitrary members of �M we have proved that card(�M)= 1.

�

5. Perfect sampling for hidden Markov models.

5.1. The model. Throughout Section 5, we take �X :=ET equipped with the
product σ -algebra B(E)⊗T, we introduce F a nonempty, Polish state-space with
Borel σ -algebra denoted by B(F ), and we consider �Y := FT equipped with the
product σ -algebra B(F )⊗T. Define � :=�X×�Y and the coordinate projections:
ζ, η by

ζ : (x, y) ∈� �→ x ∈�X, η : (x, y) ∈� �→ y ∈�Y ,

and (X̃n)n∈T, (Ỹn)n∈T by

X̃n : x = (. . . , x−1, x0) ∈�X �→ xn ∈E,

Ỹn : y = (. . . , y−1, y0) ∈�Y �→ yn ∈ F.

Then let

Xn := X̃n ◦ ζ, Yn := Ỹn ◦ η,
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so clearly Xn : ω = (x, y) ∈ � �→ xn ∈ E and Yn : ω = (x, y) ∈ � �→ yn ∈ F .
We shall write X and Y for respectively the ET and FT-valued random variables
(Xn)n∈T and (Yn)n∈T.

Let F be the Borel σ -algebra on � and for I ⊂ T, define

F X̃
I := σ(X̃n;n ∈ I ), FX

I := σ(Xn;n ∈ I ),

F Ỹ
I := σ(Ỹn;n ∈ I ), FY

I := σ(Yn;n ∈ I ),

FI := FX
I ∨FY

I ,

and F X̃ :=F X̃
T

, FX :=FX
T

, F Ỹ :=F Ỹ
T

, FY :=FY
T

.
Now introduce two sequences of probability kernels M = (Mn)n∈T and G =

(Gn)n∈T, with each Mn : E × B(E)→ [0,1] and Gn : E × B(F )→ [0,1]. We
assume that Gn(x, dy)= gn(x, y)ψ(dy) for some gn : E × F → [0,∞[ and ψ a
σ -finite measure on (F,B(F )).

Throughout Section 5, P is a probability measure on (�,F) under which (X,Y )

is a hidden Markov model, constructed as follows. Fix some π = (πn)n∈T ∈�M .
For each n ∈ T define a probability P(n) on (B(E)⊗B(F ))⊗(|n|+1) by

P(n)(A)=
∫
A

πn(dxn)Gn(xn, dyn)

0∏
k=n+1

Mk(xk−1, dxk)Gk(xk, dyk),(5.1)

with the convention that the product is unity when n = 0. Since π ∈ �M , the
P(n) are consistent, giving rise via the usual extension argument to a probability
measure P on (�,F). Expectation w.r.t. P is denoted by E. We shall write P◦Y−1

for the push-forward of P by Y , that is, (P ◦ Y−1)(H)= P({ω ∈� : Y(ω) ∈H }),
for H ∈ B(F )⊗T.

Let us now remark upon some details of this setup (the analogues of the follow-
ing properties for an HMM on a nonnegative time horizon are well known and the
arguments involved in establishing them depend only superficially on the direction
of time). Under P, the bivariate process (Xn,Yn)n∈T is Markov, which implies that
the following holds P-a.s.:

P
(
Xn ∈ · |FY]−∞,0] ∨FX]−∞,n−1]

)= P
(
Xn ∈ · |FY]−∞,0] ∨ σ(Xn−1)

)
.(5.2)

Moreover, under P, X is a Markov, with for each n ∈ T, Xn distributed accord-
ing to πn and Xn | Xn−1 ∼ Mn(Xn−1, ·). The observations Y are conditionally
independent given X, and the conditional distribution of Yn given X is Gn(Xn, ·).
It follows from this conditional-independence structure that the following holds
P-a.s.:

P
(
Xn ∈ · |FY]−∞,0] ∨ σ(Xn−1)

)= P
(
Xn ∈ · |FY[n,0] ∨ σ(Xn−1)

)
.(5.3)
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5.2. Transition kernels of the conditional signal process. Define the sequence
of functions (φn)n∈T, each φn :E × Fn→[0,∞[, recursively as

φ0(x, y0) :=
∑
x′∈E

M0
(
x, x′

)
g0
(
x′, y0

)
,

(5.4)
φn−1(x, yn−1:0) :=

∑
x′∈E

Mn−1
(
x, x′

)
gn−1

(
x′, yn−1

)
φn

(
x′, yn:0

)
.

Now with y = (yn)n∈T, introduce for each n ∈ T,

My
n

(
x, x′

)
(5.5)

:=
⎧⎨
⎩

Mn(x, x′)gn(x
′, yn)φn+1(x

′, yn+1:0)
φn(x, yn:0)

, φn(x, yn:0) > 0,

Mn

(
x, x′

)
, φn(x, yn:0)= 0,

with the convention that φ1(x, y1:0)≡ 1. Similar to (1.2), let

M
y
k,k := Id, M

y
n−1,k

(
x, x′

) :=∑
z∈E

My
n (x, z)M

y
n,k

(
z, x′

)
, n≤ k.(5.6)

According to (5.5), for each y, M
y
n (·, ·) is clearly a Markov kernel on E. This

kernel provides a version of the conditional probabilities in (5.2)–(5.3), in the sense
of the following lemma, proof of which is given in the Appendix.

LEMMA 2. For each n ∈ T and x ∈E,

P
(
Xn = x |FY[n,0] ∨ σ(Xn−1)

)=MY
n (Xn−1, x), P-a.s.

We next establish the existence of a particular y-dependent sequence of absolute
probabilities for the Markov kernels My = (M

y
n )n∈T.

LEMMA 3. For each n ∈ T, there exists a probability kernel μ·n(·) :�Y ×E→
[0,1], such that for all x ∈E,

P
(
Xn = x |FY]−∞,0]

)= μY
n (x), P-a.s.

and ∑
x′∈E

μY
n−1

(
x′
)
MY

n

(
x′, x

)= μY
n (x), P-a.s.

PROOF. Since E is a finite set, the existence for any n of a probability kernel
μ·n(·) :�Y ×E→[0,1] satisfying P(Xn = x |FY]−∞,0])= μY

n (x), P-a.s. for all x,
is immediate. Then by the tower property of conditional expectation, Lemma 2
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and (5.3), the following equalities hold P-a.s.:

μY
n (x)= P

(
Xn = x |FY]−∞,0]

)
= E

[
E
[
I{Xn = x}|FY]−∞,0] ∨ σ(Xn−1)

]|FY]−∞,0]
]

= E
[
MY

n (Xn−1, x) |FY]−∞,0]
]

= ∑
x′∈E

μY
n−1

(
x′
)
MY

n

(
x′, x

)
.

