
                          Moctezuma Eugenio, J. C., McGeehan, J. P., & Nunez-Yanez, J. L. (2015).
Biologically compatible neural networks with reconfigurable hardware.
Microprocessors and Microsystems, 39(8), 693-703. DOI:
10.1016/j.micpro.2015.09.003

Peer reviewed version

Link to published version (if available):
10.1016/j.micpro.2015.09.003

Link to publication record in Explore Bristol Research
PDF-document

(C) 2015 Elsevier B.V. All rights reserved.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73981911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.micpro.2015.09.003
http://research-information.bristol.ac.uk/en/publications/biologically-compatible-neural-networks-with-reconfigurable-hardware(38fc72b1-e13c-46a9-bee6-a53e31e4ca7f).html
http://research-information.bristol.ac.uk/en/publications/biologically-compatible-neural-networks-with-reconfigurable-hardware(38fc72b1-e13c-46a9-bee6-a53e31e4ca7f).html


 

Biologically compatible neural networks with reconfigurable 

hardware 

Juan Carlos Moctezuma1,2, Joseph P. McGeehan1 and Jose Luis Nunez-Yanez2 

1CCR Group, Electronic Engineering, University of Bristol, Bristol, U.K 

2Micro Group, Electronic Engineering & Computer Science, University of Bristol, Bristol, U.K. 

eejcme@bristol.ac.uk, j.l.nunez-yanez@bristol.ac.uk, j.p.McGeehan@bristol.ac.uk 

Keywords: FPGA neuro-simulator, synaptic integration, biophysically accurate model, hardware neuro modelling, 

Traub model, Pinsky-Rinzel model, biological compatible neurons. 

Abstract: This paper presents a reconfigurable hardware neuro-simulator specifically designed to emulate 

biophysically accurate and biologically compatible neural networks. The platform is based on FPGA 

technology which is used to create real-time custom neuroprocessors with floating point accuracy and a 

novel hybrid time-event driven architecture for synaptic integration. Through a series of experiments the 

dynamics of the neuroprocessors are evaluated and compared with real neuron responses. The problem of 

interconnecting neurons with individual synapses is tackled with a novel synaptic architecture where all 

incoming synapses are merged efficiently in one single accumulative process without losing biological 

information. The case studies demonstrate the suitability of conductance-based models and FPGA 

platforms to simulate living organisms’ behaviour in a biological compatible context.  

 

1 INTRODUCTION 

There are two major research areas for modelling neural systems: based on simplified neuron models 

(behaviour-based model) in a large neural network or using realistic neuron models (also called  conductance-

based models) in a size-constraint neural network. In simplified models, some biological information is 

sacrificed in order to save computational resources and build large neural networks e.g. several thousands or 

millions of neurons. On the other hand, realistic models treat the neuron aspects from the point of view of ionic 

conductances and they can emulate a great variety of complex dynamics at the ionic level that are present in 

real neurons. The main goal of this work is the design of a suitable hardware platform to support the simulation 

of biologically accurate neural systems. The paper also shows the importance of bio-realistic modelling in size-

constraint neural systems using bio-compatible neuron models. In nature, we have many examples of such 

small neural networks; for instance the nervous system behaviour of the Caenorhabditis elegans worm has 

been investigated and it has around 300 neurons [1], song recognition and sound localization have been 

analysed in the auditory nervous system of the grasshopper [2]; even the question of “how powerful a single 

neuron is?” has been investigated by several researchers [3]. Therefore the study of such size-constrain systems 



 
is crucial to understand the nervous system in many biological organisms presented in nature and the 

realization of simulation platforms to support such systems is needed. 

 

Conductance-based modelling is suitable to emulate realistic neuron models since it is consistent with the 

dynamics of real neurons and it can incorporate as much cellular detail as it is needed. One of the most 

important features of these models is that they are biophysically compatible and hence neuroscientists, 

biologists, psychologists can, at certain level, study their properties and co-relate directly parameters with their 

biological counterparts. With these models we can explore the dynamics of neurons at cellular level [4]. 

However the main drawback is that they are highly computational-intensive limiting simulations to small 

nervous systems or single neurons. 

In this work, we take the two-compartment Pinsky-Rinzel (P-R) model as the keystone of the bio-realistic 

neuron and develop a neuro-simulator able to generate actions potentials for several case studies with real 

applications in Biology. The suitability of the neuro-simulator is validated successfully through a series of 

experiments. In this context, the main contributions of this work are: 

1. The neuron dynamic’s study and characterization of the single and two-compartment P-R neuron model 

for the hardware implementation.  

2. A neuroprocessor architecture with better performance and latency/area reduction using hardware 

design methodologies including: efficient exponential operation and novel event-time-driven for the 

synaptic integration. 

3. A number of case studies that show the advantages of conductance-based models to simulate accurate 

biological neural networks and the suitability of FPGA technology for this task. 

