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BEYOND THE EXCISED ENSEMBLE: MODELLING ELLIPTIC CURVE
L-FUNCTIONS WITH RANDOM MATRICES

I.A. COOPER, PATRICK W. MORRIS, AND N.C. SNAITH

Abstract. The ‘excised ensemble’, a random matrix model for the zeros of quadratic twist
families of elliptic curve L-functions, was introduced by Dueñez, Huynh, Keating, Miller
and Snaith [8]. The excised model is motivated by a formula for central values of these
L-functions in a paper by Kohnen and Zagier [17]. This formula indicates that for a finite
set of L-functions from a family of quadratic twists, the central values are all either zero
or are greater than some positive cutoff. The excised model imposes this same condition
on the central values of characteristic polynomials of matrices from SO(2N). Strangely,
the cutoff on the characteristic polynomials that results in a convincing model for the L-
function zeros is significantly smaller than that which we would obtain by naively transferring
Kohnen and Zagier’s cutoff to the SO(2N) ensemble. In this current paper we investigate a
modification to the excised model. It lacks the simplicity of the original excised ensemble,
but it serves to explain the reason for the unexpectedly low cutoff in the original excised
model. Additionally, the distribution of central L-values is ‘choppier’ than the distribution
of characteristic polynomials, in the sense that it is a superposition of a series of peaks:
the characteristic polynomial distribution is a smooth approximation to this. The excised
model didn’t attempt to incorporate these successive peaks, only the initial cutoff. Here we
experiment with including some of the structure of the L-value distribution. The conclusion
is that a critical feature of a good model is to associate the correct mass to the first peak of
the L-value distribution.

1. Introduction

The use of random matrix theory to model statistics of L-functions grew out of the con-
nection between eigenvalue statistics of matrices in the unitary group and the statistics of
the zeros of the Riemann zeta function ([20, 9, 21], or see [22] for a review). Katz and
Sarnak [13, 14] suggested that the zero statistics of families of L-functions, rather than the
zero statistics of individual L-functions, could also be modelled by eigenvalue statistics from
the classical compact groups. In this paper, we shall look at families of even quadratic twists
of elliptic curve L-functions. According to the Katz and Sarnak philosophy, in the limit of
large conductor (a parameter that orders the L-functions in this family), the zero statistics
should tend to the statistics of the zeros of random matrix characteristic polynomials from
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SO(2N). Here the size of N is chosen to equate the density of the eigenvalues on the unit
circle with the density of the zeros near the central point (where the critical line crosses the
real axis).

From this, it is reasonable to expect the L-function values to be modelled by the char-
acteristic polynomials of SO(2N) matrices. We define the characteristic polynomial of a
matrix B ∈ SO(2N) as

(1) ΛB(s) =
N∏
j=1

(1− seiθj)(1− se−iθj),

where the eigenvalues of B are e±iθ1 , . . . , e±iθN . This extension from zero statistics to value
statistics of L-functions was first investigated by Keating and Snaith [16], who used the
value distribution and moments of the characteristic polynomial to conjecture the value
distribution and moments of families of L-functions [15]. The correspondence between values
of characteristic polynomials and L-function values will be of central importance in this work.

A conjecture for averages of ratios of L-functions by Conrey, Farmer and Zirnbauer [5]
gives a very accurate expression for the one-level density of zeros in families of L-functions.
This was tested for the family of even quadratic twists of an elliptic curve L-function in [11].
The Katz-Sarnak philosophy tells us that as we sample L-functions of higher and higher
conductor in our family, the zero statistics should tend to the statistics of eigenvalues from
the special orthogonal group, and the ratios conjecture prediction for the one-level density
quantifies how we expect this limit to be approached.

For L-functions with relatively small conductor, the one-level density prediction from the
ratios conjecture fails to account for a number theoretic phenomenon affecting the distri-
bution of the lowest zeros (those nearest the central point). This was first observed by
Miller [19] in a different family of L-functions associated with elliptic curves. For the case
of quadratic twists (with an even functional equation) of an elliptic curve L-function, this
was discussed in [8, 10], where a modification to the SO(2N) ensemble was proposed (the
excised model referred to in the abstract) which recovered the statistics of the lowest zero
in the finite conductor regime.

However, while this model captured the qualitative features of the data well, it was not
fully satisfactory in quantifying them, as the most natural model for the zero statistics
(detailed in [6]) resulted in an obvious discrepancy between the frequency of vanishing of
central values from the family of L-functions and the corresponding random matrix statistic.
This appeared to be at odds with the interpretation of the characteristic polynomials of the
excised ensemble as a smooth approximation to the family of L-functions for finite conductor.
It is therefore natural to ask if further modifications to the SO(2N) ensemble could further
improve on the excised model, which was the motivation for the present work.

The model we propose here is not one we advocate for day-to-day use in modelling L-
functions, as the original excised model has a simplicity that makes it more appropriate for
that. However, the effectiveness of the modifications described here explain why the excised
model gives a reasonable result. This is the main result of this paper.
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1.1. Families of elliptic curve L-functions. We shall consider twists of a fixed elliptic
curve E/Q by a quadratic character χd. For an elliptic curve, the associated L-function may
be written as an Euler product for s > 1:

(2) LE(s) =
∏
p-M

(
1− λp

ps

)−1∏
p|M

(
1− λp

ps
+

1

p2s

)−1
,

which may be extended via analytic continuation to a meromorphic function on the complex
plane. In the above formula, and throughout the paper, M is the conductor of the elliptic
curve. Here, the λp’s are related to #E(Fp), the number of integer points on the curve over
the finite field of order p:

(3) λp =
p+ 1−#E(Fp)√

p
.

The twist of an elliptic curve L-function by a quadratic character χd (with d a fundamental
discriminant) is given by changing the Euler product in the definition above to

(4) LE(s, χd) =
∏
p-M

(
1− λpχd(p)

ps

)−1∏
p|M

(
1− λpχd(p)

ps
+
χd(p)

2

p2s

)−1

for s > 1. LE(s, χd) is the analytic continuation of this product and is the L-function
associated with a different elliptic curve Ed.

When looking at data for a finite number of twists, we will consider the family of all
quadratic twists of an elliptic curve L-function with 0 < d ≤ X (or −X ≤ d < 0). The
behaviour of LE(s, χd) at s = 1

2
depends on the sign χd(−M)ω(E) in the functional equation

relating LE(s, χd) to LE(1− s, χd):

(5) LE(s, χd) = χd(−M)ω(E)

(
2π√
M |d|

)2s−1
Γ(3/2− s)
Γ(s+ 1/2)

LE(1− s, χd).

