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Abstract 
 
Why do some neurons in hippocampus and cortex respond to information in a highly 

selective manner?  It has been hypothesized that neurons in hippocampus encode 

information in a highly selective manner in order to support fast learning without 

catastrophic interference, and that neurons in cortex encode information in a highly 

selective manner in order to co-activate multiple items in short-term memory (STM) 

without suffering a superposition catastrophe.  However, the latter hypothesis is at 

odds with the widespread view that neural coding in the cortex is highly distributed in 

order to support generalization.  We report a series of simulations that characterize the 

conditions in which recurrent Parallel Distributed Processing (PDP) models of 

immediate serial can recall novel words.  We found that these models learned localist 

codes when they succeeded in generalizing to novel words.   That is, just as fast 

learning may explain selective coding in hippocampus, STM and generalization may 

help explain the existence of selective codes in cortex. 
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Gross, Bender, and Roch-Miranda (1969) identified a neuron in inferior 

temporal (IT) cortex of a macaque monkey that selectively responded to images of 

hands.  The results were so surprising that Gross (1994) later recounted how he was 

initially nervous to call the neuron a “hand cell”, and speculated that this work was 

largely ignored for a decade because researchers didn’t believe the findings.  

Subsequently there have been dozens of studies reporting similar findings, and the 

observation that some neurons in cortex and hippocampus respond to high-level 

perceptual information in a highly selective manner is no longer in doubt (for a 

detailed review of the neuroscience, see Bowers, 2009). 

A related observation is that neural firing in the cortex and hippocampus is 

highly sparse, meaning that small percentage of neurons in a population of neurons 

respond to a given input (e.g., Shoham, O’Connor, & Segev, 2006).  Selective and 

sparse coding are distinct concepts, and it is possible for these measure to dissociate 

(Willmore & Tolhurst, 2001).   For example, a small proportion of neurons may fire 

in response to a given input (the representation is sparse), but at the same time, the 

active neurons respond to many different inputs (the response is non-selective).  This 

would constitute a sparse distributed code for the input.  Alternatively, it is possible 

that many redundant neurons respond selectively to a given input; this would 

constitute a selective but non-sparse representation.  The failure to distinguish these 

concepts has led to a number of conceptual confusions (Bowers, 2011; Földiák, 

2009).  For present purposes, the important point is that various brain systems rely on 

representations that are both highly selective and sparse.  

Given these findings, an important question is why do neural systems code for 

information in this format?  In fact, there may be different reasons for the selective 

and sparse coding observed in the hippocampus and in the cortex.  With regard to the 
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hippocampus, Marr (1971) suggested that information is coded in a highly sparse 

format in order to support fast learning (as required for episodic memory, for 

example).   The basic insight is that as long as different memories are coded 

separately from one another, then learning something new will have little impact on 

previously stored memories.  Sparse (or selective) coding is useful in this context 

because it results in non-overlapping memory representations.  By contrast, when 

memory representations overlap, new learning will often interfere with old memories.  

Indeed, this is the case with Parallel Distributed Processing (PDP) models that learn 

highly distributed representations with each input coded as a pattern of activation over 

many different units (non-sparse coding) and each unit involved in coding many 

different things (non-selective coding).  In these models, rapid learning often leads to 

rapid forgetting, a phenomenon called catastrophic interference (McCloskey & 

Cohen, 1989), or the stability-plasticity dilemma (Grossberg, 1980).   

With regard to the cortex, Bowers, Vankov, Damian and Davis (2014) argued 

that selective coding is well suited for co-activating multiple things at the same time, 

as required for short-term memory (STM).  The basic claim is that co-activated 

distributed patterns are ambiguous in that it is not possible to recover the constituent 

patterns when they are blended together; the so-called superposition catastrophe (von 

der Malsburg, 1986).   Bowers et al. (2014) showed that a recurrent PDP model 

trained to co-activate and recall multiple words at the same time succeeded by 

learning highly selective (often localist) letter and word codes, and we argued that this 

may help explain the selective responding of neurons in cortex given that the cortex 

supports STM in various domains (Cowan, 2001).  

However, the latter hypothesis is difficult to reconcile with the common claim 

that distributed codes are better suited for coding information in the cortex.  For 
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example, according to the complementary learning systems (CLS) hypothesis 

(McClelland, McNaughton, & O’Reilly 1995) knowledge is coded in a highly 

distributed format in cortex in order to support various forms of generalization (e.g., 

identifying an object from a novel viewpoint or reading a novel word), and in a highly 

sparse and selective manner in the hippocampus for the sake of fast learning (in line 

with Marr).  Indeed, McClelland et al.  (1995) claimed that that fast learning and 

generalization were incompatible functions that require sparse and selective coding on 

the one hand, and more densely distributed coding, on the other.   Consistent with this 

analysis, PDP models that succeed at generalizing are thought to rely on learned 

distributed representations (e.g., Plaut et al., 1996; Seidenberg & McClelland, 1989).  

Distributed representations support generalization because similar inputs are coded 

with similar overlapping representations, and as a result, novel inputs overlap with 

similar pre-existing knowledge.   

How can we reconcile the claim that neural representations in cortex are 

highly selective for the sake of STM (Bowers et al., 2014) with the claim that neural 

representations in cortex are highly distributed for the sake of generalization 

(McClelland et al., 1995)?  One possibility can quickly be ruled out, namely, that that 

different sets of representations support STM and generalization.  The problem with 

this solution is that we can generalize and remember multiple things at the same time.  

For example, not only can we generalize from past reading experience in order to 

name novel words (e.g., blap), but we can also read and remember multiple novel 

words in a STM task (e.g., read and repeat the nonwords blap, dram, and samp).  The 

same is true with PDP networks.  For example, Bowers, Damian & Davis (2009) 

found that a PDP model of STM could recall lists of familiar and unfamiliar words at 
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a similar level of performance (see figure P2, p. 997).  Some form of representation 

can obviously generalize and co-activate multiple items at the same time. 

One reason to believe localist coding could serve both functions is that there 

are already a number of localist models that support generalization.  For example, in 

the DRC model of word naming (Coltheart et al., 2001), novel words are read through 

the serial application of (hand-wired) localist grapheme-phoneme units.  Similar to 

the distributed models of word naming, novel words in the DRC model overlap with 

pre-existing knowledge (the localist letter codes overlap), and it is the overlap that 

supports generalization.  This at least raises the possibility that PDP models of 

immediate serial recall that succeed in generalizing learned localist letter codes.   

It is important to emphasize the significance of this issue.  A fundamental 

claim is that PDP models generalize on the basis of distributed representations, and to 

date, all of the evidence is consistent with this claim.  However, this position would 

have to be substantially modified if PDP models only generalize on the basis of 

distributed representations in some conditions (when activating one thing at a time), 

and generalize on the basis of localist representations in other conditions (when co-

activating multiple things at the same time).  Indeed, given that cortical systems 

support STM and generalization, it is possible that highly selective codes (if not 

localist codes) play an important role in human generalization.  This conclusion 

would also help make sense of the selective neural responses reported in cortex, and 

challenge the complementary learning systems that is predicated on the view that 

distributed representations are needed in the cortex for generalization.  We explore 

these issues in the following simulations.  

Although we are specifically focused on the question of how PDP models 

generalize when trained to co-activate multiple items at the same time, our findings 
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may well have implications beyond short-term memory tasks.  For example, consider 

again models of word naming (e.g., DRC model).   Although the model only name 

words one-at-a-time, it is widely assumed that the representations that support word 

naming are involved in other tasks, including speech perception (e.g., Harm & 

Seidenberg, 2004) and STM (e.g., Page, Madge, Cumming, & Norris, 2007).  

