
 Moctezuma Eugenio, J. C., McGeehan, J. P., & Nunez-Yanez, J. L. (2015).
Biologically compatible neural networks with reconfigurable hardware.
Microprocessors and Microsystems, 39(8), 693-703. DOI:
10.1016/j.micpro.2015.09.003

Peer reviewed version

Link to published version (if available):
10.1016/j.micpro.2015.09.003

Link to publication record in Explore Bristol Research
PDF-document

(C) 2015 Elsevier B.V. All rights reserved.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.micpro.2015.09.003
http://research-information.bristol.ac.uk/en/publications/biologically-compatible-neural-networks-with-reconfigurable-hardware(38fc72b1-e13c-46a9-bee6-a53e31e4ca7f).html
http://research-information.bristol.ac.uk/en/publications/biologically-compatible-neural-networks-with-reconfigurable-hardware(38fc72b1-e13c-46a9-bee6-a53e31e4ca7f).html

Biologically compatible neural networks with reconfigurable

hardware

Juan Carlos Moctezuma1,2, Joseph P. McGeehan1 and Jose Luis Nunez-Yanez2

1CCR Group, Electronic Engineering, University of Bristol, Bristol, U.K

2Micro Group, Electronic Engineering & Computer Science, University of Bristol, Bristol, U.K.

eejcme@bristol.ac.uk, j.l.nunez-yanez@bristol.ac.uk, j.p.McGeehan@bristol.ac.uk

Keywords: FPGA neuro-simulator, synaptic integration, biophysically accurate model, hardware neuro modelling,

Traub model, Pinsky-Rinzel model, biological compatible neurons.

Abstract: This paper presents a reconfigurable hardware neuro-simulator specifically designed to emulate

biophysically accurate and biologically compatible neural networks. The platform is based on FPGA

technology which is used to create real-time custom neuroprocessors with floating point accuracy and a

novel hybrid time-event driven architecture for synaptic integration. Through a series of experiments the

dynamics of the neuroprocessors are evaluated and compared with real neuron responses. The problem of

interconnecting neurons with individual synapses is tackled with a novel synaptic architecture where all

incoming synapses are merged efficiently in one single accumulative process without losing biological

information. The case studies demonstrate the suitability of conductance-based models and FPGA

platforms to simulate living organisms’ behaviour in a biological compatible context.

1 INTRODUCTION

There are two major research areas for modelling neural systems: based on simplified neuron models

(behaviour-based model) in a large neural network or using realistic neuron models (also called conductance-

based models) in a size-constraint neural network. In simplified models, some biological information is

sacrificed in order to save computational resources and build large neural networks e.g. several thousands or

millions of neurons. On the other hand, realistic models treat the neuron aspects from the point of view of ionic

conductances and they can emulate a great variety of complex dynamics at the ionic level that are present in

real neurons. The main goal of this work is the design of a suitable hardware platform to support the simulation

of biologically accurate neural systems. The paper also shows the importance of bio-realistic modelling in size-

constraint neural systems using bio-compatible neuron models. In nature, we have many examples of such

small neural networks; for instance the nervous system behaviour of the Caenorhabditis elegans worm has

been investigated and it has around 300 neurons [1], song recognition and sound localization have been

analysed in the auditory nervous system of the grasshopper [2]; even the question of “how powerful a single

neuron is?” has been investigated by several researchers [3]. Therefore the study of such size-constrain systems

is crucial to understand the nervous system in many biological organisms presented in nature and the

realization of simulation platforms to support such systems is needed.

Conductance-based modelling is suitable to emulate realistic neuron models since it is consistent with the

dynamics of real neurons and it can incorporate as much cellular detail as it is needed. One of the most

important features of these models is that they are biophysically compatible and hence neuroscientists,

biologists, psychologists can, at certain level, study their properties and co-relate directly parameters with their

biological counterparts. With these models we can explore the dynamics of neurons at cellular level [4].

However the main drawback is that they are highly computational-intensive limiting simulations to small

nervous systems or single neurons.

In this work, we take the two-compartment Pinsky-Rinzel (P-R) model as the keystone of the bio-realistic

neuron and develop a neuro-simulator able to generate actions potentials for several case studies with real

applications in Biology. The suitability of the neuro-simulator is validated successfully through a series of

experiments. In this context, the main contributions of this work are:

1. The neuron dynamic’s study and characterization of the single and two-compartment P-R neuron model

for the hardware implementation.

2. A neuroprocessor architecture with better performance and latency/area reduction using hardware

design methodologies including: efficient exponential operation and novel event-time-driven for the

synaptic integration.

3. A number of case studies that show the advantages of conductance-based models to simulate accurate

biological neural networks and the suitability of FPGA technology for this task.

4. The full platform including the VHDL source code and case studies has been made available open-

source.

The present paper is organized as follows: in section 2 a review of the main related work done in neuro-

simulation is presented; in section 3 a brief introduction to P-R representation and numerical methods applied

to the hardware system are introduced; then the hardware design methods including a novel synaptic

integration architecture are described in section 4; in section 5 the details of the complete FPGA-based neuro

simulator are presented; to validate the simulator section 6 develops a number of case studies which are

analysed in a biological meaningful context; finally in section 7 the conclusions and future work are discussed.

2 Review of previous work

Several neural simulators have been developed to emulate the activities of living brain cells and tissues on

different scientific computing platforms. In practice, there are different kind of neuro-simulators platforms;

among the most important are software tools, parallel computing platforms, dedicated analogue and VLSI

chips, GPU-based platforms and FPGA-based platforms.