As such, we will treat twists with even versus odd functional equations as separate families
(referred to as F+ and F− respectively). It is F+ that we concentrate on in this paper.

We will also define F0 and F1 as subfamilies of F+ and F−, where the order of vanishing
at s = 1

2
is 0 and 1 respectively. With all these families, the set of fundamental discriminants

d such that LE(s, χd) ∈ F i will be referred to as Di. The conjecture of Birch and Swinnerton-
Dyer tells us that the order of vanishing at s = 1

2
is equal to the rank of the Mordell-Weil

group of rational points on the elliptic curve (referred to simply as the rank of the elliptic
curve).
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2. Review of the excised model

2.1. Motivation. Following the ‘recipe’ described in [5] (for the original case of moments
see [4]) one obtains a conjectural expression for the average over F+ of the ratio RE(α, γ):

(6) RE(α, γ) :=
∑

0<d≤X
d∈D+

LE(1/2 + α, χd)

LE(1/2 + γ, χd)
.

Using this ratio conjecture, one can derive a formula for the one-level density of the zeros.
The one-level density is defined as

(7) S1(f) =
∑

0<d≤X
d∈D+

∑
γd

f(γd),

where the γd are the heights on the critical line of the zeros of LE(s, χd) and f is a suitable
test function, for example an even Schwarz function. The result, given by Huynh, Keating
and Snaith, is:

Theorem 1. (Theorem 2.3, [11]) Assuming the Ratios Conjecture, the 1-level density for
the zeros of the family of even quadratic twists of an elliptic curve L-function LE(s) with
prime conductor M is given by

S1(f) =
1

2π

∫ ∞
−∞

f(t)
∑

0<d≤X
d∈D+

(
2 log

(√
M |d|
2π

)
+

Γ′

Γ
(1 + it) +

Γ′

Γ
(1− it)

+ 2
[
− ζ ′(1 + 2it)

ζ(1 + 2it)
+
L′E(sym2, 1 + 2it)

LE(sym2, 1 + 2it)
+ A1

E(it, it)(8)

−

(√
M |d|
2π

)−2it
Γ(1− it)
Γ(1 + it)

ζ(1 + 2it)LE(sym2, 1− 2it)

LE(sym2, 1)
AE(−it, it)

])
dt

+O(X1/2+ε),

where f is an even test function, LE(sym2, s) is the associated symmetric square L-function,
and AE and A1

E are arithmetic factors given in [11].

Consider the elliptic curve E11.a3 (we shall use LMFDB notation [1] for elliptic curves
throughout). The factor multiplying f(t) in the integrand of (8) is plotted, as a function of
t, with X = 400 000, in Figure 1. The data plotted is a histogram of all zeros up to height
0.6 on the critical line of all L-functions in F+ with 0 < d ≤ 400 000. However, as can be
seen in the figure, the one-level density derived from the ratios conjecture does not fit the
data well at the origin. The extra zero repulsion from the central point was first noticed
by Miller [19] in a different family of elliptic curve L-functions, and has no analogue in the
statistics of SO(2N) eigenvalues. The excised model was conceived in order to model the
statistical behaviour of the lowest zero in a family of quadratic twists, capturing Miller’s
repulsion from the central point.
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Figure 1. One level density of zeros for even twists with 0 < d ≤ 400 000
of the L-function associated with the elliptic curve E11.a3, showing the dis-
crepancy between the zeros data and the ratios conjecture prediction at the
origin.

2.2. The central value formula. The formula of Kohnen and Zagier [17] (see also, for
example, [24, 23, 3] for related results) give us a formula for the central value of LE(s, χd):

(9) LE

(
1

2
, χd

)
= κE

cE (|d|)2√
|d|

.

Here κE is independent of d and so is constant for each family of twists. (The value of
κE has been computed for many such families by Michael Rubinstein and can be found in
Table 3 of [7].) Importantly, cE(|d|) is an integer (specifically, the cE (|d|)’s are the Fourier
coefficients of a weight 3/2 modular form). The integer nature of cE means that when we
plot the distribution of LE

(
1
2
, χd
)

for a finite range of 0 < d ≤ X, we get no values between

zero and κEX
−1/2. This can be seen in Figures 2 and 3. Note that in the large X limit the

gap between 0 and κEX
−1/2 will close.

As mentioned in the introduction, we expect the distribution of the L-function zeros to
tend, as X → ∞, to the large-N limit of the distribution of eigenvalues from SO(2N).
Previous work [6, 8, 11, 12] leads us to expect that the L-function values for this family
should be modelled by the values of characteristic polynomials ΛB(s) from SO(2N). The
zeros of these characteristic polynomials all lie on the unit circle, which is equivalent to the
critical line in the number theory case. The eigenvalues come in complex conjugate pairs,
so they have a symmetry around the point 1 on the unit circle. The point 1 corresponds
to the point 1/2 for the family of L-functions as the zeros also display symmetry around
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Figure 2. The distribution of central values of even twists with 0 < d ≤
400000 of the L-function associated with E11.a3. Peaks from successive integer
values of cE(|d|) can be clearly seen. The spike at 0 is not plotted as it would
distort the scale.

Figure 3. Close-up of the origin of Figure 2, showing the gap betwen 0 and
κEX

−1/2.
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this point. For finite conductor, the distribution of the characteristic polynomial values at
the point 1, ΛB(1), appears in some sense to be a smooth approximation to the ‘choppier’
distribution of the central L-function values. This can be seen in Figure 4. To determine the
appropriate value of N in this figure, we equate the density of zeros near the central point
with the average density of eigenvalues:

(10)
1

π
log

(√
MX

2π

)
=
N

π
.

Values of X = 400 000 and M = 11 give N , to the nearest integer, as 12.

Figure 4. Distribution of central values of even twists with 0 < d ≤ 400 000
of the L-function associated with E11.a3 compared with the distribution of
characteristic polynomial values ΛB(1) for B ∈ SO(24).

2.3. Modelling the statistics of the lowest zero using the excised ensemble. The
distribution of values of ΛB(1) does not capture the hard gap for finite X shown in Figure 3.
The consequence of this can be seen in Figure 5: when we look at the distribution of lowest
zero (here plotted cumulatively) across the family F0 and compare this with the distribution
of the eigenvalue closest to 1 as we sample matrices from the full SO(2N) we see there is not
good agreement between the plots. Note that here we are including only L-functions in our
family that do not have a zero at the point 1/2: those that the Birch and Swinnerton-Dyer
Conjecture predicts are associated with rank 0 curves. In addition we have restricted the
fundamental discriminants d to prime values as this simplifies the structure of the cE(|d|)’s
(see [6]). The agreement between the distribution of first zeros of rank zero twists and the
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distribution of first eigenvalues will be the measure of the success of the various models. We
will quantify this agreement later in this section.