Accordingly, any constraints we observe regarding the representations that support 

STM may have implications for other domains, including the identification and 

naming of single words and objects, etc.   

Background Simulations 

The current work is inspired by a PDP model of STM initially developed by 

Botvinick and Plaut (2006) and subsequent models that further explored the 

conditions in which recurrent networks succeed and fail in recalling co-activated 

items.  Accordingly, before introducing the current simulations, we briefly review the 

past findings to set the stage. 

Botvinick and Plaut (2006) developed a recurrent PDP model of immediate 

serial recall that encoded a series of letters presented one-at-a-time at the input layer 

and reproduced the letters in the same order at the output layer – a classic test of 

STM.  Critically, the model stored lists of letters in STM by superimposing their 

activations within a hidden layer that included recurrent connections.  See Figure 1.  

Interestingly, the model reproduced a number of key behavioral phenomena, 

including some results that are problematic for other theories.  However, for present 

purposes, the key point is that the model was not tested in its ability to generalize.  

Given that the model was trained to recall lists of letters that were coded in a  localist 

format at the input and output layers, it is not clear how the model could generalize.  

  



	   8	  

Figure 1.  Diagram of the Botvinick and Plaut (2006) recurrent PDP model of 

immediate serial recall.  The model includes a set of 27 input and output units (one for 

each letter of the alphabet plus a unit in the input layer that cues recall, and a unit in the 

output layer that codes the end of a list) plus a set of 200 hidden units.  Arrows indicate 

connections between and within layers. 
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Subsequent papers provided additional information about the conditions under 

which recurrent PDP models of immediate serial recall can generalize to novel items 

and the types of representations that are learned, but key issues are still unresolved.  

With regards to generalization, Bowers et al. (2009) introduced a distributed letter-

coding scheme to the model (each letter was coded as a pattern of activation across 

five input and output units) and we trained the model to recall lists of letter taken 

from a vocabulary of 25 or 26 letters.  The model succeeded in recalling lists of 

familiar letters, but when tested on a single novel letter (a novel pattern of activation 

across the input units) the model failed most of the time.  That is, the model’s 

memory span for novel letters was approximately zero. In response to this work, 

Botvinick and Plaut (2009) trained another version of the model to recall lists of 

syllables defined as a pattern of activation across three localist letter units.  They 

trained the model to recall lists of syllables taken from a vocabulary of 999 of 

possible 1000 syllables.  At test, the model did succeed on the 1000th syllable.  

Similarly, in a follow-up study, Bowers et al. (2009) found that a model could 

generalize to novel syllables when trained on 500 of a possible 600 syllables.  

Although the latter simulations demonstrate that PDP models can overcome 

the superposition catastrophe and generalize in some conditions it is unclear whether 

distributed or localist codes supported successful performance.   Either outcome is 

plausible given that Botvinick and Plaut (2006) provided evidence that their original 

model recalled lists of familiar letters relying on distributed code, whereas Bowers et 

al. (2014) showed that a recurrent PDP model trained to code multiple words at the 

same time (without regards to order) learned localist letter and word codes.  However, 

neither of these models was trained in a way that could support generalization, so 
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these findings do not reveal the nature of the learned representations that support 

STM and generalization.   

Current Studies 

We report a series of simulations on a PDP model of immediate serial recall 

and carry out a set of analyses on the hidden units in order provide insights into (a) 

the training conditions in which these models succeed and fail to recall familiar and 

novel words, and (b) the representations that support success and failure.  

With regard to (a) the previous models of immediate serial recall that 

succeeded and failed with novel words (and novel letters) differed in a number of 

ways, but perhaps the most salient difference was the size of the training set (the 

models that succeeded were trained on a larger vocabulary of items).  Accordingly, 

the size of the training set was varied in the simulations reported below.  We found 

that vocabulary set size is indeed the critical variable.  In order to address (b) we 

systematically analyzed the activations of the hidden units in response to the words 

and nonwords and carried out “lesion” studies to assess the impact of removing single 

hidden units on performance.  Both sets of analyses showed that the model learned 

localist codes when it succeeded (sparseness was not the critical factor).   In order to 

further test this hypothesis we predicted previous PDP models of immediate serial 

recall that failed to generalize (e.g., Botvinick & Plaut, 2006; Bowers et al. , 2009) 

relied on leaned distributed codes where as previous models that succeeded in 

generalizing (e.g., Botvinick and Plaut, 2009) relied on learned localist codes (despite 

the fact that the models differed in various parameters and training conditions).  These 

predictions were confirmed. 

It is important to emphasize that our primary goal is not to make claims about 

how recurrent PDP models of immediate serial recall work (although this is 
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interesting in its own right).  Rather, we want to provide some insights into whether 

highly selective or distributed representations are better suited for supporting two core 

functions of cortex, namely, STM and generalization.  For this purpose PDP models 

are useful because the learned representations are said to be emergent rather than 

“stipulated” by the modeler (Plaut & McClelland, 2000).  Accordingly, if PDP models 

learn localist codes when they succeed it suggests that there are computational 

advantages of these representations under these conditions.  

Simulation 1(a and b): Training on lists of words.   The purpose of these 

simulations was to assess generalization as a function of vocabulary size. We 

developed a model that has similar computational resources as the original Botvinick 

and Plaut (2006) model, but adapted the model for our purposes.  The model included 

30 input phoneme units, 200 hidden units, and 30 output phoneme units, and the 

trained words were coded through the co-activation of three phoneme codes:  The first 

10 input (and output) units coded for the onsets of words, the next 10 items for the 

vowels, and the final 10 units for codas, and each word was coded as one active onset, 

nucleus, and coda unit.  Specifically, the 30 input units coded for the following 

phonemes:  (b, c, d, f, g, h, j, k, l, m) (a, e, i, o, u, y, aa, ea, ou, oo) (n, p, q, r, s, t, v, w, 

x, z).  Given that each word was defined as the co-activation of one onset, one 

nucleus, and one code unit, the total number of possible words was 1000 (10 onsets x 

10 vowels x 10 codas). There was also one more input unit that coded for the end of a 

list, as well as a corresponding output unit. 

On each trial the network was presented with a random sequence of words 

from the training vocabulary (without replacement).  We followed the general training 

procedure of Botvinick and Plaut (2006): Each training cycle began with a single 

word, with length increasing by one until a simulation-specific maximum length was 
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reached (in Simulations 1 the maximum list length was nine words). Following 

presentation of a list of maximum length, the list length returned to one and the cycle 

repeated.  At test we assessed recall for lists of familiar and novel words, varying 

from list length one to nine. The output of the model was determined by comparing 

the pattern of activation at the output layer with the 1000 patterns that defined all 

possible words. The model was said to recall the word (either a trained or a non-

trained word) that was composed of the three most active units at the output.   

The network was trained using backpropagation through time (Werbos, 1990). 

