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Abstract  

Aim 

Infants with birth asphyxia frequently require resuscitation. Current guidance is to start 

newborn resuscitation in room air. However, infants with severe hypoxia-ischaemia may 

require prolonged resuscitation with oxygen. To date, no study has looked at the effect of 

resuscitation in 100% oxygen following a severe hypoxic-ischaemic insult. 

Methods 

Postnatal day 7 Wistar rats underwent a severe hypoxic-ischaemic insult (modified Vannucci 

unilateral brain injury model) followed by immediate resuscitation in either 21% or 100% 

oxygen for 30 minutes. Seven days following the insult, negative geotaxis testing was 

performed in survivors, and the brains were harvested. Relative ipsilateral cortical and 

hippocampal area loss was assessed histologically. 

Results 

Total area loss in the affected hemisphere and area loss within the hippocampus did not 

significantly differ between the two groups. The same results were seen for short-term 

neurological assessment. No difference was seen in weight gain between animals 

resuscitated in air and 100% oxygen. 

Conclusion 

Resuscitation in 100% oxygen does not cause a deleterious effect on brain injury following a 

severe hypoxic-ischaemic insult in a rat model of hypoxia-ischaemia. Further work 

investigating the effects of resuscitation in 100% oxygen is warranted, especially for 

newborn infants with severe hypoxic-ischaemic encephalopathy. 

(Institutional animal protocol licence number: PPL 30/2729) 

 



3 
 

1. Introduction 

Infants affected by perinatal asphyxia often require cardiopulmonary resuscitation at 

birth, which historically included administration of 100% oxygen. A meta-analysis of 10 

clinical trials, with 2133 term infants randomised to either room air or 100% oxygen during 

resuscitation, demonstrated a significant reduction in mortality in the infants resuscitated in 

room air (typical relative risk 0.32, 95% confidence interval 0.12-0.84).1 Furthermore, a 

trend was seen towards a decrease in the risk of more severe hypoxic-ischaemic 

encephalopathy (HIE) (Sarnat stage 2 and 3) among the infants resuscitated in air. 

Additionally, in term infants with perinatal asphyxia undergoing therapeutic hypothermia, a 

higher fraction of inspired oxygen in the first six hours of life was found to be associated 

with adverse long-term outcome.2 This may be because oxygen has been shown to cause 

oxidative injury and apoptosis in the developing brain.3, 4 In a cohort of term infants with 

severe perinatal acidosis, admission hyperoxaemia was also found to be associated with a 

higher risk of HIE.5 In the same study, the infants with moderate or severe HIE in association 

with hyperoxaemia in the first postnatal hour had a higher incidence of abnormal brain 

magnetic resonance imaging (MRI) findings. 

The effect of hyperoxia (i.e. due to resuscitation in 100% oxygen) following a 

hypoxic-ischaemic (HI) insult on the immature brain has been described in animal models, 

and most frequently a worsening of the injury is seen.6-9 However, one study found that 

there was no effect of 100% oxygen on brain histology, and a non-significant improvement 

in male pups resuscitated in 40% oxygen.10 Another study found a short-term (24 hours 

post-insult) worsening of sensorimotor skills, but long-term (assessment at eight weeks) 

improvement in navigational learning, spatial and orientation skills.11 A study by 

Woodworth et al. looked at short- and long-term behavioural effects following resuscitation 
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in air, 40%, or 100% oxygen in postnatal day 7 (P7) rats.12 They found conflicting long-term 

results for males (improved sensory skills in both oxygen treated groups) and females 

(worsened motor skills in air and 40% oxygen group). We have also previously studied the 

effect of resuscitation in 100% oxygen in combination with therapeutic hypothermia in a P7 

rat model of moderate HI, and found that resuscitation in 100% oxygen counteracted the 

effect of therapeutic hypothermia with an increase in brain damage and worsening of reflex 

performance.13 

As a result of both animal data and the subsequent meta-analysis of randomised 

trials in newborn infants, the international resuscitation guidelines changed in 2010, and 

now state that resuscitation of term newborn infants should be started in air, with 

supplemental oxygen titrated according to oxygen saturation as measured by pulse 

oximetry.14 However, early pulse oximetry in the delivery suite is not always feasible or 