4. The full platform including the VHDL source code and case studies has been made available open-

source. 

The present paper is organized as follows: in section 2 a review of the main related work done in neuro-

simulation is presented; in section 3 a brief introduction to P-R representation and numerical methods applied 

to the hardware system are introduced; then the hardware design methods including a novel synaptic 

integration architecture are described in section 4; in section 5 the details of the complete FPGA-based neuro 

simulator are presented; to validate the simulator section 6 develops a number of case studies which are 

analysed in a biological meaningful context; finally in section 7 the conclusions and future work are discussed. 

2 Review of previous work 

Several neural simulators have been developed to emulate the activities of living brain cells and tissues on 

different scientific computing platforms. In practice, there are different kind of neuro-simulators platforms; 

among the most important are software tools, parallel computing platforms, dedicated analogue and VLSI 

chips, GPU-based platforms and FPGA-based platforms. 



 
Software-based neuro-simulators offer good flexibility, they allow to incorporate custom models and to use 

a great variety of built-in models, from reduced integrate-and-fire to complex multi-compartment conductance-

based models. Also there are good options for conductance-based modelling which permits biophysically 

realistic neuron simulations such as NEURON, CNS and GENESIS [5]. In addition, the parallel computing 

solutions (accelerated co-simulation through specific hardware devices connected to a PC) overcome the 

limitations that CPU have. However the diversity in programming languages that each simulator has and the 

additional effort to incorporate new tools for parallel computing make  these solutions complex to manage and 

expensive to support. Additionally the operating system dependence with the use of a PC and size of such 

simulators makes difficult their portability to applications like brain implantable solutions on humans and 

animals. 

Large scale super computers have emerged as an attractive option to accelerate simulation tools. These 

solutions offer very good performance at any level of simulation, including biophysical realistic models and 

they provide good extension-processing alternatives to popular simulators. Normally, this kind of solutions 

focus on large-scale neural networks and have huge network architectures. The size of these machines is not 

practical for applications that require physical portability like neuro-implants. The objective tends to be the 

emulation of either the whole or big parts of the human brain. The associated huge complexity means that the 

models are not biophysically realistic and instead they are based on biological plausible models such Izhikevich  

[6]. 

Another interesting hardware simulation approach are GPU-based architectures, they are primary intended 

for large neural networks and in consequence they use HH single compartment or Izhikevich approach as their 

biological realistic model and forward-euler as their numerical method, which offers acceptable stable 

solutions for models that not require many physiology details at ion-channel level. The research in neural 

networks on GPUs focuses its attention mainly on speed up against CPUs. However this technology has some 

drawbacks: GPUs underperforms when either a significant overhead in data dependency calculations is 

incurred or the algorithms is not sufficiently parallel [10]. The memory-intensive neural networks calculations 

requires to store data constantly; the GPUs have an acceptable memory bandwidth to off-chip memory, but is 

small compared with the several megabytes per second transfer available on-chip in the FPGA devices 

counterparts. This is particularly important for accessing neuron parameters and synaptic weights during 

neuron output processes [7]. In addition, a dependence of PC embedded PCI-rack to plug the GPU card in 

order to exchange data, which is not suitable for portability and small size chip designs. Also the lack of 

flexibility in terms of hardware architecture manipulation; due to their fixed architecture, it is necessary to fit 

the algorithm to the GPU architecture. 

FPGA technology offers interesting features that makes it an attractive solution for neural simulations. 

Flexibility, is reflected on the reconfiguration capacity and its ability to implement a large variety of custom 

architectures according to problem specifications. In FPGA-based neural networks simulators we can see this 

flexibility reflected in several works [8]. Parallelism is another important feature on FPGA neuro simulation, 

the capacity to implement several processing modules working at the same time and the possibility of selecting 



 
between area, cost and processing speed is an ideal feature for most applications, including neural networks 

development. The availability of DSP dedicated blocks in modern FPGAs makes possible floating-point 

operations and efficient exponential algorithm implementations which are crucial for several numerical 

methods used in neuron modelling [9].  However FPGA technology pays significant area and performance 

penalty for being reconfigurable and to offer these advantages, resulting in limited size  neural networks for 

biophysically realistic conductance-based models. However, distributed arithmetic, look-up tables techniques, 

dynamic adaptive memories and multiplexed architectures are some of the propose solutions to overcome this 

issue [10]. In addition, the possibility of direct-wired connection to external signals reduces significantly the 

data transfer for interfacing with living tissue experiments compared with GPUs alternatives. 

3 The conductance-based hardware neuron 

The simplified two-compartment version P-R  [11] of the original 19-compartment Traub model [12] is a 

suitable solution to represent the physiological response of a neuron and represent a good trade-off between 

area-cost and computational complexity,  this model can reproduce more complex burst patterns than the H-H 

model cannot [8]. The P-R model takes into account information about calcium ion channel Ca2+. Calcium 

dynamic is another important element in the chemical and electrical behaviour in the neuron. The model 

includes two parts: a soma-like, which has the Na+ and K+ activated currents; and a distal dendrite-like, where 

Ca2+ activated and potassium Ca2+-dependent currents are considered. 