�

5.3. The coupling for the HMM. Our next main objective is to apply the con-
struction and results of Section 3 to derive and study a perfect sampling pro-
cedure associated with the Markov kernels My . The setup is as follows. With
�ξ = (Es)⊗T and F ξ = (B(E)⊗s)⊗T, let Q·(·) :�Y ×F ξ →[0,1] be a probabil-
ity kernel such that for each y ∈�Y the coordinate projections (ξx

n ;x ∈E;n ∈ T)

are distributed under Qy(·) as(
ξx
n ;x ∈E,n ∈ T

)
are independent,(5.7)

Qy(ξx
n = x′

)=My
n

(
x, x′

)
,

(
n,x, x′

) ∈ T×E2.(5.8)

Thus with y fixed, Qy(·) may be regarded as an instance of the probability measure
denoted Q(·) in Section 3. Also, let the maps �n, �n,k and the coalescence times
(Tn)n∈T be defined exactly as in equations (3.4), (3.5) and (3.7) of Section 3.

PROPOSITION 6. Fix any y ∈ �Y . Any (and all) of Proposition 1 conditions
1–4 hold for the Markov kernels My , if and only if

Qy(Tn >−∞)= 1 ∀n ∈ T.(5.9)

Furthermore, if (5.9) holds then for all n ∈ T, Qy(�Tn,n(x) ∈ ·) = π
y
n (·) for all

x ∈ E, where πy = (π
y
n )n∈T is the unique sequence of absolute probabilities for

My . If (5.9) holds for y in a set of P ◦ Y−1 probability 1, then for all n ∈ T and
x ∈ E, QY (�Tn,n(x) ∈ ·) = P(Xn ∈ · | FY ), P-a.s., and we call the coupling a.s.
successful.

PROOF. For fixed y ∈�Y , the claimed equivalence between (5.9) and Proposi-
tion 1 conditions 1–4 holding for the Markov kernels My is an application of Theo-
rem 1. So, too, is the equality Qy(�Tn,n(x) ∈ ·)= π

y
n (·). Since E is a finite set and

T is countable, it follows from Lemma 3 that there exists H ∈FY with P(H)= 1
and such that for all ω ∈ H , n ∈ T and x ∈ E, P(Xn = x | FY )(ω) = μ

Y(ω)
n (x)

and
∑

x′∈E μ
Y(ω)
n−1 (x′)MY(ω)

n (x′, x) = μ
Y(ω)
n (x). If, as hypothesized in the state-

ment, there exists H̃ ∈ F Ỹ such that for all y ∈ H̃ , Qy(Tn > −∞) = 1 for all
n ∈ T, then for all ω ∈H ∩ Y−1(H̃ ), MY(ω) admits a unique sequence of absolute
probabilities, and so π

Y(ω)
n (x)= μ

Y(ω)
n (x)= P(Xn = x |FY )(ω). �
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Algorithm 1: Perfect sampling for the hidden Markov model
for each x ∈E, set

φ0(x, y0)=
∑
x′∈E

M0
(
x, x′

)
g0
(
x′, y0

)
,

and by convention, φ1(x, y1:0)= 1.
set �0,0 = Id
set n= 0
while card(image of �n,0) > 1

for each x ∈E,
for each x′ ∈E, set

My
n

(
x, x′

)=
⎧⎨
⎩

Mn(x, x′)gn(x
′, yn)φn+1(x

′, yn+1:0)
φn(x, yn:0)

, φn(x, yn:0) > 0,

Mn

(
x, x′

)
, φn(x, yn:0)= 0,

sample ξx
n ∼M

y
n (x, ·) and set �n(x)= ξx

n

set �n−1,0 =�n,0 ◦�n

set n= n− 1
for each x ∈E, set

φn(x, yn:0)=
∑
x′∈E

Mn

(
x, x′

)
gn

(
x′, yn

)
φn+1

(
x′, yn+1:0

)
.

return �n,0(x), for any x ∈E.

We present in Algorithm 1 some steps of the sampling procedure in order to
emphasize the way that the observations enter into recursive computations. For
simplicity of presentation, we consider the case of implementing the coupling until
T0 = sup{n < 0 : image of �n,0 is a singleton}, thus upon termination in a.s. finite
time of the below algorithm, the output value is a sample from μ

y
0 . The important

point here is that to run this algorithm one needs access to only the observations
y0, . . . , yT0 .

5.4. Successful coupling and conditional ergodicity. With a little further tech-
nical work, we can relate the successful coupling in the sense of (5.9) to the condi-
tional ergodicity properties of the HMM. Our next step is to perform some careful
accounting of certain σ -algebras to help us transfer results backward and forward
between the measurable space (�,F) underlying the HMM and the “marginal”
space (�X,F X̃); the attentive reader will have noticed that under the definitions
of Section 5.1, FX

I consists of subsets of �, where as F X̃
I consists of subsets �X .

On the other hand, F X̃
I coincides with the object in Section 4 denoted there by
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FX
I , and in terms of which Theorem 2 is phrased. The resolution of this issue

is provided by the following technical lemma, the proof of which is given in the
Appendix.

LEMMA 4. With the definitions of Section 5.1 in force,

FX
I =

{
A×�Y ;A ∈F X̃

I

} ∀I ⊂ T,

and, ⋂
n∈T

FX]−n,0] =
{
A×�Y ;A ∈ ⋂

n∈T
F X̃]−n,0]

}
.(5.10)

Lemma 4 allows us to set up correspondence between probabilities on F X̃ and
FX , and in particular we have the following.

LEMMA 5. There exist a probability kernel P ·(·) : �Y × F X̃ → [0,1] and a
set H̃ ∈F Ỹ of P ◦ Y−1 probability 1, such that for all y ∈ H̃

P y({X̃n = xn, . . . , X̃0 = x0})= μy
n(xn)

0∏
k=n+1

M
y
k (xk−1, xk).