The learning rate was fixed to 0.0005 and no momentum was used. The standard 

sigmoid activation function was used in both the hidden and the output layer. The 

gain of the activation function was set to 1. The error at the output layer was 

computed using the cross entropy function.1 

The key difference between simulation 1a and Simulation 1b was the size of 

the training vocabulary, with a small and large vocabulary of 30 and 300 words used, 

respectively.  The vocabularies were randomly selected from the possible 1000 words, 

but we ensured that all the letters and pairs of letters (bigrams) occurred at similar 

rates in the training vocabulary.  At test the familiar words were again composed of a 

random selection from the vocabulary (without replacement), and the novel words 

were composed of a random selection of words from the non-trained set.  For 

example, when trained on the small vocabulary of 30 words, the novel words were 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We used a sigmoid as activation function for the out layer because multiple active 
units (three units were activated for each word, one for each letter), whereas 
Botvinick and Plaut (2006) used the softmax output function.  Softmax is used when 
there is just one active unit within a layer; this was not appropriate for our 
simulations. 
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randomly selected from the 970 untrained words (10 x 10 x 10 possible words, minus 

30).   

 We trained the network in the two vocabulary conditions until it successfully 

recalled six familiar words at 50% (roughly human performance). This required 3 

million trials for the small vocabulary and 15 million for the large vocabulary.  Figure 

2 shows the performance on the familiar and unfamiliar words in Simulations 1a and 

1b as a function of list length.  Consistent with past results (Botvinick & Plaut, 2009; 

Bowers et al., 2009) the model succeeded in recalling lists of familiar words of 

various lengths regardless of the training size vocabulary whereas performance on 

novel words was catastrophically bad when trained on the smallest vocabulary, and 

excellent when trained on a larger vocabulary.  Given that the two models were 

identical apart from their training, the current results support the hypothesis that 

vocabulary size is the critical variable that accounts for the mixed generalization 

results in previous studies.  
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Figure 2. Performance of the network on lists of familiar and novel words (from list 

length 1-9) when trained on a small vocabulary of 30 words and a large vocabulary of 

300 words. 
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Simulation 2 (a and b): Training words one-at-a-time.  The above simulations 

confirm that PDP models of immediate serial recall can indeed generalize to novel 

items when trained on a large vocabulary of items.  Below we explore how the model 

succeeded by assessing the nature of the learned representations.  But first we explore 

why the model failed to generalize when trained on a smaller vocabulary (Simulation 

1a). 

One possibility is that the small vocabulary presented at training did not 

sample broadly enough from the possible 1000 words, and as a consequence, the 

model did not learn the statistical structure of the overall vocabulary that would allow 

the model to generalize to novel items.  There are many demonstrations of PDP 

models failing to generalize due to the inadequate sampling of the training space.  

Another possibility, however, is that the sampling size was adequate but the task of 

co-activating multiple words at the same time restricted generalization in the small 

vocabulary condition.   

Why might co-activating multiple words restrict generalization?  Consider 

Botvinick and Plaut’s (2006) explanation of how their model solved the task.  They 

noted that blends of co-active distributed patterns can be ambiguous (the 

superposition catastrophe) and argued that their model learned to cope with 

ambiguities by learning a bias to recall the most likely sequence of items given its 

training history.  This was thought to reduce the ambiguity to an extent sufficient to 

allow distributed representations to support STM at a level commensurate with human 

performance.   

However, Botvinick and Plaut did not consider the downside of this solution, 

namely, that such a bias works against recalling novel items. That is, novel words are 
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not the most likely output given the training history, and accordingly, the model might 

be expected to lexicalize, producing an incorrect familiar word most consistent with a 

given blend.  Although human STM is better for familiar compared to novel words 

(Jefferies, Frankish, & Lambon Ralph, 2006), we nevertheless have no difficulty in 

repeating a few nonwords, such as “blip-blap”.  The difficulty in coding multiple 

novel things with distributed representations was highlighted by Bowers (2002):  

 

Perhaps most problematic, blends are not necessarily the product of combining 

pre-trained patterns. Imagine the situation in which two words are co-active in 

a distributed phonological system. Although the blend pattern may be more 

similar to the two constituent words compared to any other trained word, the 

pattern is not more similar to many possible items (or possible blends). The 

blend pattern might have been produced by combining two nonwords, for 

example, although this possibility cannot be recovered from the blend. But we 

can co-encode two novel items: e.g., phonologically, as BLIP–BLAP in short-

term memory… blend patterns in distributed systems are deeply ambiguous 

(p. 431). 

 

To reiterate, there are two contrasting predictions as to why the PDP model 

trained with a small vocabulary (Simulation 1a) failed to generalize:  either the model 

was not trained on a large enough vocabulary of words in order to extract the 

necessary statistical regularities of the inputs, or the model failed to generalize 

because it learned a lexical bias in order to recall lists of familiar words in the face of 

ambiguous blend patterns (consistent with the analysis of Botvinick & Plaut, 2006).  
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That is, generalization was compromised in an attempt to overcome the superposition 

catastrophe. 

 In order to contrast these two hypotheses we trained the same network with 

vocabulary sizes of 30 (Simulation 2a) and 300 (Simulation 2b) when words were 

presented one-at-a-time. That is, the model was presented with the same set of words, 

but the model did not face the superposition catastrophe. If the small vocabulary was 

responsible for the poor generalization then generalization should continue to be poor. 

By contrast, if the superposition catastrophe played a role in restricting generalization 

then the model trained on a small vocabulary of items one-at-a-time should be able to 

generalize.  

We first trained the networks in Simulations 2a and Simulations 2b until they 

performed at 100% accuracy on familiar words, which took 20,000 and 30,000 trials, 

respectively.  This led to 59% and 98% correct performance on nonwords in the small 

and large vocabularies, respectively.  We then extended training in both simulations 

to one million trials (still much less training than in Simulation 1) and again found 

that the model did quite well with single novel words in both vocabulary conditions as 

well (81% and 100%, respectively).  Given that the same set of words were presented 

in the small vocabulary conditions in Simulation 1a and Simulation 2a, it appears that 

the poor generalization in Simulation 1a can be attributed, at least in part, to learning 

to cope with the superposition catastrophe with distributed representations (perhaps 

by means of learning a lexical bias, as suggested by Botvinick and Plaut, 2006).   

 

 

Analyses of the hidden layer 
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The above simulations suggest that the model trained on a small vocabulary 

learned a lexical bias in order to co-activate multiple words whereas the model trained 

on a large vocabulary learned to co-activate multiple words without a lexical bias 

(allowing it to generalize).   That is, the models appear to cope with the superposition 

constraint in two different ways.   

One interesting possibility is that the both models learned distributed 

representations but developed different strategies for coping with the blend patterns. 

That is, the lexical bias strategy in the small vocabulary condition was replaced by an 

alternative strategy in the large vocabulary condition that allowed generalization to 

novel items relying on distributed representations. This would show that the 

superposition catastrophe is more easily overcome than previously presumed (e.g., 

Bowers, 2002; Bowers et al., 2014; von der Malsburg, 1986).  It would also support 

the widespread view that generalization in PDP models is supported by distributed 

representations. 

 Another possibility, however, is that the model trained on a small and large 

vocabulary learned distributed and highly selective (or even localist) representations, 

respectively.  On this latter hypothesis, overlapping distributed patterns are only 

moderately ambiguous when the model was trained on a small vocabulary, and the 

model could recover the constituent word patterns by adopting a lexical bias.  By 

contrast, when the model was trained on a large vocabulary of items, the blends 

became more ambiguous, and the model was forced to learned selective (largely non-

overlapping) representations in order to avoid the superposition constraint.  We assess 

these two possibilities next. 