We find that if we discard matrices from SO(2N) with characteristic polynomial values
ΛB(1) taking a value smaller than a suitably chosen cutoff, then the distribution of the
eigenvalue nearest to the point 1 of the resulting excised ensemble is a much improved fit for
the distribution of the lowest zero near the point 1/2 of the family F0, which can be seen
in Figure 6 for the family of quadratic twists of the elliptic curve E11.a3. This was the key
observation in [8].

Figure 5. Cumulative distribution of the eigenvalue nearest the point 1 from
the SO(24) ensemble and the cumulative distribution of the lowest zero of rank
0 even quadratic twists (0 < d < 400000, d prime) of the L-function associated
with E11.a3. Here, and in all the other plots of L-function zeros, we have scaled

each zero by log(
√
Md
2π

) so that each L-function has the same mean spacing of
zeros near the central point. Similarly, in all figures the random matrix data
is scaled so that the means of the two distributions agree.

Equation (9) alone does not quite give us the full picture. An excised subensemble of
SO(2N) only gives us a good model for the zero statistics if we adjust the cutoff value to
be smaller than the expected κE√

|X|
. If we write our adjusted cutoff value as κE√

|X|
δ, we may

calculate δ by following the method proposed in [8]. Following the notation of that paper,
we define the sth moment

(11) ME(X, s) =
1

X∗

∑
0<d≤X
d∈D+

(LE(1/2, χd))
s,
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Figure 6. Cumulative distribution of the eigenvalue nearest the point 1 from
the excised SO(24) ensemble with cutoff given at (29) and the cumulative
distribution of the lowest zero of rank 0 even quadratic twists (0 < d < 400000,
d prime) of the L-function associated with E11.a3. The fit is significantly
better than with the full SO(24) ensemble in Figure 5.

where X∗ := #{0 < d ≤ X|d ∈ D+}. As in [15] we expect, for large X and N ∼ logX (from
(10)), that the following moment conjecture holds:

(12) ME(X, s) ∼ as(E)MO(N, s),

where

(13) MO(N, s) :=

∫
B∈SO(2N)

ΛB(1)sdB.

Here, dB is Haar measure on SO(2N). An expression for the arithmetic factor as(E) is
given by equation (5.4) in [8]:

as(E) =

[∏
p

(
1− 1

p

)s(s−1)/2]

×

[∏
p-M

p

p+ 1

(
1

p
+

1

2

[
Lp
( 1

p1/2

)s
+ Lp

( −1

p1/2

)s])]

× LM
(±ω(E)

M1/2

)s
,

(14)
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where

(15) Lp(z) :=
∞∑
n=0

λ(pn)zn = (1− λ(p)z + ψM(p)z2)−1

and ψM(p) is given by

(16) ψM(p) =

{
1 if p -M
0 otherwise.

Equation (14) holds for prime conductor M , where ω(E) is the sign of the functional equation
of LE(s). The ± in the last line of (14) is +, if the family involves twists by positive
fundamental discriminants 0 < d ≤ X. The − sign corresponds to twists by negative
fundamental discriminants −X ≤ d < 0.

From [15], we have

(17) MO(N, s) = 22Ns

N∏
j=1

Γ(N + j − 1)Γ(s+ j − 1/2)

Γ(j − 1/2)Γ(s+ j +N − 1)
.

We want to compare the value distributions of ΛB(1) and LE(1/2, χd). These can be found
from the moments by using the Mellin transform. For example, if we consider a variable y
representing the possible values taken by ΛB(1), the probability density, PO(N, y), for y is
given by:

PO(N, y)dy := Prob(y ≤ ΛB(1) < y + dy|B ∈ SO(2N))

=
1

2πiy

∫ c+i∞

c−i∞
MO(N, s)y−sds dy.(18)

For small y, [6] and then [8] show that the main contribution to the integral in (18) comes
from the simple pole at s = −1/2, giving

(19) PO(N, y)dy ∼ y−1/2h(N)dy,

where

h(N) := Res
s=−1/2

MO(N, s)

= 2−NΓ(N)−1
N∏
j=1

Γ(N + j − 1)Γ(j)

Γ(j − 1/2)Γ(j +N − 3/2)
.(20)

For large N , using the definition of the Barnes G-function in [2], we have the asymptotic

(21) h(N) ∼ 2−7/8G(1/2)π−1/4N3/8.
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From this we can find, for small ρ, an asymptotic expression for

Prob(0 ≤ ΛB(1) ≤ ρ) =

∫ ρ

0

PO(N, y)dy

∼
∫ ρ

0

y−1/2h(N)dy

= 2ρ1/2h(N).(22)

Now due to (12), we expect that there exists a smooth approximation to the probability den-
sity for the L-function values for our familiy, which we shall call PE(d, ỹ). This distribution
should satisfy

PE(d, ỹ) :=
1

2πiỹ

∫ c+i∞

c−i∞
as(E)MO(log d, ỹ)ỹ−sds

∼ a−1/2(E)PO(log d, ỹ)(23)

for small ỹ. The central value formula (9) implies that

(24)

(
LE(1/2, χd) <

κE√
d

)
=⇒ (LE(1/2, χd) = 0) .

Thus we might expect that for a random variable ỹ distributed with probability density
PE(d, ỹ),

(25)
∑
d∈D+

0<d<X

Prob

(
ỹ <

κE√
d

)
?
=

#{LE(1/2, χd) = 0 | d < X, d ∈ D+}
#{d < X | d ∈ D+}

,

where the right hand side, according to the Birch and Swinnerton-Dyer Conjecture, is the
proportion of higher order curves in our family, obtained by simply counting how many
curves have LE(1/2, χd) = 0.

The model (25) was proposed in [6] and resulted in a prediction for the number of L-
functions taking the value 0 at the central point in the family of even quadratics twists that
appears, from intensive numerical testing, to have the correct asymptotic dependence on X
but with the wrong overall constant.