reliable due to poor peripheral perfusion. Movement may also result in a poor trace,15 

potentially causing periods of undiagnosed hyperoxia during resuscitation. Concern has also 

been raised about the ability of pulse oximeters to adequately detect hyperoxaemia. This is 

particularly important in infants affected by severe hypoxic-ischaemic encephalopathy, who 

may require prolonged resuscitation with oxygen and therefore are more likely to be 

exposed to periods of hyperoxia than those with less severe HIE. Though periods of 

hyperoxia may worsen the outcome of infants with mild or moderate HIE, no sub-group 

analyses of the effects of resuscitation on infants with severe HIE are available, and it 

remains clinically relevant whether 100% oxygen during resuscitation in cases of severe HI 

worsens brain injury. Here, we describe an established newborn rat model of severe HI, and 

use it to investigate the effect of resuscitation in 100% oxygen on brain injury. 

2. Methods 
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All procedures were carried out in accordance with United Kingdom Home Office 

regulations as approved by the University of Bristol Animal Ethical Review Panel. The well-

established Rice-Vannucci model was used to create unilateral hypoxic-ischaemic brain 

damage.16 Traditionally, a moderate insult is created leading to 40-50% hemispheric area 

loss. We previously established a more severe brain injury model by modifying the Rice-

Vannucci model.17 By increasing both the temperature during the hypoxic insult, and the 

duration of the hypoxic insult, 60-70% area loss is achieved. Wistar (H) rat pups of both 

sexes (Charles River, UK) on postnatal day 7 (P7) were used, with day of birth counted as 

day 1.  Brain maturity in newborn P7 rats compares to human brain maturation at 32-36 

weeks gestation.18, 19 Animals were kept in an animal facility with a 12:12h light/dark cycle 

at an environmental temperature of 19-21°C with food and water ad libitum. The pups were 

weighed and examined daily for overall health status. 

2.1 Procedures 

Unilateral ligation of the left carotid artery was performed on P7 on eight litters, each culled 

to 12 pups after birth (n=96). The animals were anaesthetised for carotid ligation using 3% 

isoflurane in a 2:1 mix of NO2/O2 via a nose cone. Three animals died during the operative 

procedure. The animals were allowed to recover and returned to the dam for at least 30 

minutes. The maximum time between ligation and hypoxic exposure was  restricted to <180 

minutes; this reduces variability within the model, caused by reperfusion of the brain via the 

well established circle of Willis in the rat.20 The animals were randomised by litter, weight, 

and sex to the two treatment groups (resuscitation in air or 100% oxygen), and were placed 

in a custom-built chamber (Figure 1). The randomisation was kept concealed until the point 

of starting the resuscitation period. The animals were breathing unassisted during hypoxia, 

and received a constant fresh gas flow to prevent rebreathing of expired carbon dioxide. 
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The chamber design allows for servo-controlled temperature regulation by continuous 

measurement of rectal- and skin temperature using a cooling machine (Criticool Pro; MTRE, 

Mennen Medical, Rehovot, Israel). A water mat continuously circulates water to maintain 

the temperature of rats in the chamber at the set target rectal temperature. Once the rectal 

temperature was stable at 37°C, the hypoxic period started, using 8% oxygen for 125 

minutes. Mortality during the insult was 23% (19 pups). Ten animals used for rectal- or skin 

temperature measurement, were excluded from further analysis, as we have previously 

shown that the stress of carrying a temperature probe affects brain injury.21 At the end of 

the hypoxic period the animals were immediately resuscitated in either 21% or 100% oxygen 

for 30 minutes. Oxygen and carbon dioxide concentrations were continuously monitored 

throughout the insult and resuscitation period using a gas analyser (Model 4800 Charter 

Kontron, Andros Incorporated, Santa Clara, United States). The animals remained in the 

chamber for a further five hours at a constant temperature of 37°C, before returning to the 

dam. We have previously demonstrated that being separated from the dam for periods up 

to 10 hours is well tolerated, and does not result in hypoglycaemia.17, 22 The pups were 

weighed daily; three animals failing to gain weight were sacrificed between P10-12 (two 

randomised to air, one randomised to 100% oxygen), and one pup randomised to air was 

eaten by the P8. Therefore, the total number of survivors on P14 was 60; 25 in the air group 

and 35 in the 100% oxygen group. These animals then underwent behavioural and 

histological assessment of neurological damage. 