Single-unit recording studies In order to gain insight into why we observed 

contrasting results in the two vocabulary conditions we examined the activation of 
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individual hidden units – much like the single-cell recording studies carried out in 

neuroscience.  Following training in all of the above simulations we recorded the 

activation of all 200 hidden units in response to all possible words (1000 in all) 

presented one-at-a-time, and displayed the results using a graphical method 

introduced by Berkeley et al. (1995).  In this method, a separate scatter plot for each 

hidden unit is created, and each point in a scatter plot corresponds to a unit’s 

activation in response to a single input (in this case, a word).  All the relevant inputs 

can then be presented to the network, and the response of each unit is recorded.  Level 

of unit activation is coded along the x-axis, and an arbitrary value is assigned to each 

point on the y-axis in order to prevent points from overlapping (in case two different 

inputs drive a given unit to the same level).  This effectively provides a single-cell (or 

in the case, a single unit) recording for each hidden unit in response to a large set of 

inputs.  

 In order to facilitate the presentation of these recordings, we adapted this 

procedure in a number of ways for our purposes.  In the first set of scatter plots, we 

sorted the words according to whether they were familiar or novel, with familiar 

words presented in dark crosses, and novel words presented in light crosses. Familiar 

and novel words were blocked along the y-axis, and within each block, familiar and 

novel words were organized alphabetically.  In Figure 3a-b we plot the activation of 

each hidden unit as a function of vocabulary size when words were trained one-at-a-

time (Simulations 2a-b), and in Figure 4a-b we plot the activation of each hidden unit 

as a function of vocabulary size when words were trained on lists (Simulations 1a-b).  
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  Figure 3. Scatter plots of the 200 hidden units when the network was trained on words 

one-at-a time taken from (a) a small vocabulary of 30 words, (b) a large vocabulary of 

300 words.  Within each scatter plot, each dot represents the unit’s response to a 

particular word.  Dark dots refer to familiar words; light dots refer to novel words. 

a) 
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b) 
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Figure 4. Scatter plots of the 200 hidden units when the network was trained on lists of 

words taken from (a) a small vocabulary of 30 words, (b) a large vocabulary of 300 

words.   
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The pattern of results is strikingly different across the four training conditions.  

When the model was trained on words one-at-a-time there is no pattern in any of the 

plots, and accordingly, no straightforward way to interpret the output of a given unit.  

That is, the hidden units code for the words in a distributed manner, regardless of the 

vocabulary size.  By contrast, when the model was trained on lists of words, training 

set size had a clear impact on plots.  That is, when trained on a small vocabulary there 

was again no discernible pattern (so again, the model was relying on distributed 

codes), but when trained on a large vocabulary, many hidden units showed a clear 

“banding” pattern of activation, with familiar and novel words taking on one of two 

distinct activation levels (see Figure 4b).  Furthermore, it is straightforward to 

interpret many of the bands given that all the familiar and unfamiliar words in a given 

band often contained a specific letter.  For instance, consider hidden unit 18 that 

included one band of activation near 0, and another band of activation near 1.  All the 

words that activated this unit contained the letter ‘K”, whereas all words and words 

that did not contain a “K” failed to activate this unit. That is, this unit appears to be a 

localist detector for the letter ‘K’  (see Figure 5). 
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Figure 5.  Labeled scatter plot of hidden unit 18 following training on lists of words 

taken from a large vocabulary.  In this plot the word names themselves are displayed, 

with familiar words depicted in bold.   
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To more formally assess the extent to which the network developed localist 

letter detectors we developed a “selectivity” metric that measured the extent to which 

a given hidden unit selectively responded to a given letter (this metric was also used 

in Bowers et al., 2014). The selectivity of a hidden unit was computed as the minimal 

difference in activation between words that contained a given letter and words that did 

not contain this letter.  These selectivity values can vary from +1 (when all words that 

contain a given letter drive the hidden unit to an activation of +1 and all words that do 

not contain the letter do not, i.e., 1 - 0 = 1) to -1 (when all words that contain a given 

letter do not activate the unit at all, and all other words drive the unit to an activation 

of +1, i.e., 0 - 1= - 1).  In Figure 6 a-d we display the selectivity plots for the network 

trained on small and large vocabularies when words were presented one-at-a-time and 

in lists.   We labeled a unit with a letter and its selectivity value when the selectivity 

was above .1.  As is clear from these plots the model only learned selective units 

when trained on lists of words taken from a large vocabulary.  In this condition the 

model learned selective codes for 23 of the 30 letters at a criterion of .1, with 33 

selective codes altogether (10 of the selective codes coded a letter redundantly).  
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Figure 6.  Selectivity plot for the network trained on words one-at-a-time taken from 

the small (a) and large (b) vocabularies and trained on lists of words taken from the 

small (c) and large vocabularies (d).  Each hidden unit is coded by a square (10 per 

row), and grey squares indicating selectivity scores above .5.   Units that taken on 

selectivity values greater than |.1| are labeled with the letter they selectively respond to, 

and the precise selectivity value is presented in brackets.  Units only became selective 

when trained on lists of words taken from a large vocabulary. 
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Interestingly, four of selective units had negative selectivity scores, meaning that the 

unit was less active in response to a given letter.  We will call these OFF as opposed 

to ON units.  At the .5 selectivity criterion there were selective codes for 14 of the 30 

letters, with no redundant coding, and no OFF units.  2 

These scatter and selectivity plots help make sense of why generalization to 

novel words was so poor when the model was trained on lists of words taken from a 

small vocabulary and why the model did so well when trained on lists of words taken 

from a large vocabulary.  In the former case, the model succeeded to recall lists of 

familiar words using distributed representations, and under this condition, the model 

appears to have adopted a lexical bias in order to minimize the level of ambiguity 

associated with blends, much as Botvinick and Plaut (2006) claimed.  This restricted 

generalization.  By contrast, in the latter condition, the model abandoned distributed 

representations and succeeded on lists of familiar words using learned localist codes.  

Localist codes are not ambiguous (they avoid the superposition constraint) and 

accordingly the pressure to learn a lexical bias was not longer operative, and the 

model could generalize.  

Why did the model learn localist codes when trained on a large vocabulary?  

Our hypothesis is that when the model was trained on the large vocabulary the blends 

of distributed patterns were too ambiguous to resolve with a lexical bias.  That is, a 

given blend pattern could be produced by many possible combinations of familiar 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  	  In	  order	  to	  insure	  that	  the	  distribution	  of	  localist	  codes	  across	  the	  four	  training	  
conditions	  was	  not	  due	  to	  some	  idiosyncratic	  feature	  of	  the	  above	  simulations	  
we	  replicated	  all	  the	  simulations	  five	  times	  over.	  	  The	  only	  condition	  in	  which	  
localist	  codes	  emerged	  was	  when	  the	  model	  was	  trained	  on	  lists	  of	  words	  taken	  
from	  a	  large	  vocabulary.	  	  The	  average	  number	  of	  selective	  codes	  was	  12.4	  (SD	  =	  
2.61)	  with	  a	  selectivity	  criterion	  of	  .5,	  and	  23.8	  (SD	  =	  3.35)	  with	  a	  selectivity	  
criterion	  of	  .1.	  	  
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words, and as a consequence, a bias to retrieve the most likely set of words was no 

longer a successful strategy.  Accordingly, the model adopted the only solution it 

could; namely, it learned localist letter codes.   On this analysis, the model learned 

localist representations in response to the superposition constraint rather than any 

pressure to generalize.  But a side effect of learning localist codes is that the model no 

longer relied on a lexical bias in order to disambiguate co-activated distributed 

patterns, which in turn facilitated generalization.  This suggests that localist codes are 

not only better at supporting the co-activation of familiar words, but in addition, 

localist codes are better at supporting generalization in this context.    