3.1. Neuron components 

In order to represent the two-compartment P-R model, three interconnected hardware modules were 

developed that represent the soma, dendrite and synapse parts of the neuron. These three neuroprocessors are 

shown in Figure 1 with a  general schematic architecture that represents the hardware-based P-R neuron . Every 

module was written in VHDL using floating-point operation modules (FPALUs), state machines (FSMCs), 

logic control and internal RAMs in order to get all outputs and internal results needed. The modules have 

associated a dual-port RAM (DPRAM) in order to configure and control relevant parameters such as maximum 

conductance, input current, ions equilibrium potentials, geometric parameters, time step, configuration of state 

variables, etc. 

The soma and dendrite modules exchange their compartment voltages with each other, meanwhile the 

synapse module receives spiking information from incoming neurons and generates the necessary synaptic 

conductances (see equation 8) that affect the action potential propagation from the neuron. 

 



 

 

Fig 1. Hardware neuron architecture divided in three modules: soma, dendrite and synapse. 

 

The soma-dendrite modules follows the original conductance-based model from Pinsky and Rinzel work 

[11]; however in order to give it more accurate geometric information, cable equation and multi-compartment 

theories are used  and hence six different terms are considered for every compartment: the capacitive 

membrane; the total ionic-channel currents Im ; the injected current I e ; and three terms that relate the voltages 

of current compartment V j and adjacent left and right segments, V j+1  and V j− 1  respectively. 
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Where r
a  and C

m  are the specific axial resistivity in unit of KΩ-cm and the specific membrane 

capacitance in unit of µF/cm2 respectively. I e  and Im are the applied and ionic channel currents per unit area 

expressed in µA/cm2. The cylindrical segment (compartment) having radius a and length dx=∆x (in units of 

cm) provides the morphological information. V is the membrane voltage in mV. 

In order to solve equation (1), a convenient numerical method is required. The exponential Euler method 

offers a good trade-off between stability and computational complexity, several well-known neuro-simulators 

like NEURON use this method to integrate the membrane voltage equation. Rewriting the cell equation (1) in 

a more convenient way, we have: 
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Where ψ¿, ψGtot  are the weighted averages of all ionic channels conductances. These two terms change 

according to the type of compartment (soma or dendrite) as follows: 
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The transition between the ion gates close and open states is controlled by the state variables (i.e. m,h,p,s,q,c,r,u 

and z) which are defined by the first kinetic formula [13]. Since it is assumed that the synaptic connections are 

located in the dendrite compartment, the synaptic conductances SynψGtot  and Synψ¿  are summed to the 

dendrite terms. Later, the details of synaptic integration method are given. 

Then applying the exponential Euler solution to equation (2), we can obtain the explicit solution for every 

time step given by the equation: 
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3.2. Efficient Exponential Optimization 



 
As we can see in equation (9), every neuroprocessor module needs to calculate four arithmetic operations: 

add/sub, multiplication, division and exponential at every time step. The most timing and area consuming 

arithmetic process is the exponential operation. Indeed, previous work [8] has shown that the latencies for the 

CORDIC-exponential implementation is around 180 clock cycles compared with the 16 cycles of the second 

most time consuming operation. To tackle this issue, it is necessary to propose efficient numerical techniques 

to reduce latency and area cost without affecting the performance and dynamics of neuron behaviour. 

Two possible exponential implementation alternatives have been analysed. The first approach is based on 

a piece-wise exponential Look-Up-Table (PW-LUT). This technique has been successfully used on several 

neural simulators [14]. Previous research has found that for the specific purpose of neuroprocessors, a piece-

wise methodology offers the best performance rather than use a single domain LUT (see table 1). The main 

idea of PW-LUT is to split the argument range in several regions, given a desired resolution (LUT depth) to 

“zones of interest”, such as the range [-1 0], where it is crucial to perform the numerical method exponential. 

Such ranges are based on statistical observations of different exponential responses for the neuroprocessors. 

The second approach is the FLOating-POint-COres (FLOPOCO) project [15], which is an open-source C++ 

framework that can generate arithmetic cores. It generates a synthesizable VHDL code from a command-line 

interface where operator parameters can be configured. The main purpose is to explore how FPGA flexibility 

can be exploited for floating-point arithmetic. Table 1 summarizes the results for the four exponential 

implementations, where we can observe the scopes and limitations for each approach. Two important things 

to notice: since exponential piece-wise LUT (expPW-LUT) is divided in three regions, every measure result 

is calculated for each range; and for FP formats there are two different types of results: one corresponds to the 

actual maximum rate supported and the other corresponds to the specific range [-16 16] in order to make a fair 

comparison with the LUT format exponentials. FLOPOCO exponential (FloPoCo) presents the best trade-off 

with respect to latency and accuracy hence it has been selected to be used for the neuroprocessors. On the other 

hand, if the objective is area reduction the exponential LUT-based approaches [16] use pre-calculated tables 

and fewer FPGA resources than the FLOPOCO and CORDIC methods with a reduction of 80% and 170% 

respectively. Overall, the three considered versions improve over 95% the latency of full CORDIC version 

and these versions present a better accuracy performance in the neuron output. 