2.2 Behavioural testing 

Animals underwent negative geotaxis testing seven days after the HI insult, at P14, by an 

assessor blinded to the treatment allocation. This test involves placing the animal head-

down midway on a 45° sloped, rough surface. The time it takes the animal to rotate 90° and 
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180° is noted. The animal was tested three times, and the median time was used for 

statistical comparison. This test reflects an innate postural response in newborn pups with 

fused eyelids. It appears around P11 in uninjured rats, and at P12-13 in animals following a 

hypoxic-ischaemic insult.23 As a short-term outcome marker, negative geotaxis correlates 

well with long-term functional outcome.24 Animals were tested at P14 to ensure the reflex 

had developed, and that the eyelids remained closed. 

2.3 Area loss assessment 

After behavioural testing on P14, animals were anaesthetised and underwent transcardiac 

perfusion with 10% neutral-buffered formalin. Brains were harvested and post-fixed in 

formalin for seven days. 

Brains were cut in 3-mm coronal blocks using a standard matrix (ASI Instruments, Warren, 

United States of America), and embedded in paraffin. Blocks were sectioned at 5 μm and 

stained with haematoxylin and eosin. Two sections from the 3rd and 4th slide were scanned 

(Perfection V30, Epson) at a high resolution (1200dpi) and saved as a TIFF image. These two 

sections represent areas from the cortex, hippocampus, basal ganglia and thalami. The 

scanned image was viewed using Image J software (Image J version 1.43; National Institutes 

of Health, Bethesda, United States of America), and the midline manually identified. The 

brain was divided into the injured left and uninjured right hemisphere, and the area of each 

section measured by an assessor blinded to the treatment allocation (Figure 2A). The 

percentage area loss for each brain was calculated using the formula: (1 - [area left/area 

right] x 100). This method has been validated against a formal histopathology score.17 

Furthermore the size of the hippocampus was measured using the same technique, and left 

and right compared (Figure 2B). 

2.4 Statistics 
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SPSS version 19 was used for statistical analysis. Descriptive data following a normal 

distribution are presented as mean ± standard deviation, and as median with interquartile 

range (IQR) if not normally distributed. The effect of weight, sex, litter, anaesthesia time and 

interval between ligation and insult on % area loss was examined using linear regression 

analysis. For two-group comparison the independent samples T-test or Mann-Whitney U 

test was used, depending on the distribution of the data. For paired comparison of area loss 

within the hemisphere and the hippocampus a Wilcoxon signed rank test was used. 

Conventional statistical significance levels were used (p<0.05 with 2-sided testing). 

3. Results 

 Baseline animal characteristics are summarised in Table 1 and did not significantly 

differ between the two treatment groups. Sex, weight at P7, litter, anaesthesia time, and 

interval between ligation and insult, did not significantly influence the overall percentage 

area loss in a regression analysis. 

A scatter plot of overall area loss for the hemisphere, and area loss within the 

hippocampus, is shown in Figure 3. Median (IQR) area loss for the left hemisphere was 

73.2% (66.7-79.3) in the animals resuscitated in 21% oxygen, and 68.8% (57.4-77.2) for 

those resuscitated in 100% oxygen. Median (IQR) % area loss within the left hippocampus 

for animals resuscitated in 21% and 100% oxygen was 68.7 (64-83.5) and 66.4 (54.9-87.6) 

respectively. The actual area measurements on the right (uninjured) hemisphere did not 

differ between the 2 treatment groups, and were 43.3 ± 5.1 (mean ± SD in units as measured by 

Image J) for the pups in the 21% oxygen group and 42.7 ± 3.5 for the pups in the 100% oxygen group 

(p-value 0.33). The same was true for the left hemisphere (p-value 0.12). The distributions of 

% area loss for the hemisphere and the hippocampus did not significantly differ (p=0.18 and 

0.631, respectively) between the animals resuscitated in air and 100% oxygen. Paired 
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comparison of percentage area loss within the hemisphere and hippocampus for the 

treatment groups did not show a significant difference, neither for the animals resuscitated 

in 21% oxygen (p=0.84), nor for those resuscitated in 100% oxygen (p=0.196). 

