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The	molecular	clock	is	the	only	viable	means	of	establishing	an	accurate	timescale	for	Life	on	Earth	

yet	it	remains	reliant	on	a	capricious	fossil	record	for	calibration.	‘Tip-dating’	promises	a	

conceptual	advance,	integrating	fossil	species	among	their	living	relatives	using	molecular	and	

morphological	datasets	and	evolutionary	models.	Fossil	species	of	known	age	establish	calibration	

directly	and	their	phylogenetic	uncertainty	is	accommodated	through	the	coestimation	of	time	and	

topology.	However,	challenges	remain	including:	a	dearth	of	effective	models	of	morphological	

evolution,	rate	correlation,	the	non-random	nature	of	missing	characters	in	fossil	data	and,	most	

importantly,	accommodating	uncertainty	in	fossil	age.	We	show	uncertainty	in	fossil-dating	

propagates	to	divergence	time	estimates,	yielding	estimates	that	are	older	and	less	precise	than	

those	based	on	traditional	node	calibration.	Ultimately,	node	and	tip	calibrations	are	not	mutually	

incompatible	and	may	be	integrated	to	achieve	more	accurate	and	precise	evolutionary	timescales	

	

Establishing	an	evolutionary	timescale	for	Life	on	Earth	has	long	been	a	fundamental	goal	of	

evolutionary	biology,	providing	the	framework	for	inferring	modes	and	rates	of	molecular	and	

phenotypic	evolution,	as	well	as	a	means	of	associating	intrinsic	evolutionary	change	to	extrinsic	

causal	factors.	This	endeavour	was	originally	the	domain	of	palaeontologists,	but	it	is	now	widely	

accepted	that	fossil	data	alone	are	insufficient	because	of	the	incompleteness	of	the	fossil	record	[1].	

Molecular	clock	dating	methodology	can	be	used	to	establish	an	evolutionary	timescale	by	

calculating	the	molecular	distance	between	species,	and	estimating	absolute	molecular	evolutionary	

rates	based	on	the	oldest	fossil	evidence	for	the	antiquity	of	the	living	lineages	[2].	This	powerful	

combination	of	molecular	and	palaeontological	data	sees	through	the	gaps	in	the	fossil	record,	

providing	the	only	viable	means	of	establishing	an	accurate	evolutionary	timescale.		

	

Molecular	clock	methodology	has	been	developed	to	accommodate	tree-wide	substitution	rate	

heterogeneity	[3-6]	and	precision	has	increased	with	the	availability	of	genome-scale	datasets	(i.e.	an	



effectively	infinite	amount	of	sequence	data)	[7].	However,	further	increases	in	accuracy	and	

precision	may	only	be	possible	with	a	concomitant	increase	in	the	precision	of	calibrations	[5,	8-10].	

Hence,	recent	years	have	witnessed	attempts	to	constrain	the	uncertainties	associated	with	fossil-

based	calibrations,	including	phylogenetic	position,	age	interpretation,	and	the	degree	to	which	

calibrating	fossils	approximate	the	true	time	of	divergence	for	the	nodes	that	they	calibrate	[11-13].	

Controversially,	this	requires	not	just	the	oldest	fossil	records	of	extant	clades	on	which	minimum	

age	constraints	are	established,	but	also	interprets	the	absence	of	older	fossils	attributable	to	the	

clade	to	establish	maximum	age	constraints	[11,	12].	Or	else	simple	mathematical	functions	are	

employed	to	express,	probabilistically,	a	visceral	perception	of	the	degree	to	which	fossil	minima	

reflect	the	time	of	lineage	divergence	[11,	14].	Or	fossil	occurrence	data	can	be	modelled	statistically,	

with	or	without	reference	to	a	phylogeny,	to	determine	the	extent	of	the	temporal	gap	between	the	

age	of	a	clade	and	its	oldest	fossils	[15-17].	Attempts	to	constrain	uncertainty	with	fossil	calibrations	

must	be	welcomed,	but	they	have	hardly	led	to	increased	precision	in	divergence	time	estimation,	

not	least	since	node	calibrations	require	complex	and	often	ad	hoc	interpretations	of	fossil	and	

phylogenetic	evidence	to	establish	probabilistic	calibrations,	which	are	viewed	by	some	as	a	grossly	

over-interpreted	yet	inadequate	solution	to	a	complex	problem	[18]	see	Box	1.		