This is the reason that in [8] it was proposed that instead of taking ỹ < κE√
d
, one should

instead define an ‘effective’ cutoff, δ κE√
d
. The value of δ is found by calculating an asymptotic

expression for the number of L-functions in our family that are zero at the point 1/2, modelled
by PE(d, ỹ) as in the the left hand side of (25), but with ỹ < δκE√

d
, and identifying this

with Michael Rubinstein’s numerical determination of the same quantity. From here on we
consider just d ∈ D+ that are prime since these numerical results were calculated for prime
fundamental discriminants only. That is, from the left side of (25) (but with ỹ < δκE√

d
) we
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have, following [8]:

#{LE(1/2, χd) = 0 |d prime, d < X, d ∈ D+}

∼ 1

4 logX
2a−1/2(E)

√
κE2−7/8G(1/2)π−1/4(logX)3/8δ1/2

4

3
X3/4.(26)

If we divide both sides of (26) by a−1/2(E)
√
κEX

3/4(logX)−5/8/4, numerical investigations
by Michael Rubinstein counting the number of L-functions that have vanishing central value
have found that the left hand side approaches a constant as we increase X. For E11.a3, this
constant is approximately 0.2834620. This gives

8

3
2−7/8G(1/2)π−1/4δ1/2 ≈ 0.2834620

=⇒ δ ≈ 0.185116.(27)

Thus the correct version of (25) for the family of quadratic twists of E11.a3 with positive
d is

(28)
∑
d∈D+

0<d<X

Prob

(
ỹ <

δκE√
d

)
=

#{LE(1/2, χd) = 0 | d < X, d ∈ D+}
#{d < X | d ∈ D+}

,

where δ is given by (27).
In [8] the authors use the cutoff δκEX

−1/2 to produce a working model for the lowest zero
of rank zero L-functions in a family of even quadratic twists. Since PE(d, ỹ) is conjectured
to be just a−1/2(E) times the distribution of characteristic polynomials PO(N, ỹ) for very

small values of ỹ (see (23)), and the distributions vary like ỹ−1/2 (see (19)), the constant in
the cutoff appropriate for PE(d, ỹ), δκE, is scaled to

(29) c = a−2−1/2(E)δκE

when applied to PO(N, ỹ). Since (28) implies that matrices with ΛB(1) taking a value below
this cutoff are involved with modelling the number of L-functions that are zero at the central
point, and therefore by Birch and Swinnerton-Dyer are presumed to be associated with an
elliptic curve having rank 2 or greater, the matrices with ΛB(1) greater than the cutoff can
be used to model the L-functions that don’t vanish at the central point: those associated
with a curve of rank 0. Thus the excised model applied in [8] involves retaining only those
matrices from SO(2N) that have ΛB(1) ≥ c exp(−N/2). N is given by (10).

It is worth noting here what effect this has when N , as defined in (10), does not turn out
to be an integer. Although in evaluating c exp(−N/2) we can use a non-integer value of N ,
we are forced to use integer size matrices when we generate matrices from SO(2N) to test
the model. To remove the effect of computing with a matrix size that is slightly different
from the value of N given by (10), for the plots in Figure 7 we have chosen X differently for
each family such that in each case N is as close to an integer as possible.

The effectiveness of the excised model with cutoff (29) in predicting the distribution of the
lowest zero for L-functions associated with rank 0 curves can be seen in Figure 6. Note that
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as in [8] before comparing the distribution of first eigenvalues with the distribution of lowest
zeros, the two distributions are scaled to have the same mean. This is to account for the fact
that the random matrix model contains no number theoretical information, so although it
appears to predict correctly the shape of the distribution, there is a slight difference in the
means. The improvement of the excised model in Figure 6 over the full SO(2N) ensemble
shown in Figure 5 is clear. This can be quantified by considering the root-mean-square
(RMS) deviation between the bin heights for the excised model and the bin heights for the
number theoretic data in the histograms in Figure 6. The better our model, the smaller this
quantity will be. It was checked in [8] for twists (with positive d) of the curve E11.a3, and
in later investigations for three other families of even quadratic twists, that as we vary the
cutoff, the best match (i.e. the smallest RMS deviation) is for a cutoff very close to the
value c. Figure 7 plots the RMS deviation for each of these families as the value of the cutoff
varies. The vertical line indicates the position of the value c determined by (29) for each
family.

Thus, the excised ensemble provides a simple model for the distribution of the first zero of
even, prime quadratic twists of an elliptic curve L-function that captures Miller’s repulsion
from the central point. It also provides a means of predicting some significant information
about the number of higher rank curves in such a family in the sense that it results in a
conjecture that the number of these curves is proportional to X3/4(logX)−5/8. However

it leaves us with the mysterious fact that the most effective cutoff is δκE/
√
d rather than

κE/
√
d. In the next section we adapt the excised model to shed light on the role of δ.

3. Beyond the excised model

3.1. The inverse cubic model. Despite the success of the excised model, there are some
problems with its interpretation. For modelling L-function zeros in the regime where the
conductor is not large, it seems strange that the excised model cutoff (that gives the correct
number of vanishing L-functions) is not at the most obvious value of κEX

−1/2, but is instead
at a point significantly closer to zero. If the distribution of SO(2N) characteristic polynomial
values were a very good smooth approximation to the distribution of L-function values, then
it would seem counterintuitive that (25) would not hold.

If we look at Figure 2, we can see that there is some structure in the number theory data
that the excised model does not take into account. The L-function values are given by (9)
and their density histogram has a ‘peak’ for each integer value taken by cE (|d|). This peak is

not a delta spike, but is ‘smeared out’ by the factor 1/
√
|d| in (9) as d runs over fundamental

discriminants between 0 and X. Figure 8 shows the peak due only to the L-values for which
cE (|d|) = 1, illustrating the sharp left edge corresponding to the largest value of d = X as
well as the decay to the right corresponding to smaller values of d.

Since the excised model (which only takes into account the hard gap at the origin and not
this series of peaks) is so much more successful than the full SO(2N) ensemble, it is natural
to ask if a modification to the excised model which does include information about these
peaks would improve our model for the zero statistics still further.
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Figure 7. RMS deviation between the distribution for the first zero of rank
0 curves in a family of quadratic twists and the distribution of the eigen-
value nearest 1 for the excised model as the cutoff varies. Here we have used
X = 308317 when M = 11 and X = 234605 when M = 19 so that the equiv-
alent matrix size is as close to 12 as possible. The value of the cutoff given
by (29) in each case is plotted as a vertical line. For a sense of scale note
that a cutoff equal to zero is the full SO(2N) ensemble. Top left: twisting
E11.a3 with positive fundamental discriminants. Top right: negative twists of
E11.a3. Bottom left: positive twists of E19.a2. Bottom right: negative twists
of E19.a2.