The function PFY :�×FX →[0,1] defined by

PFY (
ω,A×�Y ) := P Y(ω)(A), A ∈F X̃,

is a probability kernel, and for each A ∈F X̃ ,

PFY (
ω,A×�Y )= P

(
A×�Y |FY )(ω) for P-almost all ω ∈�.(5.11)

The proof is in the Appendix. For any y ∈�Y , we denote by �My the set of all
sequences of absolute probabilities for My = (M

y
n )n∈T. The set �My is nonempty

by Fact 1. For any y ∈ �Y we shall write generically πy for a member of �My

(we do not claim measurable dependence of π
y
n on y except at least in the case

of π
y
n = μ

y
n with the latter as in Lemma 3), and, by arguments only superficially

different (we omit the details) to those used in the proof of Lemma 5, for any such
πy ∈�My there exists a probability measure Pπy on F X̃ such that

Pπy

({X̃n = xn, . . . , X̃0 = x0})= πy
n (xn)

0∏
k=n+1

M
y
k (xk−1, xk),(5.12)

and

Pπy

(
A×�Y ) := Pπy (A), A ∈F X̃,

defines a probability measure on FX . We now have the technical and notational
devices to state and prove the following theorem, which characterizes almost sure
success of the coupling.
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THEOREM 3. The following are equivalent:

1. QY (ω)(
⋂

n∈T{Tn >−∞})= 1 for P-almost all ω.
2. There exists a set H ∈F such that P(H)= 1 and

PFY

(ω,A)= PFY

(ω,A)2 = PπY(ω)(A),

for all ω ∈H , A ∈⋂n∈TFX]−∞,n] and πY(ω) ∈�MY(ω) .

PROOF. When 1 holds, there exists H ∈ F with P(H) = 1 such that for all
ω ∈ H the following hold: for all n ∈ T, QY (ω)(Tn > −∞) = 1; then via Propo-
sition 6 and Proposition 1, card(�MY(ω)) = 1; then by an application of The-
orem 2 with the Pπ appearing there taken to be P Y(ω)(·), and Lemma 4, we
have P Y(ω)(Ã)= P Y(ω)(Ã)2 = PπY(ω)(Ã) for all Ã ∈⋂n∈TF X̃]−∞,n] and πY(ω) ∈
�MY(ω) . Lemmata 4 and 5 then give PFY

(ω,A)= PFY
(ω,A)2 = PπY(ω)(A) for all

A ∈⋂n∈TFX]−∞,n], which establishes 2.
If 2 holds, we apply this chain of reasoning in reverse to establish 1. The details

are omitted in order to avoid repetition. �

6. Discussion. Throughout Section 6, the definitions and constructions of
Section 5 are in force. In particular, it is timely to recall that the law of the HMM,
P, has the defining ingredients:

• M = (Mn)n∈T a sequence of Markov kernels on E,
• π = (π)n∈T ∈�M a sequence of absolute probabilities for M ,
• G = (Gn)n∈T a sequence of probability kernels, each acting from E to F and

such that for each n, Gn(x, dy)= gn(x, y)ψ(dy).

We shall consider various combinations of the following assumptions.

ASSUMPTION 1. Under P the signal process is ergodic, in that P(A)= P(A)2

for all A ∈⋂n∈TFX]−∞,n].

ASSUMPTION 2. The observations are nondegenerate, in that gn(x, y) > 0 for
all n ∈ T, x ∈E and y ∈ F .

ASSUMPTION 3. The signal transitions, absolute probabilities and observa-
tion kernels do not depend on time, in that Mn =M0, πn = π0 and Gn =G0 for
all n ∈ T.

Let us briefly comment on these assumptions.
Assumption 1 does not imply that the backward products of M are weakly er-

godic: the latter is, by Proposition 1 and Theorem 2, equivalent to the simultaneous
tail triviality of X under the probability measures over paths in �X derived from
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all members of �M , whereas Assumption 1 involves only the particular π ∈�M

used to construct P.
Assumption 2 is the same type of assumption employed by van Handel (2009)

and ensures that information from the observations cannot rule out with certainty
any particular hidden state. We shall use several times the fact that when this as-
sumption holds, φn(x, yn:0) > 0 for all n, x and yn, . . . , y0, which is established
by a simple induction.

Assumption 3 sacrifices some of the generality of the HMM, but serves to sim-
plify our discussions. Note that when this assumption holds the signal process X

is stationary under P with P(Xn ∈ ·)= π0(·) for all n ∈ T.

6.1. The connection to filter stability. Throughout Section 6.1, we adopt As-
sumption 3. Let (X+, Y+) be the time-reversal of (X,Y ), that is, X+n = X−n,
Y+n = Y−n, n ∈ N. For some probability distribution π̄0, not necessarily an invari-
ant distribution for M0, but such that π̄0 � π0, let P̄ be the probability measure
on (�,F) under which (X+, Y+) has the same transition probabilities as under P
but X+0 ∼ π̄0, so, since X+0 =X0,

dP̄

dP
(X,Y )= dπ̄0

dπ0
(X0), P-a.s.

For n ∈ T, let ρY
n and ρ̄Y

n be respectively regular conditional probabilities of the
form P(Xn ∈ · |FY[n,0]) and P̄(Xn ∈ · |FY[n,0]), so ρY

n (resp., ρ̄Y
n ) is a filtering distri-

bution under P (resp., P̄) for the time-reversed HMM (X+, Y+). Among various
notions of forgetting associated with HMMs, asymptotic filter stability (in mean)
is the phenomenon

lim
n→−∞ Ē

[∥∥ρY
n − ρ̄Y

n

∥∥]= 0.(6.1)

As discussed in Chigansky, Liptser and Van Handel (2011), van Handel (2009)
and references therein, it is now well known that ergodicity of the signal as per
Assumption 1 is, alone, not enough to establish filter stability (in various senses);
see Section 6.2.1 for a counterexample. However, (6.1) does hold if⋂

n∈T
FY]−∞,0] ∨FX]−∞,n] =FY]−∞,0], P-a.s.(6.2)

[see Chigansky, Liptser and Van Handel (2011) for a proof] and using a result
of von Weizsäcker (1983), when Assumption 1 holds a necessary and sufficient
condition for (6.2) is⋂

n∈T
FX]−∞,n] is PFY

(ω, ·)-a.s. trivial, for P-a.e. ω.(6.3)

Here, PFY
is the object defined in Lemma 5 and appearing in Theorem 3: it is

a version of P(· | FY ) as a regular conditional distribution over FX given FY .
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Thus, we see that if the coupling for the HMM is a.s. successful, in the sense that
condition 1 of Theorem 3 holds, then condition 2 of that Theorem holds, implying
(6.3) and, therefore, (6.1). Thus, asymptotic filter stability for the reversed HMM
is a necessary condition for a.s. successful coupling. However, as we shall discuss
in Section 6.2.2, condition (6.3) is in general weaker than the simultaneous tail
triviality in condition 2 of Theorem 3.