 

 

 

 

 

 

 

 

Table 1. Measurement of the data format representation for the three types of exponential implementation. 

FP: floating-point. 



 

 

FP_ 

CORDIC 

FP_ 

FLOPOCO 

exp SINGLE-LUT exp PW-LUT 

Latency 180 3 2 3 

Precision FP 32-bit FP 32-bit 4K-LUT depth 
4K-LUT 

depth 

Input 

Resolution 
4e-3 1e-6 8e-3 

8e-3    ♠ 

8e-4    ♣ 

16e-3  ♦ 

Output 

Resolution 

1.27e-14 

1.12e-7 

3.67e-40 

1.12e-7 
1.12e-7 1.12e-7 

Input 

Range 

[−32 32]* 

[−16 16] 

[-88 88]* 

[-16 16] 
[-16 16]‡ [-16 16] ‡ 

Output 

Range 

[1e-14  7.9e13] 

[1e-7   8.8e6] 

[3e-40  3.3e38] 

[1e-7   8.8e6] 
[1e-7   8.82e6] [1e-7   8.82e6] 

Accuracy 

norm Inf 

- - 

0.356 

- - 

1.2e-5 
0.775 

0.774  ♠ 

0.048  ♣ 

0.784  ♦ 

* Maximum range supported 

‡ Selected for implementation purpose 

♠ Range [0 16];  ♣ Range [-1 0];  ♦ Range [-16 -1] 

 

 



 

a)  

b)  

Fig 2. Hardware neuron architecture divided in three modules: soma, dendrite and synapse. 

 

The impact of exponential accuracy in the membrane cell output can be significant or negligible depending 

of what exponential implementation is used. In order to measure qualitative results, a classic Traub-burst is 

generated applying a current of 2.3 nA during a 80 msec window. As we can see in Figure 2.a CORDIC and 

single-LUT can maintain accuracy initially; however there is an error accumulated over the time that results 

in an eventual loss of accuracy and incorrect membrane dynamics. On the other hand, in Figure 2.b the 

FLOPOCO and PW-LUT approaches can maintain accuracy and correct neuron dynamics.  

4 Synapse integration and System architecture 

In this section a novel synapse integration method is proposed to build neural networks more effectively 

and the complete FPGA-based neuro-system architecture is presented. 

4.1. A novel synapse integration method 

In neural network modelling the updating and information exchange among synapses often requires higher 

complexity and more calculations than the computation of the effects of each neuron in isolation [17]. The 

synaptic integration (or summation) is the process where multiple pre-synaptic potentials from source neurons 

are combined within one postsynaptic potential in the target neuron. There are two types of summation: spatial 

and temporal. Normally this process is calculated in two different ways: the time-driven technique and the 

event-driven technique. In this work, a novel hybrid timing-event-driven method is proposed; i.e. there is a 

fixed time step where the neuron is continuously running a steady-state process and sensing the incoming 

spikes, then different processes will be computed according to the type of events arriving. The main idea is to 

take advantage of both. Hence, rather than treating each synapse individually, the synapses of a given type 



 

(AMPA, NMDA or GABAa) can be lumped together into a single overall synapse g∑ . This final synapse 

is updated only when individual synapses fires: ∑∑ += iggg ; i.e. when an event in the i-th synapse 

occurs. In this sense the amount of calculations is directly related with the amount of spiking activity in the 

network. 

 

The work of  [18] propose a full update rule splitting the synapse process in two parts depending on the 

presence (ron)  or absence (roff )  of neurotransmitters released. In a similar way, if we separate the total 

number of synapses N into those that activate and those that do not, we have Non  and Noff respectively. Then 

using the capital letters convention to refer to merged state variables, we can make next substitutions: 

R
on
=∑

i= 1

Non

r
i on , Roff=∑

i= 1

Noff

r i off  and  R∞
=∑

i= 1

Non

R
∞
= N

on
· R

∞ . Using the previous substitutions we obtain the 

equivalent representation of a synaptic update rule with an arbitrary number of incoming synapses N: 

Ron= N on · R∞ · [1− e
−dt / τ ]+Ron ·e

− dt / τ

 (9) 

dtβ

offoff eR=R
−  (10) 