Software-based neuro-simulators offer good flexibility, they allow to incorporate custom models and to use

a great variety of built-in models, from reduced integrate-and-fire to complex multi-compartment conductance-

based models. Also there are good options for conductance-based modelling which permits biophysically

realistic neuron simulations such as NEURON, CNS and GENESIS [5]. In addition, the parallel computing

solutions (accelerated co-simulation through specific hardware devices connected to a PC) overcome the

limitations that CPU have. However the diversity in programming languages that each simulator has and the

additional effort to incorporate new tools for parallel computing make these solutions complex to manage and

expensive to support. Additionally the operating system dependence with the use of a PC and size of such

simulators makes difficult their portability to applications like brain implantable solutions on humans and

animals.

Large scale super computers have emerged as an attractive option to accelerate simulation tools. These

solutions offer very good performance at any level of simulation, including biophysical realistic models and

they provide good extension-processing alternatives to popular simulators. Normally, this kind of solutions

focus on large-scale neural networks and have huge network architectures. The size of these machines is not

practical for applications that require physical portability like neuro-implants. The objective tends to be the

emulation of either the whole or big parts of the human brain. The associated huge complexity means that the

models are not biophysically realistic and instead they are based on biological plausible models such Izhikevich

[6].

Another interesting hardware simulation approach are GPU-based architectures, they are primary intended

for large neural networks and in consequence they use HH single compartment or Izhikevich approach as their

biological realistic model and forward-euler as their numerical method, which offers acceptable stable

solutions for models that not require many physiology details at ion-channel level. The research in neural

networks on GPUs focuses its attention mainly on speed up against CPUs. However this technology has some

drawbacks: GPUs underperforms when either a significant overhead in data dependency calculations is

incurred or the algorithms is not sufficiently parallel [10]. The memory-intensive neural networks calculations

requires to store data constantly; the GPUs have an acceptable memory bandwidth to off-chip memory, but is

small compared with the several megabytes per second transfer available on-chip in the FPGA devices

counterparts. This is particularly important for accessing neuron parameters and synaptic weights during

neuron output processes [7]. In addition, a dependence of PC embedded PCI-rack to plug the GPU card in

order to exchange data, which is not suitable for portability and small size chip designs. Also the lack of

flexibility in terms of hardware architecture manipulation; due to their fixed architecture, it is necessary to fit

the algorithm to the GPU architecture.

FPGA technology offers interesting features that makes it an attractive solution for neural simulations.

Flexibility, is reflected on the reconfiguration capacity and its ability to implement a large variety of custom

architectures according to problem specifications. In FPGA-based neural networks simulators we can see this

flexibility reflected in several works [8]. Parallelism is another important feature on FPGA neuro simulation,

the capacity to implement several processing modules working at the same time and the possibility of selecting

between area, cost and processing speed is an ideal feature for most applications, including neural networks

development. The availability of DSP dedicated blocks in modern FPGAs makes possible floating-point

operations and efficient exponential algorithm implementations which are crucial for several numerical

methods used in neuron modelling [9]. However FPGA technology pays significant area and performance

penalty for being reconfigurable and to offer these advantages, resulting in limited size neural networks for

biophysically realistic conductance-based models. However, distributed arithmetic, look-up tables techniques,

dynamic adaptive memories and multiplexed architectures are some of the propose solutions to overcome this

issue [10]. In addition, the possibility of direct-wired connection to external signals reduces significantly the

data transfer for interfacing with living tissue experiments compared with GPUs alternatives.

3 The conductance-based hardware neuron

The simplified two-compartment version P-R [11] of the original 19-compartment Traub model [12] is a

suitable solution to represent the physiological response of a neuron and represent a good trade-off between

area-cost and computational complexity, this model can reproduce more complex burst patterns than the H-H

model cannot [8]. The P-R model takes into account information about calcium ion channel Ca2+. Calcium

dynamic is another important element in the chemical and electrical behaviour in the neuron. The model

includes two parts: a soma-like, which has the Na+ and K+ activated currents; and a distal dendrite-like, where

Ca2+ activated and potassium Ca2+-dependent currents are considered.

3.1. Neuron components

In order to represent the two-compartment P-R model, three interconnected hardware modules were

developed that represent the soma, dendrite and synapse parts of the neuron. These three neuroprocessors are

shown in Figure 1 with a general schematic architecture that represents the hardware-based P-R neuron . Every

module was written in VHDL using floating-point operation modules (FPALUs), state machines (FSMCs),

logic control and internal RAMs in order to get all outputs and internal results needed. The modules have

associated a dual-port RAM (DPRAM) in order to configure and control relevant parameters such as maximum

conductance, input current, ions equilibrium potentials, geometric parameters, time step, configuration of state

variables, etc.

The soma and dendrite modules exchange their compartment voltages with each other, meanwhile the

synapse module receives spiking information from incoming neurons and generates the necessary synaptic

conductances (see equation 8) that affect the action potential propagation from the neuron.

Fig 1. Hardware neuron architecture divided in three modules: soma, dendrite and synapse.

The soma-dendrite modules follows the original conductance-based model from Pinsky and Rinzel work

[11]; however in order to give it more accurate geometric information, cable equation and multi-compartment

theories are used and hence six different terms are considered for every compartment: the capacitive

membrane; the total ionic-channel currents Im ; the injected current I e ; and three terms that relate the voltages

of current compartment V j and adjacent left and right segments, V j+1 and V j− 1 respectively.