6.2. Counterexamples to successful coupling.

6.2.1. Degenerate observations. The purpose of this section is to show how
consideration of unicity of absolute probabilities and a.s. success of the coupling
bring a fresh perspective on a well-known counterexample to filter stability due to
Baxendale, Chigansky and Liptser (2004). Our starting point is to observe that for
any y ∈ H̃ where H̃ is as in Lemma 5, the tower property of conditional expecta-
tion and the Markov property of X̃ under P y give

P y

(
X̃k = x

∣∣∣ ⋂
n∈T

F X̃]−∞,n]
)

=Ey

[
P y

(
X̃k = x

∣∣∣ σ(X̃k−1)∨
⋂
n∈T

F X̃]−∞,n]
) ∣∣∣ ⋂

n∈T
F X̃]−∞,n]

]
(6.4)

=Ey

[
M

y
k (X̃k−1, x)

∣∣∣ ⋂
n∈T

F X̃]−∞,n]
]

=∑
x′

P y

(
X̃k−1 = x′

∣∣∣ ⋂
n∈T

F X̃]−∞,n]
)
M

y
k

(
x′, x

)
, P y-a.s.,

where Ey denotes expectation w.r.t. P y . So, if
⋂

n∈TF X̃]−∞,n] is not P y-a.s. triv-
ial [cf. (6.3) via Lemmata 4 and 5], regular conditional probabilities of the form
P y(X̃n = x | ⋂n∈TF X̃]−∞,n]) give rise to absolute probabilities for My distinct
from μy , hence card(�My ) > 1. The following is a concrete example of this phe-
nomenon. Throughout the remainder of Section 6.2.1, Assumption 3 is in force.

Let E = {0,1,2,3} and

M0(x, x)= 1/2, M0(x + 1 mod 4, x)= 1/2.

M0 obviously has a unique invariant distribution and Assumption 1 holds. Let Yn =
1{Xn∈{1,3}}. Then the time-reversed model (X+, Y+) coincides up to a relabeling
of states with Chigansky, Liptser and Van Handel (2011), Example 1.1, and as
explained therein (6.2) does not hold, so neither does (6.3). It follows by Theorem 3
that the coupling is not a.s. successful. We can also verify that for this model
card(�My) > 1 for any y ∈�Y by direct calculation in connection with (6.4), so
that the lack of successful coupling can also be deduced from Proposition 6.
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Fix any y = (yn)n∈T ∈�Y . A simple induction argument provides that for any
n ∈ T and x ∈E,

φn(x, yn:0)= 2n−1,

and, therefore, M
y
n is given by

My
n

(
x, x′

)= {2Mn

(
x, x′

)
, yn = x′mod 2,

0, otherwise.
(6.5)

From this, we observe that for each x ∈ E either M
y
n (x, x) = 1 or M

y
n (x, x −

1 mod 4)= 1, and in matrix form M
y
n is as follows, with the case yn = 0 on the left

and the case yn = 1 on the right:⎡
⎢⎢⎣

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

Let A
y
n := {x : yn = x mod 2}. By (6.5), x′ /∈ A

y
n ⇒M

y
n (x, x′)= 0, so we observe

that any πy ∈�My , that is, satisfying the equations

πy
n (x)= ∑

x′∈E

π
y
n−1

(
x′
)
My

n

(
x′, x

) ∀x ∈E,n ∈ T,

must be such that for all n ∈ T,

πy
n (x)=

⎧⎪⎨
⎪⎩

∑
x′∈A

y
n−1

π
y
n−1

(
x′
)
My

n

(
x′, x

)
, x ∈A

y
n,

0, x /∈A
y
n.

(6.6)

Via some simple manipulations, it then follows that if the values {πy
n (x)}x∈A

y
n

are fixed, (6.6) provides two equations which can be solved for the two values
{πy

n−1(x)}x∈A
y
n−1

. So, if for any w ∈ [0,1] we set π
y
0 (x) := wI[x = y0] + (1 −

w)I[x = y0 + 2] and then recursively solve (6.6) for (π
y
n )n∈T\{0}, we obtain by

construction a sequence (π
y
n )n∈T ∈�My uniquely defined by w. Distinct values of

w thus giving rise to distinct members of �My , we therefore have card(�My) > 1.
Moreover, when w = 0 or w = 1 the measure Pπy defined as in (5.12) fixes all its
mass on a single point in �X , and π

y
n is a version of P y(X̃n ∈ · |⋂n∈TF X̃]−∞,n])

as in (6.4).

6.2.2. Reducible signal. Throughout Section 6.2.2, Assumptions 2 and 3 are
in force. The purpose of this example is to illustrate that condition 2 of Theorem 3
is strictly stronger than (6.3), and so the coupling may fail to be a.s. successful
even when (6.3) holds. The main point here is that reducibility of M0 is not ruled
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out by (6.3), and may compromise weak ergodicity of the backward products of
My . Indeed, Let E = {0,1,2,3} and let M0 be given by the matrix⎡

⎢⎢⎢⎢⎣

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2

⎤
⎥⎥⎥⎥⎦ .

Obviously, π0 := [1/2 1/2 0 0] is an invariant distribution for M0 and with
this choice of π0 Assumption 1 is satisfied, since under the probability measure P,
which is constructed using M0 and π0, the (Xn)n∈T are then i.i.d. according to π0.

With M0 as given by the above matrix, φn(0, yn:0) = φn(1, yn:0) and φn(2,

yn:0)= φn(3, yn:0) for all n and yn, . . . , y0, and M
y
n is given by the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0(0, yn)

g0(0, yn)+ g0(1, yn)

g0(1, yn)

g0(0, yn)+ g0(1, yn)
0 0

g0(0, yn)

g0(0, yn)+ g0(1, yn)

g0(1, yn)

g0(0, yn)+ g0(1, yn)
0 0

0 0
g0(2, yn)

g0(2, yn)+ g0(3, yn)

g0(3, yn)

g0(2, yn)+ g0(3, yn)

0 0
g0(2, yn)

g0(2, yn)+ g0(3, yn)

g0(3, yn)

g0(2, yn)+ g0(3, yn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The equalities in the statement of Lemma 3 are satisfied if we take

μy
n(x)= π0(x)g0(x, yn)∑

z∈E π0(z)g0(z, yn)
= g0(x, yn)

g0(0, yn)+ g0(1, yn)
I
[
x ∈ {0,1}],

and then (Xn)n∈T are independent under PFY
(ω, ·) for any ω ∈ �, so that (6.3)

holds by the Kolmogorov 0–1 law. However, condition 2 of Theorem 3 does not
hold: to see this first note that for any y ∈�Y , πy = (π

y
n )n∈T with π

y
n (x)∝ I[x ∈

{2,3}]g0(x, yn) defines a sequence of absolute probabilities for My , distinct from
μy . Then, with A := {ω :Xn(ω) ∈ {0,1} i.o.} ∈⋂nFX]−∞,n],

0= PπY(ω)(A) �= PFY

(ω,A)= 1 ∀ω ∈�.