A random matrix model is a set of matrices equipped with a measure. For example,
SO(2N) is the set of all 2N × 2N orthogonal matrices with Haar measure (implying that
all matrices receive equal weighting). When the quantities being explored involve only the
eigenvalues of the matrices, Haar measure can be written explicitly as a joint probability
density of the eigenvalues. An ensemble that excises matrices based on the size of ΛB(1)
(the characteristic polynomial at 1) could be thought of in one of two ways. One way is to
redefine the set of matrices so as to leave out those with ΛB(1) less than a given cutoff, c.
However, this is equivalent to using the full set of orthogonal matrices and modifying the
measure which, for our purposes, will mean multiplying the joint probability density function
of the eigenvalues with a Heaviside step function (which is zero if the value of ΛB(1) is less
than c and is 1 otherwise). The latter description is the one which lends itself to further
modifying the excised model. For the new model we replace the Heaviside step function with
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Figure 8. Distribution of the central values of L-functions associated with
even quadratic twists of E11.a3 (0 < d < 400000, d prime). This figure
includes only those L-functions for which cE(|d|) = 1. This is the left-most
peak visible in Figure 2. A best fit line proportional to ỹ−3 is also plotted for
comparison.

a weight W (N, y) such as the one shown in Figure 9. We sketch W (N, y) as a function of
the single variable y, but y represents the value ΛB(1) and so depends on all the eigenvalues.
The shape of W (N, y) will be defined so as to select a subensemble with a distribution of
values of ΛB(1) which closely matches the distribution of values of LE(1/2, χd). (Note that
as we are now modelling details of the peaked distribution of L-function values, we are not
using the approximation (23) that holds for small L-values and involves scaling PO(N, y) by
the arithmetic factor in order to obtain a smooth approximation to the L-value distribution,
as described at (29).)

Selecting a subensemble of SO(2N) with a chosen distribution of values ΛB(1) may be
achieved computationally by generating Haar-distributed orthogonal matrices following Mez-
zadri [18], and then using von Neumann’s selection-rejection method on the resulting data.
This selection-rejection algorithm goes through the computer generated set of SO(2N) ma-
trices one at a time and selects matrices for our modified ensemble with a probability deter-
mined by the value at 1 of the characteristic polynomial. We shall refer to this probability
as W (N, y), where y is again a variable representing the possible values of the character-
istic polynomials. Thus if a randomly generated matrix B ∈ SO(2N) has a value at 1
of ΛB(1), that matrix is retained with a probability W (N,ΛB(1)) and is otherwise dis-
carded. This gives us a random matrix ensemble whose central values are distributed like
Pic(N, y) := NWW (N, y)PO(N, y). Here, as before, PO(N, y) is the probability distribution
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Figure 9. An example of a weight W (N, y) which we might wish to be im-
posed on top of Haar measure. The left-most peak would start at y = κEX

−1/2

and the second discontinuity occurs at 4κEX
−1/2, where X is the largest value

of d in the set of L-function data (for this sketch we have set κEX
−1/2 = 0.01).

The shape of the first peak is fixed, but its height depends on the parameter
A introduced in (34).

of central values from the full SO(2N) ensemble, and NW is a normalisation constant such
that

(30) NW

∫ ∞
0

W (N, y)PO(N, y)dy = 1,

so that Pic(N, y) is a proper probability distribution.
We note that although we call it a ‘probability’, it is not necessary to require that

W (N, y) < 1. If W (N,ΛB(1)) > 1 for a random SO(2N) matrix B, we can implement
this by adding bW (N,ΛB(1))c copies of that matrix to our modified ensemble, and then
adding a further copy with probability {W (N,ΛB(1))} (where bc denotes the integer part
and { } the fractional part).

As explained below, we shall be interested in the case where W (N, y) is flat over most
of its range, so we shall set W (N, y) = 1 over the range in which it is flat. Thus the
average 〈W (N, y)〉 of W over the full range of y will be 〈W (N, y)〉 ≈ 1. This is computa-
tionally efficient because if 〈W (N, y)〉 < 1, then as we increase 〈W (N, y)〉, we reject fewer
SO(2N) matrices from our ensemble than we need to and thus waste less computer time.
If 〈W (N, y)〉 > 1, then we do not gain any more accuracy by increasing 〈W (N, y)〉 since
we do not actually gain any accuracy in our data sets from adding multiple copies of every
matrix to our ensemble. Therefore it makes sense to have 〈W (N, y)〉 approximately equal to
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1. Since W (N, y) will not be identically 1, then for some range of y, W (N, y) will be greater
than 1, as mentioned above.

3.1.1. Finding W (N, y). The goal here is to find the weight function W (N, y) that we wish
to impose upon our Haar-distributed matrix ensemble SO(2N). We will still exclude all
matrices whose characteristic polynomial value is less than a cutoff, but in contrast to the
excised model, we shall use the ‘natural’ cutoff at κEX

−1/2. The start of the second peak
should therefore be at 4κEX

−1/2 (since LE(1/2, χd) = κEcE(|d|)2/
√
d and the first two peaks

correspond to cE(|d|)2 = 1 and cE(|d|)2 = 4 respectively). Since we are most interested in
the structure of the distribution for small values (where the discretisation in (9) is most
noticeable), we shall choose W (N, y) such that the distribution of characteristic polynomials
is similar to the L-function value distribution over the entirety of the first peak, and then
simplifies to Haar measure for ΛB(1) > 4κEX

−1/2. A sketch of W can be seen in Figure 9.
The shape of the peak is found numerically by requiring that when the weight W (N, y) is
imposed upon Haar measure, the resulting distribution of ΛB(1) should be an inverse cubic
curve (motivated by the fit in Figure 8 and justified later in this section). This defines
W (N, y) up to a constant, which shall be discussed in Section 3.1.3.

We wish to find the functional form of the first peak in the distribution of L-values: see
Figure 8. As before, ỹ represents the values taken by L(1/2, χd). In order to do this, we use
the central value formula (9). We note that for L-functions that contribute to the first peak,
LE(1/2, χd) = κEd

−1/2. Consider the number of curves with central values in the interval
between ỹ and ỹ + ∆ỹ. We have

(31) ỹ
√
d ≤ κE ≤ (ỹ + ∆ỹ)

√
d

so

(32)
κ2E

(ỹ + ∆ỹ)2
≤ d ≤ κ2E

ỹ2
.