Negative geotaxis results are summarised in Figure 4. The median (IQR) time to 

rotate to 90° was 3.4 (2.4, 4.2) seconds for the animals resuscitated in 21% oxygen and 3.8 

(2.7, 7.8) seconds for the pups resuscitated in 100% oxygen (p=0.261). For rotation to 180° 

the timings were 6.6 (4.9, 10.5) seconds for those resuscitated in 21% oxygen and 8.0 (5.4, 

9.8) seconds for those in 100% oxygen (p=0.697).  

4. Discussion  

In a newborn survival model of severe HI, resuscitation with 100% oxygen resulted 

neither in short-term neuro-behavioural changes, nor in an increase in brain injury. This 

finding differs from that seen in a P7 rat model of moderate HI, where brain injury and 

short-term neuro-behaviour worsened following resuscitation in 100% oxygen13. Newborn 

infants with severe HI invariably require resuscitation at birth with likely periods of 

hyperoxia. Based on these results, it may be that increased oxygen administration, and 

subsequent hyperoxia, during resuscitation of infants with severe HIE may not worsen 

injury, however this requires further investigation.  

The postulated mechanism of increased brain damage following hyperoxic 

resuscitation where there is a moderate HI insult include inflammation25 and generation of 

reactive oxygen species.9 Based on the findings in this study we speculate that in case of a 

severe HI insult, no increase in damage is seen because mitochondrial dysfunction and 

oxidative stress have reached their maximum limits with overwhelmed anti-oxidant 

defences. In a healthy brain, a fine balance exists between reactive oxygen species and 

antioxidant defences.26 Hyperoxia leads to an increase in reactive oxygen species, but this in 
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itself leads to an upregulation of the antioxidant defences, which could ameliorate brain 

damage caused by hyperoxia. In animal models of adult stroke, short periods of normobaric 

oxygen administration improved tissue oxygenation and perfusion27 without an increase in 

oxidative stress28. If started early following the stroke, this resulted in a reduction in infarct 

size. 

Furthermore, cerebral blood flow probably plays an important role in the effect of 

hyperoxia on brain damage. Oxygen is a potent vasoconstrictor in the renal, coronary and 

cerebral vasculature, potentially leading to diminished perfusion of vital organs.29 

Hyperoxaemia in preterm infants <32 weeks gestation caused an increase in cerebral blood 

flow velocity, whilst the opposite effect was seen in infants ≥32 weeks in a study by Basu et 

al.30 Hyperoxia is known to cause a reduction in end-tidal carbon dioxide and an increase in 

cerebral vascular resistance,31 which in turn could lead to a reduction of cerebral oxygen 

delivery. Hypocarbia following oxygen administration is caused by an increase in ventilation 

triggered by peripheral and central (brainstem) chemoreceptors.32, 33 Hypocarbia causes 

cerebral vasoconstriction and periods of hypocarbia worsen outcome in both term and 

preterm infants.34, 35 By adding carbon dioxide to the hyperoxic gas mixture the reduction in 

cerebral blood flow can be opposed.36 The direction in which this intricate balance of 

hyperoxia-induced hypocarbia, an increase in the partial pressure of oxygen in arterial 

blood, cerebral vasoconstriction, actual oxygen delivery to the brain, and the interaction 

between oxidative stress and anti-oxidant defences shifts when using 100% oxygen during 

resuscitation, may differ depending on the insult severity. This may explain the differences 

in outcome seen. 

In newborn rats around P7, the cortex and hippocampus are the areas preferentially 

damaged in models of HI.37 There is a clear maturation effect, with mainly cortical damage 
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below P5, and involvement of the hippocampus at P5-P10. There is then a switch towards 

more hippocampal damage in comparison to cortical damage from P13 onwards. 37 In our 

study, we found that the distribution of area loss in the hemisphere and the hippocampus 

was the same, suggesting that both the cortex and hippocampus are equally vulnerable 

following a severe insult at P7. When looking at the effect of resuscitation in 100% oxygen 

on the area of the uninjured (right) hemisphere, no significant differences were seen 

between the two treatment groups. This indicates that 100% oxygen did not affect the 

uninjured hemisphere and therefore that the lack of effect of 100% oxygen on proportional 

area loss is not due to increased damage in the ipsilateral hemisphere.  