Thus, we conclude that condition 1 of Theorem 3 does not hold, that is, the cou-
pling is not a.s. successful. Of course, this could have been verified more directly
using Proposition 6; the backward products of My are clearly not weakly ergodic
and in fact Qy(

⋂
n∈T{Tn =−∞})= 1.

6.3. Verifiable conditions for successful coupling. Our next aim is to present
some sufficient conditions for condition 1 of Theorem 3 to hold. We shall make
several uses of the following lemma, the proof of which is mostly technical and is
given in the Appendix.
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LEMMA 6. Suppose that for some n < 0 there exists k ∈ {n + 1, . . . ,0}, a
probability distribution ν and constants (ε−, ε+) ∈]0,∞[ such that

ε−ν
(
x′
)≤Mn,k

(
x, x′

)≤ ε+ν
(
x′
) ∀(x, x′

) ∈E2.(6.7)

Then the following hold:

1. If k = n+ 1 and φn+1(x, yn+1:0) > 0 for all x and yn+1, . . . , y0, then

sup
y∈�Y

β
(
M

y
n,k

)≤ 1− ε−

ε+
< 1.(6.8)

2. If k > n+ 1,

φk+1(x, yk+1:0) > 0 ∀(x, yk+1, . . . , y0) ∈E × Fk(6.9)

and gj (x, y) > 0 for all x, y and j = n+ 1, . . . , k, then

β
(
M

y
n,k

)≤ 1− ε−

ε+
k∏

j=n+1

g−j (yj )

g+j (yj )
< 1 ∀y = (yn)n∈T ∈�Y ,(6.10)

where g−j (y) :=minx gj (x, y), g+j (y) :=maxx gj (x, y).

6.3.1. Almost surely successful coupling. Throughout Section 6.3.1 Assump-
tion 3 is in force. In the examples of Sections 6.2.1 and 6.2.2, it is, respectively,
the issues of degeneracy of the observations and reducibility of M0 which caused
problems for successful coupling. Our next aim is to illustrate that once these two
issues are ruled out, condition 1 of Theorem 3 holds.

Suppose that π0 is the unique invariant distribution of M0,

π0(x) > 0 ∀x ∈E and
(6.11)

lim
n→∞M

(n)
0

(
x, x′

)− π0
(
x′
)= 0 ∀(x, x′

) ∈E2.

It follows that there exists a probability distribution ν, (ε−, ε+) ∈]0,∞[ and m≥ 1
such that

ε−ν
(
x′
)≤M

(m)
0

(
x, x′

)≤ ε+ν
(
x′
) ∀(x, x′

) ∈E2.(6.12)

We shall now argue that, if we adopt also Assumption 2, then for each k ∈ T,

lim
n→−∞β

(
MY

n,k

)= 0, P-a.s.,(6.13)

which is, via Propositions 6 and 1, equivalent to condition 1 of Theorem 3.
Using the submultiplicativity of the Dobrushin coefficient and part 2 of

Lemma 6, we have for any y = (yn)n∈T, and n < k ∈ T,

β
(
M

y
n,k

)≤ �(k−n)/m�−1∏
i=0

β
(
M

y
k−(i+1)m,k−im

)

≤
�(k−n)/m�−1∏

i=0

(
1− f (yk−(i+1)m+1, . . . , yk−im)

)
,
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where f : Fm→]0,1] is given by

f (y1, . . . , ym) := ε−

ε+
m∏

j=1

g−0 (yj )

g+0 (yj )
, (y1, . . . , ym) ∈ Fm.

Since for any sequence (ai)i∈N with values in ]0,1], ∏∞i=0(1 − ai) = 0 ⇔∑∞
i=0 ai =∞, in order to establish (6.13) it suffices to show

∞∑
i=0

f (Yk−(i+1)m+1, . . . , Yk−im)=∞, P-a.s.(6.14)

To this end, let Z
(k)
i = (Xk−(i+1)m+1, . . . ,Xk−im, Yk−(i+1)m+1, . . . , Yk−im). The

time reversed bivariate process (X+, Y+) is a stationary Markov chain under P,
and it follows from (6.11) and the conditional independence structure of the
HMM that the transition kernel of (X+, Y+) has a unique invariant distribution
π0(dx)g0(x, y)ψ(dy), and is uniformly ergodic, in the sense of Meyn and Tweedie
(2009), Chapter 16. Some simple but tedious calculations show that under P,
(Z

(k)
i )i∈N is then also a stationary Markov chain, with transition kernel which ad-

mits a unique invariant distribution and which is uniformly ergodic. So by the
strong law of large numbers for stationary and ergodic Markov chains,

lim
n→∞

1

n

n−1∑
i=0

f (Yk−(i+1)m+1, . . . , Yk−im)

(6.15)
= E

[
f (Y−m+1, . . . , Y0)

]
, P-a.s.

Since f is strictly positive the expectation in (6.15) is strictly positive, hence (6.14)
holds, hence (6.13) holds.

6.3.2. Surely successful coupling. In practice, one is typically presented with
an observation sequence which is not necessarily distributed according to P. It
may then be of some concern that even if one (and then both) of the conditions of
Theorem 3 holds, the coupling may fail to be successful for y in a set of observation
sequences which has zero probability under P. In this section, we discuss some
simple sufficient conditions for the stronger requirement that

Qy

(⋂
n∈T
{Tn >−∞}

)
= 1 ∀y ∈�Y .(6.16)

Suppose that

inf
n∈T min

(x,x′)∈E2
Mn

(
x, x′

)
> 0(6.17)

and assume that for all y = (yn)n∈T ∈�Y

∀n ∈ T,∃x : gn(x, yn) > 0.(6.18)
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An application of part 1 of Lemma 6 gives

sup
y∈�Y

sup
n∈N

β
(
My

n

)
< 1,

so for any k ∈ T and y ∈�Y ,

lim
n→−∞β

(
M

y
n,k

)≤ lim
n→−∞

k∏
n

β
(
M

y
j

)= 0,

which via Proposition 6 and Proposition 1 gives (6.16).
The reader can easily verify that part 2 of Lemma 6 can be used to show that

(6.16) holds under conditions weaker than (6.17) and perhaps at the expense of
strengthening (6.18).

6.4. The case of finitely many observations. In practice, typically only a finite
number of observations are available, say y0, . . . , ym for some m ∈ T, and one
aims to sample from conditional distributions of the form P(Xn ∈ · | FY[m,0]), for
some n ≥m. There are a number of ways the coupling method can be applied in
this situation.

