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Abstract 

Determining whether associations between lifestyle behaviours and health outcomes 

are causal is difficult in observational data. However, as genetic variants associated with 

these behaviours are discovered, this will provide opportunities for testing causality using 

Mendelian randomization methods.  These use genetic variants as proxies for exposures to 

minimise biases associated with observational data, enabling stronger causal inference. 

Here we review the principles and main approaches for conducting Mendelian randomization 

studies, and discuss recent methodological developments for investigating more complex 

causal pathways. Mendelian randomization offers considerable promise for improving our 

understanding of the causal relationships between lifestyle behaviours and health outcomes, 

and its application will increase as more genetic variants robustly associated with 

behavioural phenotypes are identified. 
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Using Genetic Information to Infer Causality in Observational Data: 

Mendelian Randomization 

 

Genome-wide association studies (GWAS) are revealing genetic variants associated 

with phenotypes such as tobacco use [1-3], obesity [4] and educational attainment [5]. These 

findings have advanced our understanding of the neurobiological basis of these phenotypes 

[6], but also offer the opportunity to use this information to make causal inferences regarding 

their effects on a range of outcomes. Mendelian randomization (MR) is based on 

instrumental variable (IV) methods developed in the economics literature, and aims to 

minimise problems of measurement bias, confounding and reverse causality intrinsic to 

observational studies. IV analysis requires a variable that is a proxy or instrument for the 

exposure of interest, which must meet a number of criteria: 1) association with the exposure 

of interest; 2) no association with the outcome of interest, apart from via the exposure; 3) no 

association with confounders affecting the relationship under investigation; and, 4) unable to 

introduce potential confounding in to the relationship [7]. Given an appropriate instrument, 

confounders will be randomly distributed across the conditions of interest in the same way as 

a randomized trial – (see Figure 1). This is particularly important in observational studies; 

confounders may be difficult to adequately adjust for, and some may be impossible to 

measure or unknown [8]. An ideal instrument would be unrelated to measured or 

unmeasured confounders, known or unknown. 

 

Insert Figure 1 about here. 

 

Mendelian Randomization 

Mendelian randomization uses genetic variants as instruments for environmental 

exposures [9,10]. These can take the form of individual single nucleotide polymorphisms 

(SNPs), or polygenic risk scores, which must be robustly associated with the exposure of 

interest (e.g., smoking heaviness or alcohol use) (see Figure 2). The principle of MR relies 
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on the basic (but approximate) laws of Mendelian genetics (segregation and independent 

assortment). If these hold then, at a population level, genetic variants will not be associated 

with potential confounders [11,12]. The SNP or risk score must also not directly affect the 

outcome being investigated. Certain exposures, such as number of cigarettes or amount of 

alcohol consumed, allow for this assumption to be tested, as the effect of gene on the 

outcome can be assessed in those unexposed to the putative causal risk factor. For 

example, if a gene meant to be a proxy for number of cigarettes smoked has a relationship 

with an outcome in those who have never smoked, this suggests a direct effect of the gene. 

 

Insert Figure 2 about here. 

 

SNPs or risk scores have other potential benefits over observational studies. For 

example, genes act on exposures over a long period, and therefore better index long-term 

environmental exposure than self-report measures taken at a specific time point. Also, MR 

effectively rules out reverse causation: the outcome cannot affect genotype. Therefore, if 

specific genetic variants associated with environmental exposures are identified, it may be 

possible to use MR to explore the causal effects of those exposures. Where variants have 

been identified, MR studies have already been undertaken, for example looking at the 

effects of alcohol use [13,14] and tobacco use [15-18]. These have provided evidence that 

maternal alcohol drinking in pregnancy adversely impacts offspring educational outcomes 

[13], that alcohol consumption increases blood pressure and body mass index (BMI) [14], 

that smoking lowers BMI [15], and that maternal smoking in pregnancy reduces offspring 

birth weight [18]. 