The negative geotaxis test has been used as a short-term outcome marker in the HI 

immature rat model.23, 24 In a recent study the test was used in a moderate model of HI in 7-

day old rats and correlated well with long-term outcome.38 Absolute values from individual 

studies are not comparable due to difference in angle and surface material used. The 

method has not been reviewed yet in the severe HI rat model. 

Most animal resuscitation studies use a duration of 120 minutes for the duration of 

the reoxygenation period.7, 8, 10, 12 We used 30 minutes of resuscitation because this more 

closely replicates newborn resuscitation in the delivery suite, and allowed comparison with 

our previous study of hyperoxia in the moderate model. The resuscitation period followed 

immediately after the end of the insult to allow fast reoxygenation, as may be expected 

during an emergency resuscitation in the delivery room. 

The severe HI rodent model used in this study closely translates to neonatal stage 3 

hypoxic-ischaemic encephalopathy based on the Sarnat classification system.39 We see a 

much higher mortality during the insult in the severe model compared to the moderate 

model (23-28% versus 0-10% in our experience), and the survivors display a significantly 
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higher brain area loss (median 60-70% versus 40-50% in the standard moderate model as 

used in our laboratory). The Rice-Vannucci model is notorious for its large intra-model 

variability. We tried to reduce this variability by keeping the anaesthesia period short 

(typically 3-4 minutes), and the interval between ligation and the start of the hypoxic period 

<180 minutes. All surgery was carried out by the same two experienced operators. 

Temperature during the insult was servo-controlled, and following the period of 

resuscitation, the animals remained separated from the dam for a further five hours in the 

servo-controlled environment to allow a constant temperature in the recovery phase. This is 

a study using a newborn rat survival model of unilateral brain damage, which did not include 

investigation of systemic or other organ involvement. Larger animal models, for example the 

newborn pig or fetal sheep HI model, may be required to confirm these findings, as well as 

the systemic sequelae of 100% oxygen administration in severe HI brain injury, before they 

can be directly applied to human neonates. Importantly, the Rice-Vannucci rodent model 

used in this study has previously allowed translational research findings that were replicated 

in the larger animal models and confirmed in human studies.  

5. Conclusion 

This study shows that using 100% oxygen during resuscitation following a severe 

hypoxic-ischaemic insult does not worsen brain injury in a rat model of hypoxia-ischaemia. 

Further research in a larger animal model is required to confirm these findings, as well as 

investigate the systemic effects of using 100% during resuscitation following a severe 

hypoxic-ischaemic insult. 
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Legends to Figures and Tables: 

Figure 1: Chamber design for the hypoxic insult and resuscitation period. Pups were placed 

on a heat-conductive floor (A) in individual spaces (B). This was inserted into a gas-tight 

chamber (C). The floor was in thermal connection with the water mat beneath (D) 

connected to a Criticool machine via 2 ports (E), allowing even temperature control of the 

floor. Fresh gas entered at the back of the chamber and exited at the front. 
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Figure 2. 2A: Illustration of the % area loss calculation of the left hemisphere using a 

scanned haematoxylin and eosin stained slide, using Image J. ‘R’ indicates the right side and 

‘L’ the left side of the brain. In this example, 60.7% area loss was seen on the affected side. 

2B: shows the same technique for calculation of area loss within the hippocampus. A line is 

manually drawn around the left and right hippocampus and area loss calculated using the 

same formula as described in Figure 2A. 
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Figure 3: Box plot with overlying scatter plot showing percentage area loss for surviving 

animals resuscitated in air (n=25) and 100% oxygen (n=35) for 30 min calculated for the 

whole hemisphere and hippocampus only. A Mann Whitney-U test showed no significant 

differences between the animals resuscitated in air and 100% oxygen. 
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Figure 4 Median (interquartile range) for time to rotate to 90° and 180° for postnatal day 14 

animals resuscitated in air or in 100% oxygen. The animals were allowed 3 attempts and the 

median was used for analysis. No statistical differences were seen between the two groups. 
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Table 1 Animal characteristics. Continuous variables are expressed as mean ± standard 

deviation. 