Lesion studies   In order to better understand the functional role of the highly 

selective hidden units we carried out a systematic set of lesion studies on the network 

trained on lists of items taken from the large vocabulary.  We first lesioned each 

hidden unit that had a selectivity score above .1 and assessed the model’s 

performance on all 1000 words (300 words and 700 novel words) when presented 

one-at-a-time during the recall phase (analogous to presenting an image in a single-

cell recording study).  We excluded errors that were due to failure to produce the end-

of-list symbol, and we calculated the proportion of times the network performed as 

expected on the assumption that the selective units were necessary for the recall of the 

item (e.g., a selective unit for the letter A is necessary for recalling all words that 

contain the letter A).  Note, the assumption that a given unit is necessary for recall is 

not a core claim of localist theories of perception nor “grandmother cell” theories of 

the brain.  Indeed, on any biologically plausible grandmother theory there would need 

to be multiple redundant codes of a given thing and accordingly, lesioning a single 

neuron would have little impact on perception (e.g., Barlow, 1985; Bowers, 2009; 

Gross, 1982; Page, 2000).  Nevertheless, in the current simplified context, it is 
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interesting to assess the extent to which single units are not only selective, but also 

necessary for performance.  This is not something we examined in our previous work 

(Bowers et al., 2014). 

 The predictions are clear for the ON units, and less so for the OFF units.   For 

ON units, the unit appears to code for a specific letter by being on, and accordingly, 

lesioning an ON unit should lead to a failure in recalling words that contain the 

corresponding letter (predicted failures) and should not impair performance on words 

that do not contain that letter (predicted successes).  By contrast, for the OFF units, it 

is possible to interpret the unit in two different ways.  On the one hand, the unit might 

be seen as coding for a specific unit by being off, in which case the predictions are the 

same; that is, lesioning an OFF unit should also lead to a failure of recalling words 

that contain the letter (predicted failures) and should not impair performance on 

words that do not contain the letter (predicted success).  On the other hand, an OFF 

cell might be interpreted as part of a highly distributed code that represents all letters 

apart from a given letter.  For instance, Unit 122 in Figure 6d might be an anything-

but-O unit.   In which case, lesioning an OFF unit should not impair performance on 

the corresponding (predicted success) and fail on all other letters (predicted failures).  

Table 1 presents the proportion of predicted failures and successes for the selective 

units depicted in Figure 6 on the assumption that OFF units are part of a distributed 

code (“anything-but” units) that do not uniquely represent a specific word.  

Table 1.  Performance of the network following lesions to the selective units (found in 
Figure 6). 

Unit No Local code Selectivity Predicted successes Predicted Failures 
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67 a 0.23 99% 27% 
125 a 0.26 99% 9% 
102 aa 0.20 99% 8% 
186 aa 0.48 100% 0% 
58 d 0.18 99% 19% 
108 e 0.69 100% 35% 
116 e 0.23 99% 9% 
170 ea 0.86 99% 16% 
183 f 0.36 99% 81% 
144 i -0.20 99% 4% 
152 i 0.42 99% 100% 
155 i 0.99 99% 0% 
2 j 0.18 100% 0% 
18 k 0.73 99% 33% 
61 m 0.53 99% 28% 
175 n 0.80 99% 0% 
122 o -0.45 100% 100% 
132 o 0.83 100% 1% 
76 oo 0.50 100% 9% 
163 oo 0.29 99% 48% 
113 ou 0.72 99% 29% 
138 ou 0.11 99% 1% 
159 q 0.59 100% 34% 
121 r 0.64 99% 45% 
43 u 0.36 99% 55% 
127 u -0.19 100% 6% 
35 v 0.29 100% 0% 
92 v -0.17 100% 97% 
200 v 0.75 99% 0% 
66 w 0.38 100% 74% 
56 x 0.86 99% 0% 
174 y 0.18 100% 69% 
157 z 0.65 100% 0% 
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In almost all cases the predicted successes were confirmed.  For the ON cells, 

lesions had no impact on performance of words that did not contain the letter.  Or to 

put it another way, the baseline chance of failing on words that do not contain the 

selective letter unit is close to 0%.  Similarly, for the four OFF cells, lesions had no 

impact on performance for words that did contain the letter. However, this result in 

itself is not so critical, as the same result might be predicted by a fully distributed 

coding scheme, given that lesions are thought to produce “graceful degradation”.  As 

such, lesioning one of 200 hidden units might be expected to have little impact on 

performance. 

The critical question, then, is whether the model failed as predicted following 

a lesion of a single hidden unit.  Here the predictions were far from perfect, but 

nevertheless, it is striking how frequently these lesions impaired performance as 

predicted.  First consider the ON cells.  In some cases the predictions were perfect 

(e.g., following a lesion to unit 152 that was an ON cell selectively coding for the 

letter “i” the model failed 100% of the time with words that contained the letter “i”), 

and in eight cases lesions had no impact (performance was perfect following a lesion 

to a selective unit).  Interesting, in four of these case the model had learnt redundant 

localist letter codes.  Overall the model failed 25% of the time as predicted following 

a lesion of 1 unit out of 200 units.  This is very different than the near 0% chance of 

failing on words that did not contain the selective letter following lesions. 

Similarly, with regards to the OFF cells, the predicted failures were far from 

perfect but revealing.  Two units acted just as predicted, such that the model failed on 

all words that did not contain the letter.  For example, after lesioning unit 92 the 

model failed on 97% of the words that did not contain the letter “v” (that is, most 

words).  The predicted failures for the other two OFF units did not materialize, and 
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the model succeeded for the vast majority of words.  Still, the overall pattern of 

results suggests that the OFF cells tended to code for all the letters but one; that is, 

“anything-but” units.  Accordingly, it is probably best not to consider these four OFF 

units localist as they do not appear to be representing a specific letter. 

Why was the correspondence between lesions and performance less than 

perfect?  Part of the answer may be that the model often learned redundant codes for 

letters (10 redundant units above the .1 selectivity metric), and these redundant codes 

may have supported performance following a lesion to a specific unit on some 

occasions.   For example consider the success of the model on words containing the 

letter “i” following a lesion to unit 155 that selectively coded for “i”.  Perhaps the 

reason the model continued to succeed on this item was that unit 152 also coded the 

letter “i”.  It should be noted, however, that this was not always the case.  For 

example, unit 56 was the only unit that selectively responded to the letter “x” and 

nevertheless the model succeeded in retrieving words containing the letter “x” 

following the lesion of this unit.   Accordingly, the model is not always relying on 

localist units to perform, and it seems likely that the model has learned some sort of 

distributed code for the letter “x” in addition to the localist x unit.  Nevertheless, the 

bottom line is that the model learned localist codes for most letters (defined as units 

that selectively responded to a given letter), and in the many cases, the selectivity 

measures have predictable functional consequences following lesions to single units.   