As an example, fix m ∈ T and suppose for simplicity of exposition that Mn does
not depend on n, and has unique invariant distribution π . Let the probability space
of Section 5.3 be augmented so as to also support an E-valued random variable
Zm such that with y fixed, Qy makes Zm independent of (ξx

n ;x ∈E;n ∈ T), and

Qy(Zm = x)= π(x)gm(x, ym)φm+1(x, ym+1:0)∑
x′∈E π(x′)gm(x′, ym)φm+1(x′, ym+1:0)

=: π̄y
m(x).

Also introduce a random variable Z0 such that on the event {T0 ≥ m}, Z0 :=
�T0,0(x) for an arbitrary x ∈ E; and on the event {T0 < m}, Z0 := �m,0(Zm).
Then using the fact that on the event {T0 ≥m}, �T0,0(x)=�m,0(x

′) for all x′, we
have

Qy(Z0 = z)

=Qy({Z0 = z} ∩ {T0 ≥m})+Qy({Z0 = z} ∩ {T0 < m})
=Qy({�T0,0(x)= z

}∩ {T0 ≥m})+Qy({�m,0(Zm)= z
}∩ {T0 < m})

=Qy({�m,0(Zm)= z
}∩ {T0 ≥m})+Qy({�m,0(Zm)= z

}∩ {T0 < m})
=Qy(�m,0(Zm)= z

)= ∑
x′∈E

π̄y
m

(
x′
)
M

y
m,0

(
x′, z

)
,

and it is easily checked that
∑

x′∈E π̄Y
m(x′)MY

m,0(x
′, z)= P(X0 = z |FY[m,0]), P-a.s.

Some modifications of Algorithm 1 facilitate the sampling of Z0. The “while”
line is replaced by

while card(image of �n,0) > 1 and n > m
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and the “return” line is replaced by

if card(image of �n,0)= 1

return Z0 =�n,0(x), for any x ∈E,

else

sample Zm from the distribution on E with

prob(Zm = x)∝ π(x)gm(x, ym)φm+1(x, ym+1:0)
and return Z0 =�m,0(Zm).

The resulting procedure may be computationally cheaper than direct calculation
and sampling from

∑
x∈E π̄

y
m(x)M

y
m,0(x, ·) if T0�m.

6.5. Numerical examples.

6.5.1. Sensitivity to model misspecification. The purpose of this example is
to numerically investigate an HMM for which the coupling is almost surely suc-
cessful, that is, limn→−∞ β(MY

n,k)= 0, P-a.s., but for which β(MY
n,k) converges to

zero very slowly or perhaps even remains bounded away from zero as n→−∞
when the HMM is misspecified, in the sense that Y is not distributed according
to P.

Consider E = {1,2,3}, F =R, ψ Lebesgue measure, and a time-homogeneous
HMM, that is, Assumption 3 holds, with for some δ ∈ (0,1), M0 written in matrix
form:

M0 =
⎡
⎣1− δ δ 0

δ/2 1− δ δ/2
0 δ 1− δ

⎤
⎦ ,

g0(1, y)= g0(3, y)= e−y2/2
√

2π
, g0(2, y)= e−(y−1)2/2

√
2π

.

Clearly, Assumption 2 holds and (6.12) holds with m= 2. Hence, by the arguments
of Section 6.3.1, for all k ∈ T, limn→−∞ β(MY

n,k)= 0, P-a.s.
Figure 1 illustrates β(M

y
n,0) and histograms of the coupling time T0 obtained

from 104 independent runs of Algorithm 1, for three different data sequences y.
The first, corresponding to the left column of plots, was drawn from P, with the
true sequence of hidden states also shown. The second, corresponding to the mid-
dle column, is a sample path of the process: Y0 = 0 and Yn = Yn+1 + Vn, where
the Vn are i.i.d. N (0,0.25). The third, corresponding to right column, is a re-
alization of Yn = 0.003n + Vn. To interpret these plots, note that for x ∈ {1,3},
limy0→−∞ g(2, y0)/g(x, y0)= 0, and similarly, if it were true that the observation
sequence were constant yn = yn+1 = · · · = y0, elementary manipulations show
that for x ∈ {1,3}, limy0→−∞M

y
n,0(x, x)= 1, hence limy0→−∞ β(M

y
n,0)= 1. The
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FIG. 1. Top row: yn vs. n (top left plot also shows true sequence of hidden states). Middle row:
β(M

y
n,0) vs. n. Bottom row: histograms of T0 obtained from 104 runs of the algorithm. First column

corresponds to data simulated from the HMM, second and third columns correspond to data from
misspecified models. In the first and second cases, all of the 104 realizations of T0 were valued
within {−200, . . . ,0}, for the third case, only 50.3% of the 104 realizations of T0 were valued in
{−200, . . . ,0}, the remaining realizations are not shown on the bottom-right histogram.

plots in the second and third columns reflect a similar phenomenon, namely that
long sequences of negative observations may slow down the convergence to zero of
β(M

y
n,0) as n→−∞. In the case of the third column, it is notable that β(M

y
n,0) ap-

pears to be bounded away from zero, indeed the same phenomenon was observed
in much longer runs of the algorithm (numerical results not shown).

6.5.2. Simulating multiple samples. Running Algorithm 1 several times in or-
der to obtain multiple i.i.d. samples from π

y
0 may be prohibitively expensive. Con-

sider the following procedure:

1. Fix n, compute M
y
n,0 and obtain an exact sample X�

n from π
y
n using the perfect

sampling scheme.
2. Given X�

n, drawn N conditionally independent samples,

X
(i)
0 ∼M

y
n,0

(
X�

n, ·
)
, i = 1, . . . ,N.
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TABLE 1
In the second row, λ

y
n := Law(X

(1)
0 ,X

(2)
0 ), where X

(1)
0 ,X

(2)
0 are obtained from step 2 of the

procedure, that is, X
(i)
0 ∼M

y
n (X�

n, ·). The third to fifth rows show mean percentage of overall CPU

time spent on step 1, with estimated standard deviation in parentheses, obtained from 104 runs

n = 5 n = 10 n = 25 n = 50 n = 100

‖λy
n − π

y
0 ⊗ π

y
0 ‖ 0.27 0.014 0.0033 3.3× 10−4 <10−6

% time N = 102 23 (25) 26 (29) 41 (27) 43 (10) 47 (22)
step 1 N = 103 4.2 (4.5) 4.8 (5.6) 9.2 (5.1) 9.8 (1.6) 11 (3.8)

N = 104 0.53 (0.57) 0.61 (0.72) 1.2 (0.66) 1.3 (0.20) 1.5 (0.49)

Since X�
n ∼ π

y
n and

∑
x π

y
n (x)M

y
n,0(x, ·)= π

y
0 (·), the samples (X

(i)
0 ; i = 1, . . . ,N)

each have marginal distribution π
y
0 , but are not independent in general. Indeed

writing λ
y
n for the joint distribution of (X

(1)
0 ,X

(2)
0 ),∥∥λy

n − π
y
0 ⊗ π

y
0

∥∥
= 1

2

∑
x,x′

∣∣∣∣∑
z

πy
n (z)M

y
n,0(z, x)M

y
n,0

(
z, x′

)− π
y
0 (x)π

y
0

(
x′
)∣∣∣∣.

