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GaN-on-Si power devices are being intensively researched for high frequency, high efficiency 

switching applications, however they have been found to be susceptible to dynamic RON instabilities 

where the on-state resistance is affected by off-state bias. Dynamic RON is primarily the result of 

negative charge storage in the buffer during off-state operation, and limits application efficiency. 

Hence it is critical to understand and control the charge storage and transport mechanisms in the 

complex multi-layer buffer structure under all possible bias stress conditions. In this work, we 

demonstrate for the first time that electron injection and trapping can occur under reverse drain-bias 

conditions resulting in unacceptable increase in RON. We explain the trapping and de-trapping 

mechanisms and show that this vulnerability, which could occur in poorly designed switching circuits, 

applies even to devices showing low dynamic RON under normal drain bias conditions.  

 

The GaN-on-Si power devices reported here use a buffer stack comprising an undoped GaN channel, 

a carbon-doped layer, and an AlGaN-based strain-relief layer grown on p-type Si. They have excellent 

dynamic RON behavior [1]. We simplify the situation by considering only quasi-1D vertical transport, 

monitoring the electric field under the channel by measuring the channel conductivity and varying 

substrate bias. Fig. 1 shows the layer structure and ungated 18μm long TLM device structure which it 

is important to note is surface insensitive in this experiment. 

 

We consider the impact of positive bias on the Si substrate, corresponding to the situation of negative 

drain bias in a transistor. Vertical leakage paths and trap location are extracted using the substrate bias 

ramp technique [2, 3]. Fig. 2 shows that when the substrate is first ramped from 0 to +300V, the 

channel conductivity is essentially constant, but on the return sweep back to 0V, and all subsequent 

sweeps, the conductivity changes linearly with VSUB indicating electron trapping during the initial 

sweep. Complementary current transient measurements [4] (Fig. 3) show an insignificant conductivity 

increase when VSUB is stepped to +100V (“trapping”), but when VSUB returns to 0V (“de-trapping”), 

the electron trapping becomes obvious as an unacceptable drop in conductivity. The charge is retained 

for many hours even at 100°C.  

 

The trapping mechanism and why it results in the long period drop in channel conductivity is 

explained in Fig. 4. The C-doped GaN layer is very weakly p-type with the Fermi-level pinned 

~0.9eV above the valence band at the CN (0/-) acceptor level [5]. Hence there is a P-N junction 

between the 2DEG and the C-doped buffer. Applying positive VSUB forward biases the junction and 

injects electrons into the buffer in an extremely fast process. Those electrons are then trapped in 

neutral deep acceptors, either in the C-doped GaN or at the top of the strain relief layer (②). The 

amount of charge injected is self-limiting and proportional to the applied substrate bias since the built-

in field associated with this trapped negative charge prevents any further electron injection. This 

stored charge then reduces the channel conductivity at VSUB=0V (③). The de-trapping transient, 

involves charge redistribution within the GaN:C (④) followed by eventual leakage of the trapped 

electrons to the contacts but only after 1000’s of seconds. 

 

Under normal circumstances, GaN power devices would only be exposed to a positive drain bias 

(corresponding to negative substrate bias), but this study makes it clear that transistors must be 

protected against any transient conditions that expose the drain to negative drain bias since that would 

forward bias the channel-to-buffer diode and result in significant and long-period electron trapping.           
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Fig. 1. Schematic cross-section of the device 

structure. Source-drain gap is 18um, width 100um 

and VSD=1V. Overlaid is a lumped element circuit 

representation of the buffer. 
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Fig. 2. Substrate ramp experiment. Source-drain current 

as VSUB is swept from 0 to +300V to 0V at the indicated 

ramp rates. The initial ramp is clamped at 10mA as 

trapping occurs, with subsequent ramps showing 

behavior characteristic of capacitive coupling between 

the 2DEG and the Si substrate and no further trapping. 
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Fig. 4. Schematic band diagrams for the structure during 

ramp or transient experiment.  ① Initial state.  
② Barrier is lowered and electrons are injected from 
2DEG into the GaN where they are trapped in 
acceptors in a self-limiting process. ③ Trapped 
electrons produce a built-in field which lowers the 
2DEG density. ④ Hole conduction within the GaN:C 
results in an equipotential in this layer, increased 
depletion charge at the top of the layer and a further 
reduction in 2DEG charge.  
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Fig. 3. Transient experiment. Source-drain 

current, as VSUB is stepped from 0V to 100V and 

then held for 1000s (trapping phase) before 

stepping back to 0V for 1000s (de-trapping 

phase). Initial current at VSUB=0V was 7.02mA 

and is marked with an arrow. VDS=1V. 