For simplicity we make the assumption that the values of d corresponding to cE(|d|) = 1 are
uniformly distributed among the integers in the interval [0, X] (although the distribution of
the values taken by cE(|d|) is a complicated subject, which may be treated in future work
by Michael Rubinstein). As can be seen in Figure 10, this is not the case, but the density
of these d’s is slowly varying for most of the range of d that we are considering, particularly
for larger d. These larger values of d determine the initial sharp fall of the peak in Figure 8,
so this seems a reasonable approximation to make in order to obtain an approximate shape
for the first peak. Accepting this assumption implies that the number of values of d in an
interval is proportional to the length of the interval. As such, the number of curves with
central values in the interval [ỹ, ỹ + ∆ỹ] is proportional to

(33)
κ2E
ỹ2
− κ2E

(ỹ + ∆ỹ)2
= ∆ỹ

κ2E(2ỹ + ∆ỹ)

ỹ2(ỹ + ∆ỹ)2
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if ỹ > κEX
−1/2, and 0 otherwise. For ∆ỹ � ỹ, this gives us

#{d : ỹ ≤ LE(1/2, χd) ≤ ỹ + ∆ỹ, cE(|d|)2 = 1} ∼ 2κ2E∆ỹ

ỹ3
,

so we conclude that a smooth approximating distribution for the first peak in the L-value
distribution should be an inverse cubic curve.

Figure 10. Distribution of prime fundamental discriminants from (0 < d <
308317) for which cE(|d|) = 1. The right hand side of the distribution is
approximately flat, which helps to justify our assumptions in the calculation
of the shape of the first peak.

Note that the shape of W (N, y) between κEX
−1/2 and 4κEX

−1/2 is not itself an inverse
cubic because W (N, y) is the weight that is applied to Haar-distributed matrices in order to
ensure a value distribution for ΛB(1) that has inverse cubic shape. As Haar measure does
not result in a flat distribution of ΛB(1) in this region, W (N, y) has a more complicated
shape.

Thus we have an argument that the first peak of the distribution of central L-values should
have a sharp turn on at κEX

−1/2 followed by an inverse cubic decay. Our proposed random
matrix model is a subensemble of SO(2N) chosen such that the distribution of characteristic
polynomials ΛB(1) obeys just such a distribution law between 0 and 4κEX

−1/2, and matrices
with characteristic polynomials greater than 4κEX

−1/2 are chosen with Haar measure. This
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will give us a probability distribution for the central values defined by:

(34) Pic(N, y) =


0 if 0 < y < κEX

−1/2

NWAy
−3 if κEX

−1/2 ≤ y < 4κEX
−1/2

NWPO(N, y) otherwise.

From this, we find

(35) W (N, y) =


0 if 0 < κEX

−1/2

Ay−3/PO(N, y) if κEX
−1/2 ≤ y < 4κEX

−1/2

1 otherwise.

For this to be useful, we need to be able to calculate values for PO(N, y). This can be
done numerically by generating a large number of SO(2N) matrices, plotting a histogram of
the value distribution, and then fitting a high degree polynomial to the resulting set of bin
heights.

3.1.2. The effectiveness of the inverse cubic model. As can be seen in Figure 11, we find that
the inverse cubic model described in Section 3.1.1 does indeed give us a matrix ensemble
whose first eigenvalues are a good model for the lowest zeros of rank 0 quadratic twists.
In this figure the parameter A is set to A1, as defined at (38). The predicted value A1 is
very close to the value of A that gives the best fit between the two curves in Figure 11.
This optimal value of A can be found by considering the RMS deviation between the bin
heights of cumulative histograms of the distribution of the eigenvalue nearest to 1 versus
the distribution of the lowest zero. Figure 12 shows what happens to this quantity for four
families of elliptic curves as we try a range of values of A. At the optimal value of A,
the inverse cubic model shows a consistent improvement over the excised model. This is
quantified in Table 1 where we list the RMS deviation between the cumulative histograms of
the first zeros in the same four families of elliptic curves and of four random matrix models:
the full SO(2N) ensemble; an excised ensemble where the cutoff is set to the naive value
of κEX

−1/2; the excised model from [8] with the cutoff c exp(−N/2) described in Section
2.3; the inverse cubic model using the optimal value of the parameter A (the position of
the minimum in the appropriate plot in Figure 12). This table illustrates that the inverse
cubic model gives a significant improvement over all other models. We can also see that the
excised model (with cutoff at c exp(−N/2)) also does a reasonable job at modelling the data
(certainly hugely better than using all of SO(2N)) and it has the advantage of being a very
simple model to implement.

The vertical lines on the plots in Figure 12 will be relevant in the next section.

3.1.3. Interpreting the optimal value of A. Qualitatively, the effect of varying A is to adjust
the proportion of matrices in our ensemble with ΛB(1) < 4κEX

−1/2. We would like to
use this fact to understand the unexpectedly low cutoff δκEX

−1/2 in the original excised
model. Consider the first peak in Figure 13. From that picture, having a cutoff smaller than
κEX

−1/2 appears to have given a model for the values with a similar proportion of values
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Figure 11. Cumulative plot of the distribution of the first zero of even qua-
dratic twists (0 < d < 308317, d prime) of L-function associated with E11.a3,
with the distribution of the first eigenvalue from the inverse cubic model using
parameter value A1 (given at (38)). By eye it is difficult to distinguish between
this and the equivalent plot for the excised model (Figure 6), but the RMS
deviation between these two curves is around 5.8% lower.

Table 1. RMS deviations between the cumulative distributions of first ze-
ros in four elliptic curve families and of first eigenvalues in four matrix models
mentioned in this paper. The percentage improvements given are the improve-
ments of the inverse cubic model (with the parameter A = A1, as discussed
in the next section) over the excised model with the excision parameter at
c exp(−N/2), where c is given at (29). X is the largest value of the fundamen-
tal discriminant used and it translates to a value of N using (10).

E11 positive E11 negative E19 positive E19 negative
X = 308317 X = 308317 X = 234605 X = 234605

Full SO(2N) 0.0245 0.0189 0.0196 0.0219
Excised at κEX

−1/2 0.0103 0.0093 0.0096 0.0098
Excised at c exp(−N/2) 0.0086 0.0081 0.0053 0.0074
Inverse cubic model 0.0081 0.0074 0.0050 0.0062
Percentage improvement 5.8 9.6 5.7 16.2

below 4κEX
−1/2 as the number theory data, albeit with a different shape. To quantify this,

the full SO(24) central value distribution has around 22.5% of its ‘mass’ below 4κEX
−1/2
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Figure 12. Finding the optimum height of the first peak for the inverse cubic
model, with horizontal line showing the RMS deviation of the excised model.
The values of A1 as calculated in Section 3.1.3 are marked with vertical lines.
Top left: twisting E11.a3 with positive fundamental discriminants; showing a
5.8% improvement on the excised model. Top right: negative twists of E11.a3;
9.6% improvement. Bottom left: positive twists of E19.a2; 5.7% improvement.
Bottom right: negative twists of E19.a2; 16.2% improvement.