()
()

112
2

2r
+jjj

a

mejm
V+VV

x

a
+II=V'C −−

−

 (1)

Where r
a and C

m are the specific axial resistivity in unit of KΩ-cm and the specific membrane

capacitance in unit of µF/cm2 respectively. I e and Im are the applied and ionic channel currents per unit area

expressed in µA/cm2. The cylindrical segment (compartment) having radius a and length dx=∆x (in units of

cm) provides the morphological information. V is the membrane voltage in mV.

In order to solve equation (1), a convenient numerical method is required. The exponential Euler method

offers a good trade-off between stability and computational complexity, several well-known neuro-simulators

like NEURON use this method to integrate the membrane voltage equation. Rewriting the cell equation (1) in

a more convenient way, we have:

Cm · V j

'
= A− (B ·V j)

Where,

()
1

1
2

2
−j

+j

a

e
V+V

xr

a
+I+ψ=A

(2)

B=
a

ra∆ x
2
+ψ

Gtot

Where ψ¿, ψGtot are the weighted averages of all ionic channels conductances. These two terms change

according to the type of compartment (soma or dendrite) as follows:

 Gleak+pG+hmGna=Somaψ
DR

kGtot

2

∞
 (3)

leakk
DR

kna
EGleak+EpG+EhmGna=Somaψ 2

∞
∗

 (4)

()
Gtot

c
k

AHP
KcaGtol

Synψ+CaXcg+qg+sg=Denψ
2

() Synψ+ECaXcg+Eqg+Esg=Denψ
k

c
kk

AHP
Kcaca

2

(5)

(6)

()Vβzg+ug+rg=Synψ nmdagabaampaGtot

() nmdanmdagabagabaampaampa EVBzg+Eug+Erg=Synψ

(7)

(8)

The transition between the ion gates close and open states is controlled by the state variables (i.e. m,h,p,s,q,c,r,u

and z) which are defined by the first kinetic formula [13]. Since it is assumed that the synaptic connections are

located in the dendrite compartment, the synaptic conductances SynψGtot and Synψ¿ are summed to the

dendrite terms. Later, the details of synaptic integration method are given.

Then applying the exponential Euler solution to equation (2), we can obtain the explicit solution for every

time step given by the equation:

CmdtB

n+n
e

B

A
V+

B

A
=V

/

1

∗−

−

(9)

3.2. Efficient Exponential Optimization

As we can see in equation (9), every neuroprocessor module needs to calculate four arithmetic operations:

add/sub, multiplication, division and exponential at every time step. The most timing and area consuming

arithmetic process is the exponential operation. Indeed, previous work [8] has shown that the latencies for the

CORDIC-exponential implementation is around 180 clock cycles compared with the 16 cycles of the second

most time consuming operation. To tackle this issue, it is necessary to propose efficient numerical techniques

to reduce latency and area cost without affecting the performance and dynamics of neuron behaviour.

Two possible exponential implementation alternatives have been analysed. The first approach is based on

a piece-wise exponential Look-Up-Table (PW-LUT). This technique has been successfully used on several

neural simulators [14]. Previous research has found that for the specific purpose of neuroprocessors, a piece-

wise methodology offers the best performance rather than use a single domain LUT (see table 1). The main

idea of PW-LUT is to split the argument range in several regions, given a desired resolution (LUT depth) to

“zones of interest”, such as the range [-1 0], where it is crucial to perform the numerical method exponential.

Such ranges are based on statistical observations of different exponential responses for the neuroprocessors.

The second approach is the FLOating-POint-COres (FLOPOCO) project [15], which is an open-source C++

framework that can generate arithmetic cores. It generates a synthesizable VHDL code from a command-line

interface where operator parameters can be configured. The main purpose is to explore how FPGA flexibility

can be exploited for floating-point arithmetic. Table 1 summarizes the results for the four exponential

implementations, where we can observe the scopes and limitations for each approach. Two important things

to notice: since exponential piece-wise LUT (expPW-LUT) is divided in three regions, every measure result

is calculated for each range; and for FP formats there are two different types of results: one corresponds to the

actual maximum rate supported and the other corresponds to the specific range [-16 16] in order to make a fair

comparison with the LUT format exponentials. FLOPOCO exponential (FloPoCo) presents the best trade-off

with respect to latency and accuracy hence it has been selected to be used for the neuroprocessors. On the other

hand, if the objective is area reduction the exponential LUT-based approaches [16] use pre-calculated tables

and fewer FPGA resources than the FLOPOCO and CORDIC methods with a reduction of 80% and 170%

respectively. Overall, the three considered versions improve over 95% the latency of full CORDIC version

and these versions present a better accuracy performance in the neuron output.

Table 1. Measurement of the data format representation for the three types of exponential implementation.

FP: floating-point.

FP_

CORDIC

FP_

FLOPOCO

exp SINGLE-LUT exp PW-LUT

Latency 180 3 2 3

Precision FP 32-bit FP 32-bit 4K-LUT depth
4K-LUT

depth

Input

Resolution
4e-3 1e-6 8e-3

8e-3 ♠

8e-4 ♣

16e-3 ♦

Output

Resolution

1.27e-14

1.12e-7

3.67e-40

1.12e-7
1.12e-7 1.12e-7

Input

Range

[−32 32]*

[−16 16]

[-88 88]*

[-16 16]
[-16 16]‡ [-16 16] ‡

Output

Range

[1e-14 7.9e13]

[1e-7 8.8e6]

[3e-40 3.3e38]

[1e-7 8.8e6]
[1e-7 8.82e6] [1e-7 8.82e6]

Accuracy

norm Inf

- -

0.356

- -

1.2e-5
0.775

0.774 ♠

0.048 ♣

0.784 ♦

* Maximum range supported

‡ Selected for implementation purpose

♠ Range [0 16]; ♣ Range [-1 0]; ♦ Range [-16 -1]

a)

b)

Fig 2. Hardware neuron architecture divided in three modules: soma, dendrite and synapse.