The next step, is to update both integration equations when a particular single synapse-i changes. This 

change in the new r i  needs to be reflected in the complementary state variables Ron  and Roff ; i.e. when 

synapse-i changes to activation (off→on)  then the corresponding r i  must be added to Ron  and subtracted 

to Roff , conversely when synapse-i changes to inactivation (on→off) then Ron  must be decremented and 

Roff  augmented by the corresponding r i . Keeping track of the individual r i  and since synaptic state 

variables are voltage-independent, then the new r i  is easily updated following next rule: 

when on→off: 

[ ] τCdur

i

τCdur

i
er+eR=r

//

∞
1

−−

−  
(12) 

when off→on: 

ISIβ

ii er=r
−  (13) 

Keeping the assumption that neurotransmitter released during the synapse process is a pulse of duration 

Cdur. Then when a transition on->off occurs in the synapse-i, the time step dt becomes the duration of the 

synapse pulse (Cdur). On the other hand, when transition off->on occurs, then dt= t− t 0falling= ISI ; i.e. 

the difference between current time t and the last time event or the so called inter-spike interval (ISI). 

Finally, in neural networks the individual synaptic connections have different “weights” gi ' s  (maximal 

conductances and number of neurotransmitters). This can be take into consideration in equations (6.3–6.4) 



 

by creating a new variable r
i
'= r

i
· g

i  and then redefine the merged variables: R
on
=∑

i= 1

Non

r '
i on , 

Roff=∑
i= 1

Noff

r 'i off  and  Non
=∑

i= 1

Non

g
i
.  

A custom hardware neuroprocessor has been developed in order to implement the hybrid timing-event-

driven synapse integration where four different events are distinguished and then the corresponding 

processes are executed: RE (rising-edge), FE (falling-edge), BOTH (RE and FE happen at the same time) 

and NC (no change). Fig. 3 depicts an example where four incoming synapses receive spikes at different 

times. Assuming a time step dt=0.1 msec and Cdur=1 msec for all synapses, then in the 8 msec window the 

processes RE, FE, BOTH and NC are executed 5, 5, 1 and 69 times respectively. In this common spiking 

scenario, it is clear that process NC is the most likely and the least compute intensive, showing the 

advantage of the proposed hybrid method. 

 

Fig 3. Example of multiple execution process for four incoming synapse pulses. The relevant events are marked 

in yellow, for all remaining time steps, process NC is executed. 

 

 



 
Fig 4. Qualitative comparison between full parallel time-driven method (b) and the hybrid time-event-driven 

method proposed (c). The final state variable r is depicted in red. A series of four incoming synapses with 

different spikes supply the post-synaptic neuron (a). 

 

In order to validate the accuracy of the hybrid synaptic integration method, Figure 4.a shows an 

experiment in which an arbitrary state variable (r,u or z) and four input synapses fire at different times. A 

comparison against the results obtained by the full parallel time-driven approach is shown in Figure 4.b 

where the four outputs are sum up together to get the final summation (r-final in red). In a qualitative 

comparison, the hybrid time-event-driven approach gives an almost identical final summation as seen in 

Figure 4.c with the update of only two variables Ron and Roff  at each time step instead of updating every 

variable for each individual synapse.  

This results in a significant reduction in calculations for the proposed hybrid integration method 

especially the exponential operation. The reason behind this reduction is the number of times that each 

process in the hybrid integration method is executed. For this example process RE, FE, BOTH and NC are 

executed 21, 21, 1 and 315 times respectively; since process NC and FE do not need exponential 

calculations, just 22 exponentials operations are needed over the whole simulation against the 1400 exp 

operations for the full-parallel time-driven method. In total, a reduction of 80%, 76% and 98% was achieved 

for add/sub, multiplication and exponential operations respectively. 

Overall, the hybrid time-event-driven method shows a qualitative good equivalence comparing with 

conventional time-driven method and it saves a considerable amount of arithmetic calculations and area 

cost resources. 

4.2. FPGA system architecture 

The simulator platform for neural networks presented in this paper is implemented in FPGA technology. Two 

types of components form the system: FPGA vendor IP-cores and custom IP. The IP-cores are hardware 

modules available to build the basic system infrastructure, in this list we have the microprocessor Microblaze, 

AXI-buses and memory blocks. Secondly, the custom-IP are user-designed hardware modules that permit to 

create custom architectures to perform specific functions; the modules for the soma, dendrite and synapse 

neuroprocessors proposed in this paper and general control logic are examples of these cores.  A system on 

chip (SoC) platform has been been developed where neuroprocessors form single or two-compartment P-R 

neurons and control the connection between them. The general SoC FPGA architecture is shown in Fig. 5; the 

custom-IP neurons are connected through an AXI-bus interface; the Microblaze (MB) processor is connected 

to an external DDR3 RAM to store relevant data and it is running a firmware which continuously interacts 

with the MATLAB user-interface running in an external PC. 



 

 

Fig 5. SoC system reconfigurable architecture 

 

Table 2. Resources utilization for different number of neuron structures attached to the Microblaze system. 