Again, the level of selective impairment we observed is greater than what would be 

predicted by any biologically plausible “grandmother cell” theory (no advocate of 

grandmother cells imagines that removing a single neuron from cortex would result in 

the selective loss of a word).  These lesion studies highlight how important the 

learned localist representations are to the model’s performance. 
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Selectivity vs. sparseness  As noted in the introduction, representations in 

neural networks (and brains) can be characterized along two separate dimensions, 

namely, selectivity and sparseness.  Selectivity is associated with the interpretability 

of single units.  On one extreme of this continuum, a given unit or neuron responds 

highly selectively things (e.g., specific faces, objects, and words) such that the output 

of that unit can be interpreted unambiguously.  Units of this sort are sometimes called 

localist units or “grandmother cells”.  On the other extreme, each unit responds to a 

wide range of quite different things, such that it is impossible to unambiguously 

interpret the output of a given unit.  This selectivity dimension is conceptually distinct 

from sparseness, which refers to the proportion of units in a network that respond to a 

given input.  On one extreme, a single unit responds to an input (what we might call 

ultimate-sparse coding), and at the other extreme, a high proportion of units are active 

at any point in time (a dense representation).  In general sparseness and selectivity are 

correlated, but it is possible for these measures to dissociate (Földiák, 2009).  

 The analyses reported above characterized the selectivity of hidden units, and 

it is also worth considering the role (if any) that sparseness played in supporting 

generalization and STM.  In order to assess the potential role of sparseness to the 

solution we modified the scatter plots so that each plot corresponds to a word (rather 

than a hidden unit), and each cross in each plot corresponds to the activation of a 

hidden unit (with 200 crosses).  Once again, activation is plotted on the x-axis, and 

along the y-axis we plotted the hidden units in sequence (e.g., 1, 2, 3, etc.) so that 

points did not overlap. This provides a depiction of how many (and which) hidden 

units are active in response to a given word, and to what extent.  

In Figure 7a we include the scatter plots for the 30 trained words when the 

model was trained on lists of words taken from the small vocabulary, and in Figure 7b 
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we included scatter plots for the same 30 words when the model was trained on lists 

of words taken from the large vocabulary.  Note, we only included the plots of these 

30 words even when the model was trained on the large vocabulary because of space 

restrictions (it is not practical to include plots for all 300 trained words), but the same 

patterns occur for the non-displayed words as well.   

The most noticeable feature of the sparseness plots is that there is no 

qualitative change (unlike the striking difference in the selectivity plots).   There was 

a small reduction in the percentage of hidden units active above .5 in response to a 

given word when the model was trained on the large compared to small vocabulary 

(20% and 14%,, respectively), and this can be attributed to the fact that many of the 

selective ON units were not highly activated in response to most of the words (other 

than the words that contained a specific letter).  That is, the learned selectivity of the 

ON units is the likely cause of the small reduction in the sparseness measures in the 

large vocabulary condition (and indeed, as noted above, sparseness and selectivity 

often do go together).  But it is clear from these figures that it is the selectivity rather 

than the sparseness that is associated with the model’s success, a conclusion that is 

further supported by the lesion analyses. 
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Figure 7.  Sparseness plots of the network trained on lists of words taken from the (a) 
small and (b) large vocabularies.  Each plot refers to a word rather than a hidden unit 
and only the plots of the words from the small vocabulary are presented. Each cross 
refers to a hidden unit, with level of activation along the x-axis (from 0-1) and hidden 
unit number (1-200) organized along the y-axis (200 crosses per plot).   

 
  

b)	  

a)	  
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Simulation 3 (a-d): Making predictions 

Based on the simulations above we hypothesize that localist or highly 

selective representations are better than distributed representations in coping with the 

superposition catastrophe.  When a model only needs to co-activate items taken from 

a small vocabulary (when the superposition only leads to modest ambiguities) then 

distributed codes can partially cope by adopting a lexical bias, a strategy that 

compromises generalization.  But this strategy fails when a model needs to co-activate 

many items take from a larger vocabulary (when the superposition leads to substantial 

ambiguities).  In the latter case, the model learns localist codes, and these codes 

support generalization. 

If this is correct, and the results do not reflect some idiosyncratic feature of the 

above simulations, then we should be able to predict the types of representations 

learned in previous published models that failed in generalizing (Bowers et al., 2009, 

Simulation 7) or succeeded in generalizing (Botvinick & Plaut, 2009; Bowers et al., 

2009, Simulation P2).  That is, despite the different parameters of the models (number 

of hidden units, specific training conditions, etc.), the former model should have 

learned few if any selective units whereas the latter models should have learned many 

selective units. 

In order to test these predictions we replicated these simulations and then 

carried out the single unit recordings as above.   In Simulation 3a we replicated the 

Bowers et al. (2009) Simulation 7 simulation that failed to generalize.  This model 

was trained to recall lists of letters (up to 9 letters) taken from a vocabulary of 25 

letters.  Each letter was coded as a random pattern of five active units across 26 input 

units, and after training, the model recalled lists of 6 letters at over 50% accuracy.  

Critically, however, performance on lists that contained a novel letter (an untrained 
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pattern of five active units) in any position was near floor.  After re-running this 

simulation we carried out single-unit recordings in the hidden layer.   No selective 

units at the .5 selectivity criterion were found.  This is consistent with our prediction 

that generalization requires localist codes. 

In Simulation 3b we replicated the Botvinick and Plaut (2009) model that was 

able to generalize.  This model included an input and output layer with three sets of 

10 units, representing the onset, nucleus, and coda, respectively, and a hidden layer 

with 75 units.  A syllable was represented by activating one unit from each of these 

groups, and the model was trained on 999 of the 1000 possible syllables on lists 

ranging from length one to three. Botvinick and Plaut showed that this model was 

able to generalize to lists containing the non-studied syllable.  Again we re-ran this 

simulation and carried out single-unit recordings in the hidden layer. In this case we 

found 34 units selective at a .1 selectivity criterion and 18 at the .5 selectivity 

criterion, as can be seen in Figure 8.   This is again consistent with our prediction that 

localist coding is associated with successful generalization. 

In Simulation 3b we replicated Bowers et al. (2009) simulation P2 that 

included 10 units reserved for onsets, the next six for vowels, and the final 10 units 

for codas (resulting in 10 x6 x10 or 600 possible syllables), as well as 200 hidden 

units. The model was trained on 500 syllables on lists ranging from length one to nine 

and was able to recall lists of familiar and unfamiliar syllables at a similar rate.  After 

training the model learned 24 codes at the .1 selectivity criterion and 12 local codes at 

the .5 selectivity criterion.3 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  We	  also	  analyzed	  the	  hidden	  units	  from	  the	  Botvinick	  and	  Plaut	  (2006)	  model	  
that	  was	  trained	  on	  a	  small	  vocabulary	  of	  letters	  and	  that	  could	  not	  generalize.	  
Consistent	  with	  our	  analysis,	  it	  did	  not	  learn	  any	  localist	  unit	  at	  the	  .5	  selectivity	  
criterion.	  	  
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Figure 8.   Selectivity plot of 80 hidden units when we replicated Botvinick and 
Plaut’s (2009) simulation in which the model was trained on lists of syllables taken 
from a large vocabulary.  Each hidden unit is coded by a square (10 per row), and 
grey squares indicating selectivity scores above .5.  Units that taken on selectivity 
values above .1 are labeled with the letter they selectively respond to, and the precise 
selectivity value is presented in brackets. 
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In addition, if our analysis is correct, localist codes were learned in response to 

the superposition constraint rather than the overall difficulty of learning the task.  

However, given the findings reported thus far, the latter hypothesis cannot be ruled 

out:  The models that learned localist codes were not only trained under conditions in 

which the superposition was the most ambiguous, but in addition, the number of 

training trials needed to support good performance was much greater than in the other 

conditions.  Accordingly, it is possible that the additional training led to more 

selective coding rather than the superposition catastrophe per se.  