Conditional ergodicity dictates this quantity converges to zero as n→−∞. Ta-
ble 1 shows numerical values against n, for the HMM of Section 6.5.1 with the
data sequence shown in the top-left plot of Figure 1 and with π

y
n and π

y
0 approxi-

mated by M
y
−1000,n(1, ·) and M

y
−1000,0(1, ·). Also shown is the average percentage

of CPU time spent on step 1 of the above two step procedure, obtained from 104

independent runs. The algorithms were implemented in Matlab on a 2.80 GHz
desktop PC. These results illustrate that step 1, which amounts to guaranteeing
that the marginal distribution of each X

(i)
0 is exactly π

y
0 , is relatively cheap when

N is large, even when n is large enough to make the pairwise dependence between
X

(1)
0 and X

(2)
0 negligible.

6.6. Outlook. How much of all this can be generalized beyond the case in
which E is a finite set? We believe: quite a lot, although the work involved is non-
trivial. Of course if E is not a finite set, then we have to let go of Fact 1; without
further assumption there is no guarantee that even a single sequence of absolute
probabilities for M exists. The coupling we have specified in Section 3 relies heav-
ily on the fact that E contains only finitely many points, but a generalization via
the kind of mechanisms used for backward coupling of homogeneous chains [see,
e.g., Foss and Tweedie (1998) and references therein] may be feasible, and that
would be the starting point from which to investigate generalization of Theorem 1.
Quite a few of the arguments used in the proof of Theorem 2 do not really rely on
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E being a finite set. Regarding the application to HMMs, as soon as E contains
infinitely many points, then with a few exceptions such as the linear-Gaussian
state-space model, the functions φn(x, yn:0) are not available in closed form, so
sampling from the kernels M

y
n becomes nontrivial and the perfect simulation al-

gorithm may lose its practical relevance. Overall though, there are several possible
avenues for further investigation.

APPENDIX

PROOF OF LEMMA 2. First, we claim that for any nonnegative measurable
function f , the following holds P-a.s.:

E
[
f (Xn−1, Yn, . . . , Y0) | σ(Xn−1)

]
(A.1)

=
∫

f (Xn−1, yn, . . . , y0)φn(Xn−1, yn:0)ψ⊗(|n|+1)(d(yn, . . . , y0)
)
.

The right-hand side of (A.1) is clearly measurable w.r.t. σ(Xn−1), so to prove the
claim it remains to check that for any xn−1 ∈E,∫

A(xn−1)

∫
f (Xn−1, yn, . . . , y0)φn(Xn−1, yn:0)ψ⊗(|n|+1)(d(yn, . . . , y0)

)
dP

(A.2)
=
∫
A(xn−1)

f (Xn−1, Yn, . . . , Y0) dP,

where A(xn−1) is the event {Xn−1 = xn−1}. It follows from (5.1) and by writing
out the definition of φn in (5.4) that the left-hand side of (A.2) is equal to

πn−1(xn−1)

∫
f (xn−1, yn, . . . , y0)φn(xn−1, yn:0)ψ⊗(|n|+1)(d(yn, . . . , y0)

)

=
∫

πn−1(xn−1)f (xn−1, yn, . . . , y0)
∑

(xn,...,x0)

0∏
k=n

Mk(xk−1, xk)Gk(xk, dyk),

which is also equal to the right-hand side (A.2), thus completing the proof of (A.1).
Next, note that MY

n (Xn−1, x) is measurable w.r.t. FY[n,0] ∨ σ(Xn−1), so in or-
der to complete the proof of the lemma it remains, by a standard monotone class
argument, to show∫

{Xn−1=xn−1}
I
[
(Yn, . . . , Y0) ∈A

]
MY

n (Xn−1, x) dP

(A.3)
= P

({Xn−1 = xn−1} ∩ {(Yn, . . . , Y0) ∈A
}∩ {Xn = x}),

for any xn−1, x ∈ E and A ∈ B(F )⊗(|n|+1). We proceed by fixing x and applying
(A.1) with f (xn−1, yn, . . . , y0)= I[(yn, . . . , y0) ∈ A]My

n (xn−1, x), we have using
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the definitions of M
y
n (xn−1, x), φn+1 and P that the following equalities hold P-

a.s.:

E
[
I
[
(Yn, . . . , Y0) ∈A

]
MY

n (Xn−1, x) | σ(Xn−1)
]

=
∫
{(yn,...,y0)∈A}

Mn(Xn−1, x)gn(x, yn)φn+1

× (x, yn+1:0)ψ⊗(|n|+1)(d(yn, . . . , y0)
)

= P
({

(Yn, . . . , Y0) ∈A
}∩ {Xn = x} | σ(Xn−1)

)
,

using this identity and the tower property of conditional expectation, we can
rewrite the left-hand side of (A.3) as∫

{Xn−1=xn−1}
I
[
(Yn, . . . Y0) ∈A

]
MY

n (Xn−1, x) dP

=
∫
{Xn−1=xn−1}

E
[
I
[
(Yn, . . . , Y0) ∈A

]
MY

n (Xn−1, x) | σ(Xn−1)
]
dP

=
∫
{Xn−1=xn−1}

P
({

(Yn, . . . , Y0) ∈A
}∩ {Xn = x} | σ(Xn−1)

)
dP

= P
({Xn−1 = xn−1} ∩ {(Yn, . . . , Y0) ∈A

}∩ {Xn = x}).
Equality (A.3) therefore holds and this completes the proof of the lemma. �

REMARK 4. We note that the arguments of the above proof rely on the defini-
tion in (5.5) only through the values taken by M

y
n (x, ·) on the support of φn.