Neuron 

structures 

BRAMs  

 

416 x 36kb 

Slice 

Registers  

301,440 

Slice 

LUTs 

150,720 

TOTAL 

Slices  

37,680 

1 6 % 7 % 18 % 26 % 

2 8 % 11 % 37 % 45 % 

3 8 % 18 % 49 % 61 % 

4 12 % 22 % 58 % 75 % 

5 14 % 30 % 72 % 88 % 

 

The entire FPGA simulation platform is implemented in a commercial Virtex-6 ML605 board. This board 

has a Virtex-6 LX240T FPGA with an external 512MB DDR3 memory for general purpose storage. The 

Microblaze-system processor and buses work at a 50 MHz clock frequency, meanwhile the neuroprocessors 

do it at 100 MHz. At this operation frequency, the neuroprocessor can achieved the real-time neuron constraint 

of 0.1 msec. Table 2 summarizes the FPGA complexity for the whole  embedded system depending of the 

number of neuron structures implemented; a maximum number of five two-compartment neuron structures 

can be used. Assuming that every neuroprocessor is working at multiplexing mode, the system is able to 

support neural networks of 105 neurons fully-connected (~10,000 synapses). 

 

 

 



 
Our work is the first system that targets the two-compartment Pinsky-Rinzel model  (P-R) and for this reason 

a direct comparison between this work and previous research is not possible, since there is no hardware P-R 

implementation reported in literature. In any case it is useful to put into context this hardware with recent 

FPGA-based neuron simulators. Table 3 summarizes the details in terms of aim, neuron type, performance, 

network structure and technology of recent research efforts in this area.  As seen in Table 3 these systems are 

based around the H-H model which offers less biological accuracy than P-R model or the fast Izhikevich 

models which are not biological meaningful. 

 

Table 3. Comparison of the presented system with recent research efforts 

Research Aim 
Neuron 

model 

Network 

size 
Performance Precision/NM NN Architecture Device 

[9] 

highly detailed 

ION cell 

network model 

3-comp ION 

model 

(HH-based) 

96 

neurons 

real time 

(323 clock 

cycles) 

32 bit FLP 

multiplexed 

neuron modules 

and kernel 

control 

Virtex 7 – 

100 MHz 

[6] 

synchronization 

on 

conductance-

based neural 

networks 

simplified HH 
400 

neurons 
real time 

32 bit FLP / 

NS 

NS 

20x20 topology 

connected 

Virtex 4 – 

100 MHz 

[23]  

extreme-scale 

real-time 

neural network 

Izhikevich 

64 K 

neurons 

64 M 

synapses 

real time 

(1 msec time 

step) 

16 bit FXP / 

NS 

centric-based 

communication 

Stratix IV/ 
Cyclone IV 

– 200 
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[7]  

large-scale 

spiking neural 

network 

Izhikevich 
64 K 

neurons 

2.5x real 

time 

(1 msec time 

step) 

16 bit FXP / 

NS 

custom 

architecture 

Virtex 6 – 

100 MHz 

[22] 

large-scale 

biological 

networks 

1-comp HH 

Izhikevich 

1-comp 

Wilson 

0.5 M 

neurons 

2 M 

neurons 

0.5 M 
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37x over 

CPU 

9x over CPU 

6x over CPU 

32 bit FLP / 

NS 

custom with 2 

layer network 

Stratix II – 

150 MHz 

Intel Xeon 

3.0 GHz 

dual-core 

processor 

[24]  

hippocampus-

inspired spiking 

neural network 

Izhikevich 
54 

neurons 

0.5 msec 

time step 

32 bit FXP / 

NS 

CA3-CA1 

hippocampal 

topology 

Virtex II – 

100 MHz 

[21]  
leech heartbeat 

neural network 
Izhikevich 

8 

neurons 
real time 

18 bit FXP / 

NS 

specific 8 

neuron leech 

architecture 

Virtex 4 / 

100 MHz 

This 

work 

Biophysically 

accurate 

neurons 

2 

compartment 

P-R 

100 

neurons 
real time 32-bit FLP 

Multiplexed 

neurons 

arranged in 

Neuroprocessors 

Virtex-6 

/ 100 

MHz 

 

 

The system was also implemented in software using a Core-i7 2.3 GHz with 4 G RAM. The speedup of the 

hardware platform against this software solution is approximately 20 times and this is in line with the results 

obtained in [8] that presented a single neuron model without arithmetic optimizations. Scalability in the 

presented configuration is limited by device resources, maximum connectivity in the AXI interface and 

memory accesses. The current platform combines a controller node implemented in a single Microblaze 



 
processor with a number of Neuro processors structures that can be masters but also need to be accessed by 

the Microblaze as slaves. The current set of tools limit the number of slaves in a single AXI interconnect to 16 

which will not fit in the Virtex-6 LX240 used in this research. Larger devices from the Virtex-6 or Virtex-7 

devices could use this full cluster and combine several of this clusters to build more complex system but 

ultimately scalability will be limited by the memory accesses. A single cluster with 16 neuron structures will 

saturate the DDR3 interface available in the ML605 board so a single board configuration with a single DDR3 

interface will limit scalability to approximately 16 hardware neurons. 