The impact of exponential accuracy in the membrane cell output can be significant or negligible depending

of what exponential implementation is used. In order to measure qualitative results, a classic Traub-burst is

generated applying a current of 2.3 nA during a 80 msec window. As we can see in Figure 2.a CORDIC and

single-LUT can maintain accuracy initially; however there is an error accumulated over the time that results

in an eventual loss of accuracy and incorrect membrane dynamics. On the other hand, in Figure 2.b the

FLOPOCO and PW-LUT approaches can maintain accuracy and correct neuron dynamics.

4 Synapse integration and System architecture

In this section a novel synapse integration method is proposed to build neural networks more effectively

and the complete FPGA-based neuro-system architecture is presented.

4.1. A novel synapse integration method

In neural network modelling the updating and information exchange among synapses often requires higher

complexity and more calculations than the computation of the effects of each neuron in isolation [17]. The

synaptic integration (or summation) is the process where multiple pre-synaptic potentials from source neurons

are combined within one postsynaptic potential in the target neuron. There are two types of summation: spatial

and temporal. Normally this process is calculated in two different ways: the time-driven technique and the

event-driven technique. In this work, a novel hybrid timing-event-driven method is proposed; i.e. there is a

fixed time step where the neuron is continuously running a steady-state process and sensing the incoming

spikes, then different processes will be computed according to the type of events arriving. The main idea is to

take advantage of both. Hence, rather than treating each synapse individually, the synapses of a given type

(AMPA, NMDA or GABAa) can be lumped together into a single overall synapse g∑ . This final synapse

is updated only when individual synapses fires: ∑∑ += iggg ; i.e. when an event in the i-th synapse

occurs. In this sense the amount of calculations is directly related with the amount of spiking activity in the

network.

The work of [18] propose a full update rule splitting the synapse process in two parts depending on the

presence (ron) or absence (roff) of neurotransmitters released. In a similar way, if we separate the total

number of synapses N into those that activate and those that do not, we have Non and Noff respectively. Then

using the capital letters convention to refer to merged state variables, we can make next substitutions:

R
on
=∑

i= 1

Non

r
i on , Roff=∑

i= 1

Noff

r i off and R∞
=∑

i= 1

Non

R
∞
= N

on
· R

∞ . Using the previous substitutions we obtain the

equivalent representation of a synaptic update rule with an arbitrary number of incoming synapses N:

Ron= N on · R∞ · [1− e
−dt / τ]+Ron ·e

− dt / τ

 (9)

dtβ

offoff eR=R
− (10)

The next step, is to update both integration equations when a particular single synapse-i changes. This

change in the new r i needs to be reflected in the complementary state variables Ron and Roff ; i.e. when

synapse-i changes to activation (off→on) then the corresponding r i must be added to Ron and subtracted

to Roff , conversely when synapse-i changes to inactivation (on→off) then Ron must be decremented and

Roff augmented by the corresponding r i . Keeping track of the individual r i and since synaptic state

variables are voltage-independent, then the new r i is easily updated following next rule:

when on→off:

[] τCdur

i

τCdur

i
er+eR=r

//

∞
1

−−

−
(12)

when off→on:

ISIβ

ii er=r
− (13)

Keeping the assumption that neurotransmitter released during the synapse process is a pulse of duration

Cdur. Then when a transition on->off occurs in the synapse-i, the time step dt becomes the duration of the

synapse pulse (Cdur). On the other hand, when transition off->on occurs, then dt= t− t 0falling= ISI ; i.e.

the difference between current time t and the last time event or the so called inter-spike interval (ISI).

Finally, in neural networks the individual synaptic connections have different “weights” gi ' s (maximal

conductances and number of neurotransmitters). This can be take into consideration in equations (6.3–6.4)

by creating a new variable r
i
'= r

i
· g

i and then redefine the merged variables: R
on
=∑

i= 1

Non

r '
i on ,

Roff=∑
i= 1

Noff

r 'i off and Non
=∑

i= 1

Non

g
i
.

A custom hardware neuroprocessor has been developed in order to implement the hybrid timing-event-

driven synapse integration where four different events are distinguished and then the corresponding

processes are executed: RE (rising-edge), FE (falling-edge), BOTH (RE and FE happen at the same time)

and NC (no change). Fig. 3 depicts an example where four incoming synapses receive spikes at different

times. Assuming a time step dt=0.1 msec and Cdur=1 msec for all synapses, then in the 8 msec window the

processes RE, FE, BOTH and NC are executed 5, 5, 1 and 69 times respectively. In this common spiking

scenario, it is clear that process NC is the most likely and the least compute intensive, showing the

advantage of the proposed hybrid method.

Fig 3. Example of multiple execution process for four incoming synapse pulses. The relevant events are marked

in yellow, for all remaining time steps, process NC is executed.

Fig 4. Qualitative comparison between full parallel time-driven method (b) and the hybrid time-event-driven

method proposed (c). The final state variable r is depicted in red. A series of four incoming synapses with

different spikes supply the post-synaptic neuron (a).