In order to assess the impact of learning difficulty we trained the model to 

recall single items taken from the large vocabulary but made the task of recalling 

items more difficult by reducing the model’s resources. That is, we reduced the 

number of the hidden units from 200 to 100, 50, 25, and finally 10 (Simulation 3d).  

Learning this task should become progressively more difficult, but the superposition 

constraint never arises (given only one item is retrieved at a time).    

The network was trained in the same way as in simulation 2b, and training was 

stopped when the network performance reached 100% on the familiar words.  As can 

be seen in Table 2, the task did indeed become much more difficult with fewer hidden 

units, but no localist codes developed in any of the conditions (there was just one 

selective unit at .1 level in the 100 hidden units condition).  This suggests that the 

difficulty of learning the task (and the associated increase in training) was not 

responsible for the development of localist codes.  It is also worth noting Bowers et 

al. (2014) found localist codes in a “pure superposition” condition in which multiple 

items were co-activated and recalled without regard to order.  Together, these findings 

suggest that it is the superposition constraint per se. that is responsible for the localist 
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coding, rather than the amount of training or the requirement to code for items in the 

correct order. 

  

 
Table 2.  Number of units with a selectivity scores above .5 when model was trained 
on words one-at-a-time as a function of number of hidden units. 
 

Number of 
hidden units 

Number of 
training trials 

Performance on 
novel words 

Number of 
selective codes at .5 

100 100,000 99.76% 0 
50 200,000 96.70% 0 
25 700,000 88.28% 0 
10 10,000,000 83.94% 0 
 

 
General Discussion 

The principal result of the simulations is that a PDP model of immediate serial 

recall only succeeded in recalling lists of familiar and novel words when it learned 

localist letter codes. This provides an important extension to Bowers et al. (2014) who 

also highlighted the emergence of localist codes in response to the superposition 

catastrophe, but did not consider whether these selective codes could support 

generalization.  It is commonly assumed that PDP models generalize on the basis of 

learned distributed representations, but clearly, PDP models can learn localist codes, 

and these representations support generalization in some contexts.  

Our claim that the superposition catastrophe provides a computational 

pressure to learn selective codes in the cortex complements the long-standing claim 

that catastrophic interference provides a computational pressure to learn sparse and 

selective codes in hippocampus (e.g., Marr, 1971).  It is often hypothesized that 

selective coding is restricted to the hippocampus (e.g., McClelland et al., 1995), but 

the neuroscience suggests otherwise (Bowers, 2009), and the current simulations 
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provide a potential explanation as to why selective coding is observed in cortex as 

well.  That is, various perceptual and cognitive systems in cortex support both STM 

and generalization, and selective coding schemes are best suited for this.    

As noted in the introduction, our findings may have implications for how 

knowledge is coded outside STM tasks.  It is widely assumed that common 

representations support STM and the perception of single letters, words, objects, and 

faces (e.g., Page et al., 2007); indeed, we are not aware of any theories according to 

which the representations of words, objects, faces are coded in one format (e.g., 

localist) for the sake of STM and another format (e.g., distributed) for the sake of 

perception.  If indeed common representations support both tasks, then our STM 

results provide strong constraints on the types of representations that support the 

perception of single items.   That is, the representations for perception may be localist 

because these same representations need to be co-active with other items in STM.  

This is indeed what we found in our simulations.  Although the model was trained to 

encode multiple words at the same time, our single-unit recordings and lesion studies 

were carried out when the model was presented with words (and novel words) one-at-

a-time.   

It is important to emphasize that there are undoubtedly multiple constraints 

determining the types of representations that are best suited for a given task.   We 

have found that STM provides a strong pressure to learn localist representations in 

artificial neural networks, and it will be important to better characterize additional 

pressures that may also play a role explaining the selective codes that have been 

observed in cortex.  Indeed, our findings are consistent with a range of additional 

computational (e.g., Masquelier, Guyonneau, & Thorpe, 2009; Page, 2000) and 
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biological (e.g., Lennie, 2003) advantages of selective (and sparse) codes that might 

also help explain the development of selective and sparse coding in cortex.    

A summary and explanation of the main findings  The overall pattern of our 

simulation results and analyses are quite complex, so we review and explain the 

findings in some detail, and then consider the wider implications. 

The network performance of the models and hidden unit analyses highlight 

two limitations with distributed representations when co-activating multiple items in 

STM: One limitation associated with novel words, another with familiar words.  First, 

consider the set of results obtained with novel words.  When the network was trained 

to recall lists of words taken from a small vocabulary (Simulation 1a) the model 

learned distributed representations, and under these conditions, the model 

catastrophically failed at recalling novel words. Importantly, this failure could not 

entirely be attributed to the small training set, as the model was much better at 

recalling novel words when trained on the same set of words one-at-a-time rather than 

in lists (Simulation 2a).  That is, when the network learned distributed representations 

it could either generalize to novel words (this was found after training the model on 

words one-at-a-time) or recall multiple familiar words (this was found after training 

on lists of words taken from a small vocabulary), but not both.  This attribute of 

distributed representations might be called the “generalization-superposition trade-

off”. 

The underlying cause for this trade-off was in fact identified by Botvinick and 

Plaut (2006) who first showed that a PDP model of immediate serial recall could 

recall lists of familiar letters based on co-activated and superimposed distributed 

representations.  They noted that a blend of co-activated distributed letters is indeed 

ambiguous, but argued that these blends can sometimes be decomposed into the 
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correct set of letters by adopting a bias to recall the most likely sequence of letters 

given its training history.  However, Botvinick and Plaut did not consider the 

downside of this solution, namely, that the bias works against recalling novel items. 

That is, the bias that allows the model to recall lists of familiar words works against 

generalizing to novel words. 

The second manifestation of the superposition catastrophe was observed with 

familiar words.  That is, our network learned localist representations for letters when 

trained to recall lists of words taken from a large vocabulary (Simulations 1b).  Our 

interpretation of this result is that superimposed distributed representations, even 

when combined with a lexical bias, were no longer sufficient to support good 

performance with familiar words.  The problem was there were too many possible 

sequences of the familiar words that would produce a given blend, and as a result, a 

lexical bias was no longer helpful.  Under these conditions, the models gave up on 

fully distributed coding (the source of the problem), and instead, started learning 

localist representations.  The behavioral manifestation of this selective responding 

was dramatic:  Performance went from catastrophic failure with novel words to 

striking success (with performance on the novel words approaching performance with 

the familiar ones).  A key reason why generalization improved with the emergence of 

localist letter codes is that the lexical bias solution to the superposition catastrophe 

was no longer operative, and as a consequence, the model was no longer biased 

against outputting novel patterns.  In sum, the model learned localist representations 

in response to a greater superposition constraint, and this in turn facilitated 

generalization.  

Finally, we have also shown that the sparseness of the learned representations 

played little or no role in solving the superposition catastrophe.  Indeed, the model 
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learned dense representations in all training conditions.   This result takes on added 

importance given that some researchers have argued against localist or “grandmother 

cell” coding in cortex or hippocampus on the basis that too many neurons fire in 

response to a given input (e.g., Waydo et al., 2006).  Our simulations show the flaw in 

this logic.  We found localist codes for letters, and at the same time, 14% of the units 

were active above .5 in response to a given input (in vivo it is estimated that less than 

1% of neurons are active at any one time; Lennie, 2003).  So again we found localist 

(grandmother cell) codes in the context of a single input activating many units (dense 

coding scheme).  For more discussion of the contrast between sparseness on one hand 

and selectivity on the other, see Földiák (2009) and Bowers (2011). 