5 In silico case studies 

In this section we present two case studies to link the hardware FPGA simulator with real neuron-related 

experiments presented in Biology. 

5.1. Analysis of synaptic mechanisms responsible for Epilepsy 

We study the P-R neuron model to analyse some of the possible mechanisms that are responsible of epilepsy 

behaviour at a neuron response level. One of the most important features that characterize epilepsy are 

recurrent spontaneous seizures caused by after-discharged electrical signals presented in the neuron [19]. 

After-discharging (AD) occurs when neurons have the ability to discharge periodic impulses/bursts that can 

last several seconds, however such impulses appears after the stimulus finalisation. The after-discharge 

signalling is characterized by an initial large burst (F) followed by shorter sequence of burst or spikes (S). 

Some typical responses of experimental after-discharge CA1/CA3 pyramidal neurons in-vitro of a guinea pig 

hippocampal slice have been recorded. 

If it is possible to intentionally induce epileptic signals, then the mechanism that cause such phenomena 

can be determined and analysed. There are effective pharmacology methods that can achieve this purpose such 

as manipulating the ionic composition of the bathing medium (e.g. reducing [Ca2+],[Mg2+], [Cl-]; or 

increasing [K+]); application of certain drugs that block specific synaptic receptors (e.g. GABAa) or by 

injecting a biological toxin prior to in-vivo experiments. 

In this experiment, we will evoke an AD by manipulating NMDA receptors and [Mg2+] concentration. The 

experiments considers a cell 2 that receives a presynaptic burst from cell 1. In this scenario where only AMPA 

receptors are present (see Fig 6.b-left), the postsynaptic cell 2 can generate a burst as well; when AMPA and 

NMDA are acting together the postsynaptic burst is stronger having a few more spikes (see Fig 6.b-middle); 

in addition when the magnesium concentration [Mg2+] decreases, the conductance on NMDA channel 

increases originating a train of spikes (see Fig 6.b-right); this is one of the reasons that originates after-

discharging. As we can see in Figure 6.a, the results are consistent with experiments done in [12]. The study 

reveals that low magnesium concentration decreases the seizure thresholds and generates spontaneous 

discharges in animal models of epilepsy. 

 



 
 

 

a)  

 

b)  

 

Fig 6. SoC system reconfigurable architecture 

 

One of the main advantages of conductance-based models is that we can go into the neuron dynamics 

behaviour in order to analyse the results and obtain a biological meaning. For instance we analyse some 

relevant state variables when magnesium Mg2+ concentration changes and hence produce AD effect. In Fig 

7.b the Mg2+ concentration decrease from 1 mM to 0.1 mM, this is directly reflected in the voltage-dependant 

NMDA channel, since the magnesium reduction increases the spike voltage dependency in the NMDA channel 

maintaining the z*B(V) at high levels (pink trace) and producing subsequent big dendrite spikes. When this 

happens, then the long slow variable q (cyan trace) is activated again producing a gap of hyper-polarization 

and stopping for a while the spiking. Due to the relatively high level of z*B(V) subsequent action potentials 

are generated with less frequency. In contrast Fig 7.a the bigger level of magnesium concentration makes 

z*B(V) decay faster and the generation of subsequent spikes does not occur. 

 

 



 
a)   b) 

Fig 7. Magnesium concentration influence in the state variables changes. a) Mg2+ = 1.0 mM. b) Mg2+=0.1 

mM. 

 

There are other works that explore the non-synaptic mechanisms involve in the seizure after–discharges. 

For instance, the work of [19] explores the ionic channels Na+ and K+. In this work they conclude that the 

threshold and duration of ADs depend of variations in Na+ and K+ currents. In addition the accumulation of 

excess K+ can produce seizure after-discharges. Such experiments are also suitable for the  the FPGA-based 

simulation platform proposed in this research. 

5.2. Emulation of the leech heartbeat neural network 

In this section we focus on the specific mechanisms that produce the leech heartbeat. Previous research 

has studied the Central Pattern Generator (CPG) that governs this behaviour (i.e. this is the main mechanism 

in living organisms to produce oscillatory patterns in neural activity), the neural network and specific neurons 

involved are well-defined and have been correctly identified [20]. There are two main features in a CPG: the 

intrinsic bursting of neurons and mutual inhibitory connections between coupled neurons. The P-R Traub 

model has a ping-pong  effect  between its soma and dendrite compartments, this makes possible to have the 

intrinsic bursting property and hence a suitable candidate for the experiment. 