In order to validate the accuracy of the hybrid synaptic integration method, Figure 4.a shows an

experiment in which an arbitrary state variable (r,u or z) and four input synapses fire at different times. A

comparison against the results obtained by the full parallel time-driven approach is shown in Figure 4.b

where the four outputs are sum up together to get the final summation (r-final in red). In a qualitative

comparison, the hybrid time-event-driven approach gives an almost identical final summation as seen in

Figure 4.c with the update of only two variables Ron and Roff at each time step instead of updating every

variable for each individual synapse.

This results in a significant reduction in calculations for the proposed hybrid integration method

especially the exponential operation. The reason behind this reduction is the number of times that each

process in the hybrid integration method is executed. For this example process RE, FE, BOTH and NC are

executed 21, 21, 1 and 315 times respectively; since process NC and FE do not need exponential

calculations, just 22 exponentials operations are needed over the whole simulation against the 1400 exp

operations for the full-parallel time-driven method. In total, a reduction of 80%, 76% and 98% was achieved

for add/sub, multiplication and exponential operations respectively.

Overall, the hybrid time-event-driven method shows a qualitative good equivalence comparing with

conventional time-driven method and it saves a considerable amount of arithmetic calculations and area

cost resources.

4.2. FPGA system architecture

The simulator platform for neural networks presented in this paper is implemented in FPGA technology. Two

types of components form the system: FPGA vendor IP-cores and custom IP. The IP-cores are hardware

modules available to build the basic system infrastructure, in this list we have the microprocessor Microblaze,

AXI-buses and memory blocks. Secondly, the custom-IP are user-designed hardware modules that permit to

create custom architectures to perform specific functions; the modules for the soma, dendrite and synapse

neuroprocessors proposed in this paper and general control logic are examples of these cores. A system on

chip (SoC) platform has been been developed where neuroprocessors form single or two-compartment P-R

neurons and control the connection between them. The general SoC FPGA architecture is shown in Fig. 5; the

custom-IP neurons are connected through an AXI-bus interface; the Microblaze (MB) processor is connected

to an external DDR3 RAM to store relevant data and it is running a firmware which continuously interacts

with the MATLAB user-interface running in an external PC.

Fig 5. SoC system reconfigurable architecture

Table 2. Resources utilization for different number of neuron structures attached to the Microblaze system.

Neuron

structures

BRAMs

416 x 36kb

Slice

Registers

301,440

Slice

LUTs

150,720

TOTAL

Slices

37,680

1 6 % 7 % 18 % 26 %

2 8 % 11 % 37 % 45 %

3 8 % 18 % 49 % 61 %

4 12 % 22 % 58 % 75 %

5 14 % 30 % 72 % 88 %

The entire FPGA simulation platform is implemented in a commercial Virtex-6 ML605 board. This board

has a Virtex-6 LX240T FPGA with an external 512MB DDR3 memory for general purpose storage. The

Microblaze-system processor and buses work at a 50 MHz clock frequency, meanwhile the neuroprocessors

do it at 100 MHz. At this operation frequency, the neuroprocessor can achieved the real-time neuron constraint

of 0.1 msec. Table 2 summarizes the FPGA complexity for the whole embedded system depending of the

number of neuron structures implemented; a maximum number of five two-compartment neuron structures

can be used. Assuming that every neuroprocessor is working at multiplexing mode, the system is able to

support neural networks of 105 neurons fully-connected (~10,000 synapses).

Our work is the first system that targets the two-compartment Pinsky-Rinzel model (P-R) and for this reason

a direct comparison between this work and previous research is not possible, since there is no hardware P-R

implementation reported in literature. In any case it is useful to put into context this hardware with recent

FPGA-based neuron simulators. Table 3 summarizes the details in terms of aim, neuron type, performance,

network structure and technology of recent research efforts in this area. As seen in Table 3 these systems are

based around the H-H model which offers less biological accuracy than P-R model or the fast Izhikevich

models which are not biological meaningful.

Table 3. Comparison of the presented system with recent research efforts

Research Aim
Neuron

model

Network

size
Performance Precision/NM NN Architecture Device

[9]

highly detailed

ION cell

network model

3-comp ION

model

(HH-based)

96

neurons

real time

(323 clock

cycles)

32 bit FLP

multiplexed

neuron modules

and kernel

control

Virtex 7 –

100 MHz

[6]

synchronization

on

conductance-

based neural

networks

simplified HH
400

neurons
real time

32 bit FLP /

NS

NS

20x20 topology

connected

Virtex 4 –

100 MHz

[23]

extreme-scale

real-time

neural network

Izhikevich

64 K

neurons

64 M

synapses

real time

(1 msec time

step)

16 bit FXP /

NS

centric-based

communication

Stratix IV/
Cyclone IV

– 200

MHz

[7]

large-scale

spiking neural

network

Izhikevich
64 K

neurons

2.5x real

time

(1 msec time

step)

