

Rodrigues, J. C., McIntyre, B., Dastidar, A. G., Burchell, A. E., Ratcliffe, L. E., Hart, E. C., ... Manghat, N. E. (2015). Improving the poor diagnostic accuracy of the ECG at detecting prognostically significant left ventricular hypertrophy in hypertensive patients. Journal of Cardiovascular Magnetic Resonance, 17(Suppl 1), [P234]. DOI: 10.1186/1532-429X-17-S1-P324

Publisher's PDF, also known as Version of record

License (if available): CC BY Link to published version (if available): 10.1186/1532-429X-17-S1-P324

Link to publication record in Explore Bristol Research PDF-document

This is the final published version of the article (version of record). It first appeared online via BioMed Central at http://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-17-S1-P324. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html

Open Access

POSTER PRESENTATION

Improving the poor diagnostic accuracy of the ECG at detecting prognostically significant left ventricular hypertrophy in hypertensive patients

Jonathan C Rodrigues^{1,2*}, Bethannie McIntyre³, Amardeep Ghosh Dastidar¹, Amy E Burchell⁴, Laura E Ratcliffe⁴, Emma C Hart^{4,2}, Julian F Paton^{2,4}, Chiara Bucciarelli-Ducci¹, Mark Hamilton¹, Angus K Nightingale⁴, Nathan E Manghat¹

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

Normalised left ventricular mass (LVM) is a powerful prognostic tool. Traditionally, normalising has been achieved by indexing LVM to body surface area (BSA). A recent 'Multiethnic Study of Atherosclerosis' (MESA) sub-study demonstrated indexing LVM to height^{1.7} is more sensitive at identifying left ventricular hypertrophy (LVH) associated with cardiovascular events and all-cause death. We evaluated the ability of the ECG, an universal investigation in patients with hypertension, to detect LVH defined traditionally by LVM/BSA and by the prognostically more important LVM/height^{1.7} method using CMR (non-invasive gold-standard for LVM).

Methods

111 consecutive patients (mean age: 52.1±14.4 years, 51.4% male) from our tertiary hypertension clinic who underwent CMR were included. LVM was estimated using established CMR methods. Papillary muscles were included in LVM, using blood thresholding contouring software. LVH was defined as >95% confidence interval of normal references values for LVM/BSA and for LVM/ height^{1.7} respectively. A contemporaneous 12-lead ECG was assessed, by a clinician blinded to CMR data, for the following LVH criteria: Gubner-Ungerleider, Sokolow-Lyon voltage, Sokolow-Lyon product, Cornell voltage, Cornell product, Romhilt-Estes 4-point and 5-point. Sensitivity, specificity, positive predictive valve (PPV), negative predictive value (NPV), and accuracy were calculated.

¹CMR Unit, NIHR Cardiovascular Biomedical Research Unit, Bristol Heart Institute, Bristol, UK

Full list of author information is available at the end of the article

Area under the receiver operator curve analysis (ROC-AUC) was performed.

Results

LVH was present in 43.2% by LVM/BSA and 32.4% by LVM/height^{1.7}. There was no consistent trend in ROC-AUC values for detecting LVH as defined by LVM/ height^{1.7} compared to LVM/BSA (Figure 1). The highest sensitivity (56%) was achieved by Gubner-Ugerleider and Cornell product) and the highest specificity (91%) by Sokolow-Lyon product for LVM/height^{1.7}. Combining ECG criteria improved these sensitivities and specificities; if Gubner-Ugerleider or Cornell product were positive, sensitivity increased to 75% (accuracy 65%) and if both Sokolow-voltage product and Cornell voltage were negative, specificity increased to 99% (accuracy 71%).

Subgroup analysis by gender (Figure 2) revealed higher maximal sensitivity for men (77% by Romhilt-Estes 5point) compared to women (67% by Gubner-Ugerleider) but lower maximal specificity for men (93% by Sokolow-Lyon product and Cornell voltage) compared to women (100% by Sokolow-Lyon product). There was a trend towards higher ROC-AUC values for women compared to men.