PROOF OF LEMMA 4. To prove FX
I = {A×�Y ;A ∈ F X̃

I }, we need to show

that CX
I := {A×�Y ;A ∈F X̃

I } is the smallest σ -algebra of subsets of � w.r.t. which
all the (Xn)n∈I are measurable. We break this down into three steps: (i) show that
CX

I is a σ -algebra; (ii) show that every (Xn)n∈I is measurable w.r.t. CX
I ; (iii) show

that if any set is removed from CX
I then the resulting collection of sets either does

not contain X−1
n (A) for some n ∈ I and A ∈ B(E), or is not a σ -algebra.

Step (i) is immediate since F X̃
I is by definition a σ -algebra and �Y is nonempty

(because F is by definition nonempty). For step (ii), we have by definition of F X̃
I

that for any n ∈ I and A ∈ B(E), X̃−1
n (A) ∈ F X̃

I and X−1
n (A)= η−1 ◦ X̃−1

n (A)=
X̃−1

n (A) × �Y , hence X−1
n (A) ∈ CX

I . For step (iii), for an arbitrary B ∈ F X̃
I let

us remove the set B × �Y from CX
I , the resulting collection of sets being {A ×

�Y ;A ∈ F X̃
I \ B} =:DX

I . Since F X̃
I is the smallest σ -algebra w.r.t. which all the

(X̃n)n∈I are measurable, either there exists some n ∈ I and A ∈ B(E) such that
X̃−1

n (A) /∈ F X̃
I \ B , or F X̃

I \ B is not a σ -algebra. In the former case, X−1
n (A) =

η−1 ◦ X̃−1
n (A) = X̃−1

n (A) × �Y /∈ DX
I , that is, Xn is not measurable w.r.t. DX

I .
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In the latter case, we claim that DX
I is not a σ -algebra. To prove this claim, we

shall argue to the contrapositive that for C̃ any collection of subsets of ET, if D :=
{A×�Y ;A ∈ C̃} is a σ -algebra, then C̃ is a σ -algebra. To this end, observe: if D
contains �, then C̃ contains �X; if D is closed under complements, then A ∈ C̃⇒
A×�Y ∈ D⇒ (A×�Y )c ∈ D⇒ Ac ×�Y ∈ D⇒ Ac ∈ C̃, that is, C̃ is closed
under complements; if D is closed under countable unions, An ∈ C̃⇒An ×�Y ∈
D⇒⋃

n∈N(An × �Y ) ∈ D⇒ (
⋃

n∈N An)× �Y ∈ D⇒⋃
n An ∈ C̃, that is, C̃ is

closed under countable unions. This completes the proof of FX
I = {A×�Y ;A ∈

F X̃
I }, from which (5.10) follows directly. �

PROOF OF LEMMA 5. As a consequence of Lemma 3, there exists H ∈ FY

with P(H) = 1 such that for all ω ∈ H ,
∑

z∈E μ
Y(ω)
n−1 (z)M

Y(ω)
n (z, x) = μ

Y(ω)
n (x)

for all n and x. Set H̃ = Y(H). For y ∈ H̃, we are assured by the usual extension
argument of the existence of P y(·) a measure with the desired properties. For
y /∈ H̃ set P y(·) to an arbitrary probability. We thus obtain the desired kernel.
It follows from Lemma 4 that every set in FX is of the form A × �Y for some
A ∈ F X̃ , and then PFY

is a probability kernel because P is. In order to establish
(5.11), we argue as follows. With P ◦ Y−1 the push-forward of P by Y , define
P̃(A) := ∫�X×�Y I[(x, y) ∈A]P y(dx)(P ◦ Y )(dy), which is a probability measure

on (�,F) and by construction P̃(A×�Y |FY )(ω)= PFY
(ω,A× F), P̃-a.s., for

each A ∈ F X̃ . The proof of (5.11) will be complete if we can show that P̃ = P,
since then P̃(· |FY )= P(· |FY ). For P̃= P, it is sufficient that for each n ∈ T and
A ∈ Fn, P̃(A) = P(A), and the latter holds since, using (5.2), (5.3), Lemmata 2
and 3,

P̃(A)=
∫ ∑

(xn,...,x0)∈En+1

I
[
(x, y) ∈A

]
μy

n(xn)

0∏
k=n+1

M
y
k (xk−1, xk)(P ◦ Y )(dy)

= E
[
E
[
E
[· · ·E[I[(X,Y ) ∈A

] |FY ∨FX]−∞,0]
] · · · |FY ∨FX]−∞,n]

] |FY ]]
= P(A).

The proof of the lemma is complete. �

PROOF OF LEMMA 6. Throughout the proof, fix y ∈�Y . For 1, first note that
by (5.4) and (6.7),

ε−ν(gφ)
y
n+2 ≤ φn+1(x, yn+1:0)≤ ε+ν(gφ)

y
n+2,(A.4)

where

ν(gφ)
y
n+2 :=

∑
z

ν(z)gn+1(z, yn+1)φn+2(z, yn+2:0) > 0,
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the positivity being due to the hypotheses of 1 combined with (A.4) and ε+ > 0. It
follows from (5.6), (5.5), the hypothesis of 1, (6.7) and (A.4) that

M
y
n,k

(
x, x′

)=M
y
n+1

(
x, x′

)
= Mn+1(x, x′)gn+1(x

′, yn+1)φn+2(x
′, yn+2:0)

φn+1(x, yn+1:0)

≥ ε−

ε+
ν(x′)gn+1(x

′, yn+1)φn+2(x
′, yn+2:0)

ν(gφ)
y
n+2

,

thus there exists a probability distribution ν̃
y
n+1 such that M

y
n+1(x, x′) ≥

ε−
ε+ ν̃

y
n+1(x

′). Combining this fact with the expression for β(·) in (2.1) gives (6.8).
A simple induction shows that when (6.9) and the hypotheses of 2 hold,

φj (x, yj :0) > 0 for all x and j = k + 1, k, . . . , n + 1. Combining this fact with
(5.6), (5.5), (5.4) and (6.7),

M
y
n,k(xn, xk)

=
∑

(xn+1,...,xk−1)
(
∏k

j=n+1 Mj(xj−1, xj )gj (xj , yj ))φk+1(xk, yk+1:0)
φn+1(xn, yn+1:0)

≥ Mn,k(xn, xk)φk+1(xk, yk+1:0)∑
z Mn,k(xn, z)φk+1(z, yk+1:0)

k∏
j=n+1

g−j (yj )

g+j (yj )

≥ ε−

ε+
ν(xk)φk+1(xk, yk+1:0)∑

z ν(z)φk+1(z, yk+1:0)

k∏
j=n+1

g−j (yj )

g+j (yj )
,

and the final denominator is strictly positive due to (6.9). Using again (2.1)
gives (6.10). �
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