(note that we are not scaling by arithmetic factors here since (23) is only valid near the
origin), while the same quantity for the distribution of L-function values has around 13.4 %.
The excised model with the surprisingly small cutoff has 14.7% in this range. These values
are not identical, but the choice of 4κEX

−1/2 as delimiter for “mass near the origin” of the
distribution is somewhat arbitrary. The numbers 13.4 % and 14.7% simply serve to give
some indication that the amount of mass in a region close to the origin is important.

Therefore, we propose to calculate the value of the parameter A that ensures that the
proportion of matrices with with ΛB(1) < 4κEX

−1/2 exactly matches the proportion of the
L-function distribution over the same range. We shall call this particular value A1. If we
think of the excised model as having unexpected mass below κEX

−1/2 in the distribution,
then we are accounting for this mass in the new model by moving the cutoff back to its
‘natural’ value and increasing the size of the first peak to compensate. This can be visualised
by comparing Figures 13 and 14.
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Figure 13. Distributions of central values of even quadratic twists (0 < d <
400000, d prime) of the L-function associated with E11.a3 and of central values
of characteristic polynomials from the excised model.

Figure 14. Distributions of central values of even quadratic twists (0 < d <
400000, d prime) of the L-function associated with E11.a3 and of central values
of characteristic polynomials from the inverse cubic model with the parameter
A taking the value A1, as described at (38).



BEYOND THE EXCISED ENSEMBLE 23

The proportion of mass in the first peak in the distribution of L-values is easy to find
by counting the number of twisted L-functions in our family whose central value lies in this
region, and then dividing this quantity by the total number of L-functions. The equivalent
quantity in the inverse cubic ensemble depends on A. As such, we may calculate A1 by
equating the proportion of twists for which κEX

−1/2 < LE(s, χd) < 4κEX
−1/2 (which we

shall denote SL) with the equivalent proportion of our matrix ensemble:

(36) SL :=
1

X∗
#{κEX−1/2 < LE(s, χd) < 4κEX

−1/2} =

∫ 4κEX
−1/2

κEX−1/2

Pic(N, y)dy.

The left hand side of (36) is computed numerically. We may calculate the right hand side
by using (35) and (30):∫ 4κEX

−1/2

κEX−1/2

Pic(N, y)dy = NW

∫ 4κEX
−1/2

κEX−1/2

A1y
−3dy

=

∫ 4κEX
−1/2

κEX−1/2 A1y
−3dy∫∞

0
W (N, y)PO(N, y)dy

=

∫ 4κEX
−1/2

κEX−1/2 A1y
−3dy∫ 4κEX−1/2

κEX−1/2 A1y−3dy +
∫∞
4κEX−1/2 PO(N, y)dy

=
A1

15X
32κ2E

A1
15X
32κ2E

+
∫∞
4κEX−1/2 PO(N, y)dy

.(37)

Now
∫∞
4κEX−1/2 PO(N, y)dy may be calculated numerically by generating SO(2N) matri-

ces chosen with respect to Haar measure and finding the proportion for which ΛB(1) >
4κEX

−1/2. We shall refer to this quantity as SH . We can now rearrange to find A1 in terms
of SL and SH :

(38) A1 =
32SLSHκ

2
E

15X(1− SL)
.

For twists up to d = 308317 of the L-function associated with E11.a3, this method gives
A1 ≈ 2.580× 10−5.

As can be seen in Figure 11, we find that this value of A does indeed give us a matrix
ensemble whose first eigenvalues are a good model for the lowest zeros of rank 0 quadratic
twists. This is illustrated by marking the position of A1 on Figure 12 where it lies extremely
close to the optimum.

Note that in calculating A1 we must necessarily generate matrices with integral dimension.
In order to minimise the effect of having to round the value of N given by (10) to the nearest
integer when generating the matrices, for Figure 12 we choose X such that (10) produces a
value of N that is as close to 12 as possible. For M = 11, this gives X = 308317, and for
M = 19, we take X = 234605.
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3.1.4. Consequences of the inverse cubic model. As can be seen in Figure 12, the parameter
value A1 is very good at predicting the optimal value of the parameter A for the four families
that we tested. This supports the hypothesis that having approximately the correct mass in
this initial portion of the value distribution is a critical feature in a good model and is the
reason that, despite their differences, the inverse cubic model and the excised model show
similar behaviour in the statistics of the first eigenvalue. Thus, the unexpectedly small cutoff
δκEX

−1/2 in the original excised model compensates for the differing shapes of the central
value distributions near the origin for the twisted L-functions and for the excised SO(2N)
ensemble.

As we have already noted, we have chosen to quantify the proportion of small values with
the mass in the first peak between κEX

−1/2 and 4κEX
−1/2, but we can see from Figure 14

that there is more structure in subsequent peaks of the distribution of L-values. This must
have some effect on the distribution of first zeros and so may explain why the value A1 does
not exactly lie at the minimum in every family.

It should be stressed that due to its complexity, the inverse cubic model is far less con-
venient for actually working with than the simpler original excised model. We believe that
the present work supports the idea that for modelling the zero statistics of elliptic curve
L-functions far from the Katz-Sarnak limit, the excised model is indeed a useful tool as an
approximation to the more detailed but cumbersome inverse cubic model.

3.2. A different approach - the two parameter model. Since allowing the first cutoff
to vary from the natural value of κEX

−1/2 proved to be useful in constructing the original
excised model, a possible criticism of the inverse cubic model described in Section 3.1 is that
we have fixed the position of the two ‘excision points’ (the points of discontinuity in Figure
9). It is natural to ask whether or not we should consider moving the positions of these
excision points in a modified excised ensemble, instead of scaling the height of the first spike.