16 bit FXP /

NS

custom

architecture

Virtex 6 –

100 MHz

[22]

large-scale

biological

networks

1-comp HH

Izhikevich

1-comp

Wilson

0.5 M

neurons

2 M

neurons

0.5 M

neurons

37x over

CPU

9x over CPU

6x over CPU

32 bit FLP /

NS

custom with 2

layer network

Stratix II –

150 MHz

Intel Xeon

3.0 GHz

dual-core

processor

[24]

hippocampus-

inspired spiking

neural network

Izhikevich
54

neurons

0.5 msec

time step

32 bit FXP /

NS

CA3-CA1

hippocampal

topology

Virtex II –

100 MHz

[21]
leech heartbeat

neural network
Izhikevich

8

neurons
real time

18 bit FXP /

NS

specific 8

neuron leech

architecture

Virtex 4 /

100 MHz

This

work

Biophysically

accurate

neurons

2

compartment

P-R

100

neurons
real time 32-bit FLP

Multiplexed

neurons

arranged in

Neuroprocessors

Virtex-6

/ 100

MHz

The system was also implemented in software using a Core-i7 2.3 GHz with 4 G RAM. The speedup of the

hardware platform against this software solution is approximately 20 times and this is in line with the results

obtained in [8] that presented a single neuron model without arithmetic optimizations. Scalability in the

presented configuration is limited by device resources, maximum connectivity in the AXI interface and

memory accesses. The current platform combines a controller node implemented in a single Microblaze

processor with a number of Neuro processors structures that can be masters but also need to be accessed by

the Microblaze as slaves. The current set of tools limit the number of slaves in a single AXI interconnect to 16

which will not fit in the Virtex-6 LX240 used in this research. Larger devices from the Virtex-6 or Virtex-7

devices could use this full cluster and combine several of this clusters to build more complex system but

ultimately scalability will be limited by the memory accesses. A single cluster with 16 neuron structures will

saturate the DDR3 interface available in the ML605 board so a single board configuration with a single DDR3

interface will limit scalability to approximately 16 hardware neurons.

5 In silico case studies

In this section we present two case studies to link the hardware FPGA simulator with real neuron-related

experiments presented in Biology.

5.1. Analysis of synaptic mechanisms responsible for Epilepsy

We study the P-R neuron model to analyse some of the possible mechanisms that are responsible of epilepsy

behaviour at a neuron response level. One of the most important features that characterize epilepsy are

recurrent spontaneous seizures caused by after-discharged electrical signals presented in the neuron [19].

After-discharging (AD) occurs when neurons have the ability to discharge periodic impulses/bursts that can

last several seconds, however such impulses appears after the stimulus finalisation. The after-discharge

signalling is characterized by an initial large burst (F) followed by shorter sequence of burst or spikes (S).

Some typical responses of experimental after-discharge CA1/CA3 pyramidal neurons in-vitro of a guinea pig

hippocampal slice have been recorded.

If it is possible to intentionally induce epileptic signals, then the mechanism that cause such phenomena

can be determined and analysed. There are effective pharmacology methods that can achieve this purpose such

as manipulating the ionic composition of the bathing medium (e.g. reducing [Ca2+],[Mg2+], [Cl-]; or

increasing [K+]); application of certain drugs that block specific synaptic receptors (e.g. GABAa) or by

injecting a biological toxin prior to in-vivo experiments.

In this experiment, we will evoke an AD by manipulating NMDA receptors and [Mg2+] concentration. The

experiments considers a cell 2 that receives a presynaptic burst from cell 1. In this scenario where only AMPA

receptors are present (see Fig 6.b-left), the postsynaptic cell 2 can generate a burst as well; when AMPA and

NMDA are acting together the postsynaptic burst is stronger having a few more spikes (see Fig 6.b-middle);

in addition when the magnesium concentration [Mg2+] decreases, the conductance on NMDA channel

increases originating a train of spikes (see Fig 6.b-right); this is one of the reasons that originates after-

discharging. As we can see in Figure 6.a, the results are consistent with experiments done in [12]. The study

reveals that low magnesium concentration decreases the seizure thresholds and generates spontaneous

discharges in animal models of epilepsy.

a)

b)

Fig 6. SoC system reconfigurable architecture

One of the main advantages of conductance-based models is that we can go into the neuron dynamics

behaviour in order to analyse the results and obtain a biological meaning. For instance we analyse some

relevant state variables when magnesium Mg2+ concentration changes and hence produce AD effect. In Fig

7.b the Mg2+ concentration decrease from 1 mM to 0.1 mM, this is directly reflected in the voltage-dependant

NMDA channel, since the magnesium reduction increases the spike voltage dependency in the NMDA channel

maintaining the z*B(V) at high levels (pink trace) and producing subsequent big dendrite spikes. When this

happens, then the long slow variable q (cyan trace) is activated again producing a gap of hyper-polarization

and stopping for a while the spiking. Due to the relatively high level of z*B(V) subsequent action potentials

are generated with less frequency. In contrast Fig 7.a the bigger level of magnesium concentration makes

z*B(V) decay faster and the generation of subsequent spikes does not occur.

a) b)

Fig 7. Magnesium concentration influence in the state variables changes. a) Mg2+ = 1.0 mM. b) Mg2+=0.1

mM.

There are other works that explore the non-synaptic mechanisms involve in the seizure after–discharges.

For instance, the work of [19] explores the ionic channels Na+ and K+. In this work they conclude that the

threshold and duration of ADs depend of variations in Na+ and K+ currents. In addition the accumulation of

excess K+ can produce seizure after-discharges. Such experiments are also suitable for the the FPGA-based

simulation platform proposed in this research.

5.2. Emulation of the leech heartbeat neural network

In this section we focus on the specific mechanisms that produce the leech heartbeat. Previous research

has studied the Central Pattern Generator (CPG) that governs this behaviour (i.e. this is the main mechanism

in living organisms to produce oscillatory patterns in neural activity), the neural network and specific neurons

involved are well-defined and have been correctly identified [20]. There are two main features in a CPG: the

intrinsic bursting of neurons and mutual inhibitory connections between coupled neurons. The P-R Traub

model has a ping-pong effect between its soma and dendrite compartments, this makes possible to have the

intrinsic bursting property and hence a suitable candidate for the experiment.