Are there some conditions in which distributed representations can support 

immediate serial recall and generalization?  Although we have found that a family of 

closely related recurrent PDP models of immediate serial recall relied on localist letter 

codes in order to generalize to novel words, our claim is not that distributed codes can 

never support successful performance.  In fact there are existing models of immediate 

serial recall that do just this.  But in all cases the models succeed by avoiding the 

problem of superposition rather than actually solving the constraint.   

For instance, in some models of immediate serial recall, only one item is 

activated at a time  (avoiding the superposition problem altogether).  This is achieved 

by relying on weight-based (as opposed to activation based) methods for encoding 

and maintaining serial order information.  For example, in the SOB model of Farrell 

and Lewandowsky (2002) each to-be-remembered item is encoded in the connection 

weights of the network, with greater weights associated with items presented at the 

start of the list.  At recall the network settles into a sequence of different active states 

as a function of the size of the weights.  Critical for the present purposes, at no point 
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are multiple different words co-activated.  Similarly, a number of connectionist 

models of STM include separate representations of items (e.g. the word DOG) and 

order (e.g., position 1, position 2, etc.), and items are assigned an order within a list 

by changing the connection weights between item and order representations (e.g., 

Brown, Preece, & Hulme, 2000; Burgess & Hitch, 1999).   Although these so-called 

“context models” differ in various ways, the key claim is that the units coding for 

order are recalled in sequence, and these representations in turn retrieve the items.  

Again, this weight-based solution does not involve co-activating multiple items at the 

same time, and accordingly, it is possible for these networks to encode a sequence of 

items (including novel items) using distributed representations without suffering from 

the superposition catastrophe. 

It may also be possible to use activation-based networks to avoid the 

superposition catastrophe although no model of this sort has been applied to 

immediate serial recall tasks.  For example, it has been argued that temporal 

synchrony is an important mechanism for supporting STM (e.g., Hummel & Holyoak, 

1997), and this might potentially provide a mechanism that could support immediate 

serial recall.  To illustrate, imagine a situation in which JOHN is coded as one 

distributed pattern of activation and PAUL is coded as another.  If a network can learn 

to oscillate between the representations of PAUL and JOHN, with PAUL activated 

briefly followed by JOHN, followed by PAUL, etc., then the oscillating patterns can 

be used as an unambiguous representation of JOHN and PAUL in STM, and that this 

in turn could be adapted for purposes of the immediate serial recall test.  But again, 

this model is avoiding the superposition catastrophe by ensuring that only one 

distributed representation is active at a given point in time. 
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Is it possible to overcome the superposition constraint in a model that codes 

for multiple items at the same time over the same set of units?  For example, would it 

be possible to adapt the current PDP model so that it succeeds recalling lists of 

familiar and unfamiliar words relying on distributed as with localist codes?   We 

cannot rule out this possibility, and future work may identify conditions in which PDP 

models do indeed co-activate multiple familiar and unfamiliar items.  But it is striking 

that we took PDP models that are assumed to learn distributed representations and 

showed, as predicted on the basis of the superposition constraint (Von der Malsburg, 

1986), that they succeeded only when they learned localist codes.  It is often claimed 

that a key advantage of PDP models is that the learned representations are emergent 

rather than “stipulated” by the modeler (Plaut & McClelland, 2000), and the fact that 

previous PDP models (trained on items one-at-a-time) learned distributed codes was 

thought to provide evidence for computational advantages of distributed coding.  In 

the same way, the emergence of localist coding in our models suggest localist coding 

is an efficient solution to the task demands we imposed.  It is important to emphasize 

that we are not using these simulation results as evidence for the existence of highly 

selective neural codes in cortex (the evidence comes from neuroscience). Rather, our 

findings provide some insight into why these neurons exist. 

Implications for the Complementary Learning Systems (CLS) hypothesis:  A 

fundamental claim of the CLS hypothesis is that information in the hippocampus is 

coded with highly selective neurons whereas information in the cortex is coded in a 

highly distributed manner.  In the initial version of this hypothesis (McClelland et al., 

1995), the claim was that fast learning and generalization are incompatible functions, 

with selective coding in hippocampus required for fast learning, and distributed 

coding in cortex required for generalization.   On this hypothesis, the selective codes 
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in hippocampus are used to teach the distributed codes in cortex in a slow process of 

consolidation. More recently, CLS hypothesis has been modified in response to two 

sets of findings.   First, in response to data showing that newly acquired memories in 

the hippocampus can support generalization (Eichenbaum, 2004), Kumaran and 

McClelland (2012) argued that the sparse and selective codes in the hippocampus can 

support both fast learning and generalization.  Indeed, they showed that generalization 

with sparse coding was possible in the hippocampus on the basis of recurrent 

connections.  Second, in response to data showing fast learning in cortex (Tse et al, 

2007; 2011), McClelland (2013) argues that fast learning is possible in cortex using 

distributed codes as long as newly acquired knowledge is consistent with previous 

knowledge.  As a consequence of these modifications of the CLS hypothesis, the 

fundamental contrast is no longer between slow learning in the cortex that supports 

generalization and fast learning in the hippocampus that supports episodic memory, 

but rather, learning in the cortex and hippocampus that is more versus less dependent 

on prior-knowledge, respectively.  Nevertheless, one of the fundamental claims of the 

original theory is still thought to hold, namely, that information in cortex is coded in a 

highly distributed format. 

This claim also faces challenges both on empirical and computational grounds.  

With regards to the data, there is good evidence for sparse and selective coding in the 

cortex (cf., Bowers, 2009).  Indeed, the selective responses of neurons in 

inferotemporal cortex identified by Logothetis, Palus, and Poggio (1995) are every bit 

as selective as anything observed in the hippocampus.  With regards to the 

computational considerations, the current simulations provide evidence that 

distributed representations are poorly suited for solving the superposition catastrophe, 
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and that even PDP models learn localist codes when they succeed in the joint task of 

co-activating multiple items and generalizing (functions supported by the cortex).  

We do not want to overstate our case.  It may well be that the level of 

selectivity and sparseness varies in the hippocampus and cortex, and indeed, we are 

arguing that there are different computational pressures for learning selective codes in 

these different regions.  It may also be the case that updated versions of the 

complementary learning systems hypothesis may be advanced in which cortex learns 

some combination of localist and distributed coding (as we observe in our 

simulations).  But if selective codes in cortex support STM and generalization, then 

the underlying motivation and claims associated with CLS hypothesis needs to 

change. That is, the hippocampus may be teaching the cortex over the course of a few 

hours (perhaps during sleep; e.g., Dumay and Gaskell, 2007), but the hippocampus 

needs to teach the cortex highly selective codes that are suitable for solving the 

superposition catastrophe and generalization (at the same time). 

Conclusion  

The current simulations highlight a computational pressure to learn highly 

selective representations in cortex.  Just as sparse and selective representations are 

better at learning quickly without suffering catastrophic interference (McClelland et 

al., 1995), highly selective representations are better at the dual tasks of coding 

multiple things at the same time and generalizing.  Indeed, contrary to the standard 

view, PDP models that learned localist codes were much better at generalizing in this 

context.  Given that various cortical system need to code for multiple things at the 

same time (e.g., Cowan, 2001), we would suggest that our findings help explain one 

of the key finding from 50 years of neurophysiology, namely, that information in 

cortex is coded in a highly selective manner.  
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