We once again consider an ensemble with a ΛB(1) value distribution displaying a sharp
turn on followed by an inverse cubic decay, but we shall now fix the height of the first peak in
the distribution of our values. We shall implement this in a similar manner to Section 3.1 by
defining a weight Vχ1,χ2(N, y) (from here on we will drop the subscripts on V ). This weight
has the property that if χ1 is the value of the first excision point, then V (N,χ1) = 1. (Recall
that in the inverse cubic model we allowed this height to be greater than 1.) Between χ1 and
the second excision point χ2, V (N, y)PO(N, y) follows an inverse cubic curve as before. For
a sketch of V (N, y)PO(N, y) see Figure 15. Note that for values greater than χ2, V (N, y)
takes the value 1, as in Figure 9. We shall refer to this as the ‘two parameter model’, where
the two parameters are χ1 and χ2.

As before, we consider the RMS difference between the cumulative distribution of the
eigenvalue nearest 1 in the two-parameter model and the cumulative distribution of the
lowest of the L-function zeros. We would like to know if there is a pair of values for the
two parameters χ1 and χ2 which would give us a significant improvement on the original
excised model. This is an optimisation problem in two dimensional phase space, and it is
computationally viable to find the optimal values of the two parameters numerically. This
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Figure 15. An example of the distribution of ΛB(1) values from the two-
parameter model, with χ1 = 0.026 and χ2 = 0.052. Note that the height of
the first peak will follow the envelope of PO(N, y) as we vary χ1.

was done for both positive and negative twists of E11.a3 and E19.a2 to give us the optimum
two parameter model for four sets of data. The plots in Figure 16 show this quantity as a
function of the two excision parameters.

3.2.1. Discussion of the two-parameter model. Note that when the values of χ1 and χ2 co-
incide, on the diagonal of the plots, this model reverts to the original excised model. For all
the families considered, the optimum value (marked by a cross on the plots) is in fact off
the χ1 = χ2 line. That is to say, there are parameter values that improve on the excised
model. However, the percentage improvements (all around 0.2% better than the original
excised model) are so small as to be inconclusive when compared to the inverse cubic model,
which produced much larger percentage improvements over the original excised model (5.7%
to 12.1% for the four families we tested). Thus we conclude that the real insight is to be
gained from the inverse cubic ensemble.

Interestingly, although the two-parameter model does not significantly improve on the
original excised model, it appears to be consistent with the idea that it is the proportion of
small values of ΛB(1) in the ensemble that is a good indicator of how accurately the ensemble
models the statistics of the zeros. Consider again the diagonal of the plots in Figure 16, which
corresponds to models where the distribution of ΛB(1) has only a single discontinuity. At
the origin, this discontinuity is at zero and this gives the full SO(2N) ensemble. As we move
along the diagonal, this discontinuity in the value distribution moves away from the origin.
The darkest region on the diagonal of the plots in Figure 16 illustrates the optimal position
for this discontinuity and corresponds to the minimum in the corresponding plot in Figure
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Figure 16. The RMS deviation of the two parameter model as a function
of the two excision parameters for four families. The ‘X’ marks the minimum
deviation. The family of positive twists of E11.a3 had a cutoff (defined at (29))
of c exp(−N/2) = 0.0048 in the original excised model with 0 < d ≤ 400 000.
The family of negative twists of E11.a3 had a cutoff of c exp(−N/2) = 0.0023
in the original excised model with −300 000 ≤ d < 0. The family of positive
twists of E19.a2 had a cutoff of c exp(−N/2) = 0.0027 in the original excised
model with 0 < d ≤ 480 000. The family of negative twists of E19.a2 had a
cutoff of c exp(−N/2) = 0.0034 in the original excised model and −300 000 ≤
d < 0.

7. The excised model cutoffs (defined at (29)) are listed at Figure 16 for comparison. The
χ2-axis represents a model with the first excision point, χ1, very close to the origin. When
χ2 is also small there is a larger proportion of small central values of ΛB(1) than we find in
the distribution of central L-values, as is the case for SO(2N). Moving from left to right in
the plots in Figure 16 this proportion will tend to reduce, resulting in a growing repulsion of
the lowest eigenvalue. In correlation with the decreasing mass, the RMS deviation reaches
a minimum and then increases again as we move from left to right. Along a similar line of
reasoning, the white ‘X’ on the plots indicates the minimum RMS deviation between the
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model and the distribution of the first zero of our family of L-functions, and it generally
lies to the right and below the minimum on the diagonal, implying that the second excision
point has moved to the right, reducing the mass near the origin, and to compensate the first
excision point has moved towards the origin so a little more mass is contributed from the
first peak. These are speculations, as we did not pursue this model in further detail, but it
appears to be consistent with the hypothesis inspired by the inverse cubic model that the
proportion of small values is critical to a good model.
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[8] E. Dueñez, D.K. Huynh, S.J. Miller, J.P. Keating, and N.C. Snaith. A random matrix model for elliptic
curve L-functions of finite conductor. J. Phys. A, 45(11), 2012. arXiv:1107.4426.

[9] D.A. Hejhal. On the triple correlation of zeros of the zeta function. Inter. Math. Res. Notices, 7:293–302,
1994.

[10] D.K. Huynh. Elliptic curve L-functions of finite conductor and random matrix theory. PhD thesis,
University of Bristol, 2009.

[11] D.K. Huynh, J.P. Keating, and N.C. Snaith. Lower order terms for the one-level density of elliptic curve
L-functions. J. Number Theory, 129:2883–2902, 2009. arXiv:0811.2304.

[12] D.K. Huynh, S.J. Miller, and R. Morrison. An elliptic curve test of the L-function ratios conjecture. J.
Number Theory, 131:1117–1147, 2011.

[13] N.M. Katz and P. Sarnak. Random Matrices, Frobenius Eigenvalues and Monodromy. American Math-
ematical Society Colloquium Publications, 45. American Mathematical Society, Providence, Rhode Is-
land, 1999.

[14] N.M. Katz and P. Sarnak. Zeros of zeta functions and symmetry. Bull. Amer. Math. Soc., 36:1–26, 1999.
[15] J.P. Keating and N.C. Snaith. Random matrix theory and L-functions at s = 1/2. Comm. Math. Phys,

214:91–110, 2000.
[16] J.P. Keating and N.C. Snaith. Random matrix theory and ζ(1/2 + it). Comm. Math. Phys., 214:57–89,

2000.
[17] W. Kohnen and D. Zagier. Values of L-series of modular forms at the center of the critical strip. Invent.

Math., 64:175–198, 1981.
[18] F. Mezzadri. How to generate random matrices from the classical compact groups. Notices of the AMS,

54:592–604, 2007.
[19] S.J. Miller. Investigations of zeros near the central point of elliptic curve L-functions (appendix by E.
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