The neural network (CPG) for the leech heartbeat is formed by seven bilateral pairs of segmental

interneurons that produce intercalated membrane voltage burst-oscillations (between 0.2 – 0.1 Hz) to drive the

rhythm in its two hearts. However the first four pairs of interneurons (HN) are in charge of the pattern

generation oscillations forming an 8-cell timing neural network, shown in Fig 8-left. The oscillation activity

is originated by the reciprocal interaction of the third and fourth HN interneurons located in their ganglia

counterpart. The alternate oscillations are mainly present at the third and fourth pair of oscillator interneurons;

e.g. HN(3,Left) and HN(3,Right).

Fig 8. The timing neural network for the leech heartbeat and output signals.

The 8-cells timing neural network was built in the FPGA platform. The network is formed fully by

inhibitory GABAa synapse connections. The results of the leech heartbeat FPGA-based neural network are

shown in Fig 9. This figure shows that the alternate oscillatory pattern was achieved successfully, this suggest

that P-R model has a good level of flexibility to emulate biological small neural networks for several

applications with the appropriate conditions and the importance of conductance-based models for such

experiments.

Fig 9. The FPGA timing neural networks of the leech heartbeat results. Blue and red traces correspond to

soma and dendrite compartments respectively.

Other works have implement the behaviour of this CPG on FPGAs [21] but they use abstract models that

decrease the biological realism in the output of the network, given a flat pulse train pattern. In addition the

parameters used in conductance-based models are biophysically compatible and neuro-experimentalist can

modify them to replicate organic behaviour. For example the periodic transition between inhibited and burst

states is produced by a mechanism called escape and can be analysed using this kind of models in a well-

controlled simulation platform. This mechanism happens when a neuron being inhibited by the bursting of its

counterpart neuron can “escape” from this state and hence start to spike, inhibiting the bursting neuron (see

Fig 10).

We can analyse the escape behaviour in a sequential series of events depicted in Fig 10. At the beginning

of the graphic the left neuron HN(3,L) is inhibited by the spikes of the right neuron HN3-R. However the total

synaptic conductance gtot (green trace), equivalent to just GABAa ionic channel, is decreasing gradually until

the point of inhibition on HN(3,L) is no longer strong enough; in that moment the neuron HN(3,L) escapes

from the inhibition stage and starts to spike. Next since HN(3,L) starts to fire, such spikes produce an inhibitory

effect on the neuron HN(3,R), there is a point where HN(3.R) stops spiking and then HN(3,L) increases its

burst frequency making stronger the inhibition in its right neuron counterpart. Conversely the process starts

again when the synaptic GABAa conductance in HN(3,R) decreases and then it is able to escape from the

inhibition stage. Such escape process is crucial in the oscillation generation process in the leech timing neural

network [20].

Fig 10. The “escape” mechanism in the half centre oscillator for HN3 neuron.

6 Conclusions and future work

A complete FPGA-based platform for the simulation of biophysically accurate neural networks has been

proposed. The main components of this platform are the soma, dentrite and synaptic neuroprocessors in charge

of implementing the P-R conductance-based model.

In order to simulate larger neural systems, the exponential which is the most area and time consuming

operator was analysed and enhanced. The presented results show that the FLOPOCO exponential offers the

best trade-off in terms of latency and accuracy. In addition, a piece-wise exponential LUT-based approach

was proposed which uses fewer FPGA resources than the FLOPOCO approach. Both versions improve in

over 95% the latency of CORDIC used in previous research. Also both present a better accuracy performance

in the neuron output according to accuracy experiments.

The hardware architecture for the synapse integration provides almost identical qualitative results

compared with the conventional full parallel time-driven method, which needs to evaluate all individual

synapses at every time step. In contrast the hybrid method has only a single accumulative synapse approach

that can handle an arbitrary number of incoming synapses. This advantage means that it is possible to have

only one synapse neuroprocessor per neuron, instead of one neuroprocessor for every single synapse or

connection. The hybrid time-event-driven method offers a feasible solution to tackle the integration problem

reducing over 90% the number of arithmetic operations, maintaining real-time operation and resulting in no

loss of biological information. The real-time properties of the FPGA system means that is possible to devise

experiments in which the neuron models behave as virtual neurons and interact with organic neurons

accurately.

Several new directions of research can be explored as future work. For instance, with component reuse it

is possible to design a generic architecture that supports other conductance-based models. This type of models

are based in the same mathematical first kinetic formula and they have a well-established dynamic

mechanism. Another research line is to develop a multi-FPGA platform that supports larger neural networks

so that several hundreds of neurons can be achieved. To facilitate this future research and enable reproducible

research we have made all the hardware description files and supporting software available open-source at

http://seis.bris.ac.uk/~eejlny/ downloads/neuroprocessor.zip

REFERENCES

[1] Dunn, N.A.; Conery, J.S.; Lockery, S.R., "A neural network model for chemotaxis in Caenorhabditis

elegans," Neural Networks, 2003. Proceedings of the International Joint Conference on , vol.4, no.,

pp.2574,2578 vol.4, 20-24 July 2003

[2] Stumpner, A. and B. Ronacher (1994). "Neurophysiological Aspects of Song Pattern-Recognition and

Sound Localization in Grasshoppers." American Zoologist 34(6): 696-705.