MR can enable causal inference in two broad ways (See Figure 3). First, a direct 

association between a genetic instrument and the outcome of interest can provide evidence 

for the existence of a causal relationship between exposure and outcome. Second, the 

magnitude of the association between a genetic variant and the exposure, and between the 

genetic variant and outcome, can be used to estimate the magnitude of the causal effect of 
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the exposure on the outcome (using methods such as two stage least squares regression). 

As genotype will affect exposure over a lifetime, MR can in principle allow for more accurate 

estimation of the magnitude of a causal effect than a direct assessment taken at a single 

time point [19] although for the same reason it may over-estimate the likely magnitude of an 

intervention effect. For example, an intervention delivered in middle age will only partially 

reduce the lifetime exposure to a risk factor that is estimated from MR analyses. 

 

Insert Figure 3 about here. 

 

Two Sample Mendelian Randomization 

Commonly, the association between a genetic variant and the exposure, and between 

the genetic variant and the outcome, are estimated in the same sample. However, this may 

not always be possible if exposure and outcomes are not measured in the same samples, or 

if the exposure has only been measured in a subset of the total sample [20]. In two sample 

MR, the genotype-exposure and genotype-outcome associations are estimated in different 

samples and these estimates then combined to provide an estimate of the causal exposure-

outcome association [21]. As both of these parameters are estimates, the standard error of 

the exposure-outcome association needs to be adjusted using appropriate methods [20]. 

Two sample MR does not usually lead to a substantial loss of statistical power [21], so this 

type of design may be a more cost effective approach [20]. 

 

Two-Step Mendelian Randomization 

 Establishing that an association is causal is valuable in itself, but of potentially 

greater interest is establishing the mechanism through which this causal association 

operates.  It may be possible to investigate causal mechanisms between an exposure and 

an outcome using a two-step MR approach [22]. This type of analysis requires a genetic 

variant which associates with the exposure of interest and a separate genetic variant which 

associates with the mediating factor of interest. For example, there is growing interest in the 
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role of epigenetic mediators of environmental exposures, but epigenetic markers (as with 

any other biomarker) are vulnerable to confounding and reverse causality. Here, a genetic 

proxy for the exposure of interest is used to assess the causal relationship between the 

environmental exposure and a potential mediator such as methylation (step 1, see Figure 

4A). Next, a genetic proxy for the mediator (here, DNA methylation) is used to interrogate 

the causal relationship between the mediator and the outcome of interest (step 2, see Figure 

4B). This approach enables a triangulation of evidence to infer a mediating role for, in this 

case, methylation in the causal pathway between the environmental exposure and the 

outcome of interest. It can in principle be applied to other potential mediators (e.g., 

metabolite levels). 

 

Insert Figure 4 about here. 

 

Bidirectional and Network Mendelian Randomization 

 Early MR studies focused on a single direction of causality, such as the effects of 

alcohol consumption on cardiovascular risk [14], but in many cases the relationship may be 

bidirectional. For example, tobacco use has been shown to lower BMI [15], but BMI may also 

affect smoking behaviour if individuals smoke in order to control their weight. In cases such 

as this, where genetic instruments for both the exposure and the outcome are available, MR 

analysis may be performed in both directions. Bidirectional MR has been used previously to 

investigate the direction of causality between BMI and a number of other factors, including 

vitamin D and C-reactive protein levels [23,24]. A more complex problem arises when 

multiple phenotypes that may influence each other in a causal network are considered. 

Methods are currently being developed, using multiple genetic variants, which allow 

assessment of causal directions in pathways with correlated phenotypes [20, 25, 26]. 

 

Limitations to Mendelian Randomization 
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MR studies require much larger sample sizes than conventional exposure-outcome 

analyses. As a general rule, sample sizes for MR studies can be calculated by multiplying 

the required observational sample size by the inverse of the variance (R2 or square of the 

correlation coefficient) in the exposure of interest explained by the genetic instrument. For 

example, for a genetic variant explaining 1% of the variance in an exposure, the sample size 

would need to be 100 times greater than the sample size required to detect the true causal 

effect between the directly measured exposure and the outcome. Statistical code and online 

calculators are now available for determination of sample sizes required for MR studies for 

both continuous and categorical outcomes [27-29]. Whilst collaborative consortia (see Text 

Box 1) offer a potential solution to the issue of power in MR studies, combining phenotypic 

outcomes across many different studies can be challenging, particularly for behavioural 

exposures and outcomes. 