Conclusions

Relative to CMR, standard 12-lead ECG criteria of LVH have a wide range of predictive values (but consistently greater specificity than sensitivity) in a tertiary hypertension clinic setting with high LVH prevalence. The poor diagnostic accuracy at detecting prognostically significant LVH highlights the ECG's limitations as a screenign tool for cardiac end-organ damage in hypertension. Combining

© 2015 Rodrigues et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

	ROC-AUC (95% CI)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	ACC (%)
Gubner-Ungerleider						
LVM/BSA	0.58 (0.472-0.689)	54	69	65	69	68
LVM/height ^{1.7}	0.551 (0.439-0.66)	56	73	50	78	68
Sokolow-Lyon product						
LVM/BSA	0.562 (0.452-0.671)	27	97	87	64	67
LVM/height ^{1.7}	0.629 (0.517-0.740)	22	91	53	71	69
Cornell voltage						
LVM/BSA	0.531 (0.423-0.639)	42	83	65	65	65
LVM/height ^{1.7}	0.495 (0.375-0.615)	50	83	58	78	72
Cornell product						
LVM/BSA	0.531 (0.423-0.639)	54	75	62	68	66
LVM/height ^{1.7}	0.495 (0.375-0.615)	56	71	48	77	66
Sokolow-Lyon voltage						
LVM/BSA	0.541 (0.431-0.651)	29	94	78	63	66
LVM/height ^{1.7}	0.625 (0.512-0.738)	25	88	50	71	68
Romhilt-Estes 4p						
LVM/BSA		29	92	74	63	65
LVM/height ^{1.7}		28	88	53	72	68
Romhilt-Estes 5p						
LVM/BSA	31	60	71	60	70	67
LVM/height ^{1.7}		47	60	36	70	56

Table 2. Subgroup analysis by gender (ROC-AUC = receiver operator curve-area under curve. Cl = confidence interval. PPV = positive predictive value. NPV = redictive values, ACC = accuracy, LVM = LV mass, BSA = body surface area, 4p = 4-point, 5p = 5-point) ve p Sensitivity (%) Specificity (%) ROC-AUC (95% CI) PPV (%) NPV (%) ACC (%) Gubner-Ungerleider Men 0.746 (0.617 - 0.874) 47 81 74 58 63 Women 0.747 (0.593 - 0.901) 67 75 57 82 72 Sokolow-Lyon product Men 0.72 (0.585 - 0.855) 93 83 61 33 56 0.74 (0.593 - 0.887) 100 Women 17 100 71 72 rnell voltage 0.723 (0.591 – 0.855) Men 33 93 83 56 61 0.775 (0.647 - 0.902) Women 56 75 52 77 69 Cornell product 0.758 (0.633 - 0.883) 57 65 72 Men 57 89 0.711 (0.566 - 0.855) 64 72 Women 41 59 50 Sokolow-Lyon voltage 0.617 (0.469 - 0.764) Men 33 89 77 55 60 Women 0.73 (0.58 - 0.88) 22 97 80 71 72 Romhilt-Estes 4p 37 61 Men 89 79 56 Women 17 94 60 69 69 Romhilt-Estes 5p Men 77 48 62 65 63 Women 33 89 60 72 70 Figure 2 Subgroup analysis by gender.

ECG criteria and using different criteria for men and women improve the ECG's performance.

Funding

NIHR Bristol Cardiovascular Biomedical Research Unit, Bristol Heart Institute.

JCLR: Clinical Society of Bath Postgraduate Research Bursary.

ECH: BHF grant IBSRF FS/11/1/28400.

Authors' details

¹CMR Unit, NIHR Cardiovascular Biomedical Research Unit, Bristol Heart Institute, Bristol, UK. ²School of Physiology and Pharmacology, The University of Bristol, Bristol, UK. ³Foundation School, Severn Postgraduate Deanery, Bristol, UK. ⁴Cardionomics Research Group, Bristol Heart Institute, Bristol, UK. Published: 3 February 2015

doi:10.1186/1532-429X-17-S1-P324 Cite this article as: Rodrigues *et al.*: Improving the poor diagnostic accuracy of the ECG at detecting prognostically significant left ventricular hypertrophy in hypertensive patients. *Journal of Cardiovascular Magnetic Resonance* 2015 17(Suppl 1):P324.