[3] Scott, A. (2000). "How Smart is a Neuron? A Review of Christof Koch’s ‘Biophysics of Computation’."

[4] Herz, A. V., T. Gollisch, C. K. Machens and D. Jaeger (2006). "Modeling single-neuron dynamics and

computations: a balance of detail and abstraction." Science 314(5796): 80-85.

[5] Poggio, J. M. a. U. K. a. T. (2010). "CNS: a GPU-based framework for simulating cortically-organized

networks." (MIT-CSAIL-TR-2010-013 / CBCL-286).

[6] Beuler, M., A. Tchaptchet, W. Bonath, S. Postnova and H. Braun (2012). Real-Time Simulations of

Synchronization in a Conductance-Based Neuronal Network with a Digital FPGA Hardware-Core. Artificial

Neural Networks and Machine Learning – ICANN 2012. A. P. Villa, W. Duch, P. Érdi, F. Masulli and G.

Palm, Springer Berlin Heidelberg. 7552: 97-104.

[7] Cheung, K., S. Schultz and W. Luk (2012). A Large-Scale Spiking Neural Network Accelerator for FPGA

Systems. Artificial Neural Networks and Machine Learning – ICANN 2012. A. P. Villa, W. Duch, P. Érdi, F.

Masulli and G. Palm, Springer Berlin Heidelberg. 7552: 113-120.

[8] Zhang, Y., J. Nunez and J. McGeehan (2010). "Biophysically Accurate Floating Point Neuroprocessors."

University of Bristol.

[9] Smaragdos, G., S. Isaza, M. F. v. Eijk, I. Sourdis and C. Strydis89-98 (2014). FPGA-based biophysically-

meaningful modeling of olivocerebellar neurons. Proceedings of the 2014 ACM/SIGDA international

symposium on Field-programmable gate arrays. Monterey, California, USA, ACM: 89-98.

[10] Kulakov, A. (2012). "Multiprocessing Neural Network Simulator (PhD Thesis)." Faculty of Engineering

and Applied Science. Department of Electronics and Computer Science. University of Southhampton, UK.

[11] Pinsky, P. F. and J. Rinzel (1995). "Intrinsic and network rhythmogenesis in a reduced Traub model for

Ca3 neurons." Journal of Co[14]mputational Neuroscience 2(3): 275-275.

[12] Traub, R. D., R. K. Wong, R. Miles and H. Michelson (1991). "A model of a CA3 hippocampal pyramidal

neuron incorporating voltage-clamp data on intrinsic conductances." J Neurophysiol 66(2): 635-650.

[13] Hille, B. (1992). Ionic Channels of Excitable Membranes, Sinauer Associates Inc.

[14] Hughes, S. W., M. Lőrincz, D. W. Cope and V. Crunelli (2008). "NeuReal: An interactive simulation

system for implementing artificial dendrites and large hybrid networks." Journal of Neuroscience Methods

169(2): 290-301

[15] Dinechin, F. d., J. Detrey, O. Cret and R. Tudoran260-260 (2008). When FPGAs are better at floating-

point than microprocessors. Proceedings of the 16th international ACM/SIGDA symposium on Field

programmable gate arrays. Monterey, California, USA, ACM: 260-260.

[16] Moctezuma, J. C., J. P. McGeehan and J. L. Nunez-Yanez (2013). Numerically efficient and biophysically

accurate neuroprocessing platform. Reconfigurable Computing and FPGAs (ReConFig), 2013 International

Conference on.

[17] Fox, P. J. and S. W. Moore (2012). "Efficient Handling of synaptic updates in FPGA-based large-scale

Neural Network Simulations.". Workshop on Neural Engineering using Reconfigurable Hardware 2012

[18] Destexhe, A., Z. F. Mainen and T. J. Sejnowski (1994). "An Efficient Method for Computing Synaptic

Conductances Based on a Kinetic-Model of Receptor-Binding." Neural Computation 6(1): 14-18.

[19] Kager, H., W. Wadman and G. Somjen (2007). "Seizure-like afterdischarges simulated in a model

neuron." Journal of computational neuroscience 22(2): 105-128.

[20] Hill, A. A., J. Lu, M. Masino, O. Olsen and R. L. Calabrese (2001). "A model of a segmental oscillator in

the leech heartbeat neuronal network." Journal of computational neuroscience 10(3): 281-302.

[21] Ambroise, M., T. Levi and S. Saïghi (2013). Leech Heartbeat Neural Network on FPGA. Biomimetic and

Biohybrid Systems, Springer Berlin Heidelberg. 8064: 347-349.

[22] Bhuiyan, M. A., A. Nallamuthu, M. C. Smith and V. K. Pallipuram (2010). "Optimization and

Performance Study of Large-scale Biological Networks For Reconfigurable Computing." High-Performance

Reconfigurable Computing Technology and Applications (HPRCTA): 1-9.

[23] Moore, S. W., P. J. Fox, S. J. T. Marsh, A. T. Markettos and A. Mujumdar (2012). Bluehive - A field-

programable custom computing machine for extreme-scale real-time neural network simulation. Field-

Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on.

[24] Mokhtar, M., D. Halliday and A. Tyrrell (2008). Hippocampus-Inspired Spiking Neural Network on

FPGA. Evolvable Systems: From Biology to Hardware. G. Hornby, L. Sekanina and P. Haddow, Springer

Berlin Heidelberg. 5216: 362-371.