 

Insert Text Box 1 about here. 

 

It is also only possible to use MR to study the effects of exposures for which genetic 

variants have been identified. Whilst GWAS have been successful in identifying variants that 

influence a number of traits, there are still many exposures for which we do not yet have 

suitable instruments. In addition, genetic variants may be population-specific and not 

suitable for use in all ancestral groups. For example, a variant in the ALDH2 gene, which 

strongly influences alcohol consumption, is used in MR studies in East Asian populations, 

but occurs at too low a frequency for use in MR studies in European populations [30]. 

Critically, genetic variants in MR studies must be associated with the exposure of interest 

within the analysis sample and must show robust evidence for association with the same 

exposure in independent samples. Performing MR analyses using genetic instruments that 

have been discovered within the analysis sample but have not been independently 

replicated can lead to causal inference in the absence of true causal effects, because 

associations between genetic variants and exposures may just be chance findings. In 
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addition, as effect sizes between genetic variants and phenotypes are often inflated in 

discovery samples (also known as the Beavis effect or Winner’s Curse), performing MR 

analyses within discovery samples can result in biased causal effect sizes [31].  

Biased estimates of effect sizes may also be obtained if the measured exposure 

does not fully capture the causal exposure through which the genetic variant operates [31]. 

For example, a variant in the nicotinic receptor alpha-5 subunit protein, rs16969968, 

influences lifetime tobacco exposure, but this is not well captured by self-report measures of 

smoking (e.g., cigarettes per day). MR of lung cancer data using cigarettes per day as the 

intermediate variable indicates a causal odds ratio for lung cancer of 2,180 per pack of 

cigarettes smoked per day, compared to only 2.6 from observational analysis [32]. In 

contrast, using cotinine, a metabolite of nicotine and a more precise objective measure of 

tobacco exposure, produce effect sizes which are more consistent with observational 

findings [33]. In the absence of appropriate intermediate exposure measures, MR can still be 

used to infer causality, but it may not be possible to accurately estimate causal magnitudes 

of effect. Furthermore, MR studies can be informative about the effects of lifelong exposure 

to a risk factor, but are usually not appropriate for investigating the impact of short-term 

changes in risk factors on health outcomes. MR studies will also rarely provide information 

about the mechanisms underlying a causal relationship (although two-step MR can provide 

this). 

Whilst MR can minimise many of the biases associated with conventional 

epidemiological studies, there are ways in which MR can still be confounded. Spurious 

associations between genes and outcomes may arise through population stratification if 

samples are made up of populations of more than one ancestry, which have different allele 

frequencies and different levels of disease outcomes [19]. Therefore, care should be taken 

to identify and appropriately control for genetic ancestry. Confounding may also arise if the 

variant has pleiotropic effects which influence the outcome other than through the exposure 

of interest, or if the variant is in linkage disequilibrium with another genetic variant which also 

influences the outcome [20]. In such cases, one cannot be confident that any “causal” effect 
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observed operates through the exposure of interest. In some MR studies of lifestyle 

behaviours, it may be possible to perform a test of pleiotropy by investigating associations of 

the genetic variant with the outcome in individuals not exposed to the behaviour. This has 

been demonstrated in MR studies of alcohol use in East Asians, which have stratified 

analyses by sex. The alcohol-related variant influences blood pressure in males (who 

consume alcohol) but not in females (who tend not to consume alcohol in many East Asian 

cultures for social and historical reasons), indicating that the likely mechanism of the genetic 

effect on blood pressure is through alcohol consumption [34]. However, whilst stratifying on 

an exogenous variable such as sex, as described above, can be a useful tool in some MR 

studies, care must be taken not to reintroduce confounding through collider bias [35,36]. This 

can occur when MR analyses are stratified on the measured exposure of interest and can 

amplify or mask associations between the genetic variant and outcome within the exposure 

strata [37]. 