The neural network (CPG) for the leech heartbeat is formed by seven bilateral pairs of segmental 

interneurons that produce intercalated membrane voltage burst-oscillations (between 0.2 – 0.1 Hz) to drive the 

rhythm in its two hearts. However the first four pairs of interneurons (HN) are in charge of the pattern 

generation oscillations forming an 8-cell timing neural network, shown in Fig 8-left. The oscillation activity 

is originated by the reciprocal interaction of the third and fourth HN interneurons located in their ganglia 

counterpart. The alternate oscillations are mainly present at the third and fourth pair of oscillator interneurons; 

e.g. HN(3,Left) and HN(3,Right). 

 

Fig 8. The timing neural network for the leech heartbeat and output signals. 

 



 
The 8-cells timing neural network was built in the FPGA platform. The network is formed fully by 

inhibitory GABAa synapse connections. The results of the leech heartbeat FPGA-based neural network are 

shown in Fig 9. This figure shows that the alternate oscillatory pattern was achieved successfully, this suggest 

that P-R model has a good level of flexibility to emulate biological small neural networks for several 

applications with the appropriate conditions and the importance of conductance-based models for such 

experiments. 

 

 

Fig 9. The FPGA timing neural networks of the leech heartbeat results. Blue and red traces correspond to 

soma and dendrite compartments respectively. 

 

Other works have implement the behaviour of this CPG on FPGAs [21] but they use abstract models that 

decrease the biological realism in the output of the network, given a flat pulse train pattern. In addition the 

parameters used in conductance-based models are biophysically compatible and neuro-experimentalist can 

modify them to replicate organic behaviour. For example the periodic transition between inhibited and burst 

states is produced by a mechanism called escape and can be analysed using this kind of models in a well-

controlled simulation platform. This mechanism happens when a neuron being inhibited by the bursting of its 

counterpart neuron can “escape” from this state and hence start to spike, inhibiting the bursting neuron (see 

Fig 10). 

We can analyse the escape behaviour in a sequential series of events depicted in Fig 10. At the beginning 

of the graphic the left neuron HN(3,L) is inhibited by the spikes of the right neuron HN3-R. However the total 

synaptic conductance gtot (green trace), equivalent to just GABAa ionic channel, is decreasing gradually until 

the point of inhibition on HN(3,L) is no longer strong enough; in that moment the neuron HN(3,L) escapes 

from the inhibition stage and starts to spike. Next since HN(3,L) starts to fire, such spikes produce an inhibitory 

effect on the neuron HN(3,R), there is a point where HN(3.R) stops spiking and then HN(3,L) increases its 

burst frequency making stronger the inhibition in its right neuron counterpart. Conversely the process starts 

again when the synaptic GABAa conductance in HN(3,R) decreases and then it is able to escape from the 

inhibition stage. Such escape process is crucial in the oscillation generation process in the leech timing neural 

network [20]. 



 

 

Fig 10. The “escape” mechanism in the half centre oscillator for HN3 neuron. 

 

6 Conclusions and future work 

A complete FPGA-based platform for the simulation of biophysically accurate neural networks has been 

proposed. The main components of this platform are the soma, dentrite and synaptic neuroprocessors in charge 

of implementing the P-R conductance-based model. 

In order to simulate larger neural systems, the exponential which is the most area and time consuming 

operator was analysed and enhanced. The presented results show that the FLOPOCO exponential offers the 

best trade-off in terms of latency and accuracy.  In addition, a piece-wise exponential LUT-based approach 

was proposed which uses fewer FPGA resources than the FLOPOCO approach. Both versions improve in 

over 95% the latency of CORDIC used in previous research. Also both present a better accuracy performance 

in the neuron output according to accuracy experiments. 

The hardware architecture for the synapse integration provides almost identical qualitative results 

compared with the conventional full parallel time-driven method, which needs to evaluate all individual 

synapses at every time step. In contrast the hybrid method has only a single accumulative synapse approach 

that can handle an arbitrary number of incoming synapses. This advantage means that it is possible to have 

only one synapse neuroprocessor per neuron, instead of one neuroprocessor for every single synapse or 

connection. The hybrid time-event-driven method offers a feasible solution to tackle the integration problem 

reducing over 90% the number of arithmetic operations, maintaining real-time operation and resulting in no 

loss of biological information. The real-time properties of the FPGA system means that is possible to devise 

experiments in which the neuron models behave as virtual neurons and interact with organic neurons 

accurately.  

Several new directions of research can be explored as future work. For instance, with component reuse it 

is possible to design a generic architecture that supports other conductance-based models. This type of models 



 
are based in the same mathematical first kinetic formula and they have a well-established dynamic 

mechanism. Another research line is to develop a multi-FPGA platform that supports larger neural networks 

so that several hundreds of neurons can be achieved. To facilitate this future research and enable reproducible 

research we have made all the hardware description files and supporting software available open-source at 

http://seis.bris.ac.uk/~eejlny/ downloads/neuroprocessor.zip 
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