A further potential concern is the possibility of canalization, which is the process of 

developmental compensation to buffer against the effects of disruptive genetic or 

environmental influences during development [9]. If exposure to elevated levels of a risk 

factor during foetal development or post-natal growth results in tissue changes which 

compensate for this, the genetic variant will still associate with the risk factor of interest, but 

any potential effects on a disease outcome may be reduced. However, canalization is less 

problematic for exposures which tend to occur later in development, such as smoking and 

alcohol consumption [7]. 

There are a number of other statistical issues in relation to MR, particularly 

surrounding the use of two-stage instrumental variable analysis (e.g., weak instrument bias). 

These are beyond the scope of this review, but are discussed in detail elsewhere [38-40]. 

 

Conclusions 

 Inferring causation from observational data is notoriously problematic. Although MR 

relies on certain assumptions that may not always apply, it nevertheless has the potential to 
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dramatically advance our understanding of the causal role of modifiable environmental 

exposures on a variety of outcomes. As genome-wide association studies continue to reveal 

variants associated with a range of behavioural phenotypes, the applications of MR will 

grow. In particular, risk scores that capture a substantial proportion of the phenotypic 

variation in behavioural outcomes will enable us to apply MR more extensively, by providing 

stronger instruments. Genome-wide association studies have enjoyed substantial success in 

many areas, and are beginning to realise similar success for other phenotypes (e.g., 

psychiatric outcomes such as schizophrenia) where understanding the causal role of these 

phenotypes will be of considerable scientific and societal importance. 
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Figure 1. Randomization by Intervention and Genetics. 
 

 
 
 
Figure from Davey Smith and Ebrahim, 2005 [10]. Reproduced with permission. 
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Figure 2. Principles of Mendelian Randomization. 
 

 
 
A directed acyclic graph illustrating the principles of Mendelian randomization is shown. 
Genotype is associated with the risk factor, but not the putative outcome or potential 
confounders. 
  

instrument 

(genetic variant) 
(modifiable) risk factor outcome 

confounders 
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Figure 3. Applications of Mendelian Randomization 
 

 
 
The direct association between genetic variant and outcome (A) provides evidence for the 
existence of a causal relationship. The magnitude of the causal association between 
measured exposure and outcome (C) is calculated from the association between genetic 
variant and outcome (A) and the association between genetic variant and measured 
exposure (B).  
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Figure 4. Two-Step Epigenetic Mendelian Randomization 

 

Dashed lines represent causal associations investigated at each step. In Step 1, a genetic 

variant associated with the exposure is used to investigate whether the exposure is causally 

associated with DNA methylation at a particular locus. In Step 2, a genetic variant 

associated with DNA methylation at the locus of interest is used to investigate whether DNA 

methylation is causally associated with the outcome. Diagram adapted from Relton and 

Davey Smith, 2012 [22].  Reproduced with permission.   
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Text Box 1. The CARTA Consortium 

The consortium for Causal Analysis Research in Tobacco and Alcohol (CARTA; 

http://www.bris.ac.uk/expsych/research/brain/targ/research/collaborations/carta/) was 

established at the University of Bristol to investigate the causal effects of tobacco use, 

alcohol use and other lifestyle factors on health and sociodemographic outcomes using MR. 

CARTA includes over 30 studies, spanning nine countries, with a total sample size in excess 

of 150,000 – given the relatively small effects that individual genetic variants exert on 

exposures, MR generally requires very large sample sizes. CARTA has completed five initial 

analyses, investigating the impact of cigarette smoking on depression and anxiety, regional 

adiposity, blood pressure and heart rate, serum vitamin D levels and income. The genetic 

variant used as a proxy for this exposure was rs16969968, a genetic variant which is 

robustly associated with smoking heaviness in smokers [1-3,32,41,42]. Results of these 

initial analyses are currently in preparation. 
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