	

The	recent	introduction	of	fossil	tip	calibration	[19,	20],	also	known	as	‘tip-dating’	or	‘Total	Evidence	

Dating’	has,	therefore,	enjoyed	an	enthusiastic	welcome.	This	method	requires	both	molecular	

sequence	and	morphological	character	datasets	that	are	analysed	using	molecular	and	morphological	

models	of	evolution,	but	its	chief	innovation	is	that	it	allows	fossil	species	to	be	incorporated	into	

divergence	time	analyses	on	a	par	with	their	living	relatives.	This	calibration	methodology	is	

analogous	to	the	manner	in	which	ancient	DNA	or	archived	viral	sequences	of	known	age	are	

employed	to	infer	rates	of	evolution	among	extant	species	or	strains	[21].	In	this	case,	fossils	of	

known	age	calibrate	the	rate	of	evolution	based	on	their	phylogenetic	position,	branch	length,	and	an	

inferred	rate	of	evolution.	Phylogenetic	topology	may	be	estimated	independently	or	co-estimated	

with	the	divergence	time	analysis	and	the	rate	of	evolution	maybe	based	on	independent	or	

correlated	rates	of	morphological	and	molecular	evolution.	

	

Thus,	tip-calibration	obviates	many	of	the	controversies	associated	with	node-calibration.	First,	fossil	

species	inform	the	evolutionary	rate	without	recourse	to	ad	hoc	assumptions	about	the	degree	to	

which	these	species	approximating	the	age	of	a	living	clade.	Second,	since	time	and	topology	can	be	

co-estimated,	it	becomes	possible	to	include	older,	temporally	more-informative	fossils	that	could	

not	be	used	for	node-calibration	because	their	phylogenetic	position	is	uncertain.	Third,	since	



calibrations	no	longer	serve	as	prior	estimates	of	clade	age,	tip-calibrations	can	be	drawn	from	any	

and	all	fossil	species,	removing	restrictions	of	the	amount	paleontological	data	that	can	be	included	

in	divergence	time	studies.	Finally,	tip	calibrations	summarise	the	age	of	a	single	species	only,	

avoiding	the	over-interpretation	of	negative	evidence	in	establishing	maximum	constraints.	

	

Tip-calibration	was	originally	introduced	based	on	empirical	divergence	time	analyses	of	insects	[20]	

and	amphibians	[19],	and	it	has	since	been	applied	to	mammals	[22-27],	teleost	fishes	[28-32],	

arachnid	spiders	[33,	34],	flies	[35],	and	plants	[36].	The	approach	has	been	extended	to	analyses	of	

entirely	extinct	clades,	relying	exclusively	on	morphological	data	[37].	While	tip-calibration	was	

initially	advocated	on	the	basis	that	it	was	less	sensitive	to	root	time	prior	densities	and	yielded	more	

precise	divergence	time	estimates	in	comparison	to	node-calibration	[20],	subsequent	studies	have	

shown	the	reverse	to	be	true	[31,	33].	Furthermore,	tip-calibration	has	proven	consistently	to	yield	

older	age	estimates	than	traditional	node-calibration	[20,	22-25,	31,	33,	34].	Thus,	while	it	is	clear	

that	in	incorporating	all	data	pertinent	to	divergence	time	estimation,	tip-calibration	is	the	most	

promising	approach	for	establishing	accurate	and	precise	evolutionary	timescales,	at	present	it	

appears	to	be	less	accurate	than	conventional	node	calibration	methods.	Below	we	consider	the	

factors	biasing	current	methods	employing	tip-calibration	and	suggest	ways	in	which	they	can	be	

developed	to	obtain	more	accurate	divergence	time	estimates.	

	

	

Models	of	morphological	character	evolution	and	the	incompleteness	of	fossils	

While	there	are	a	number	of	nested	models	of	molecular	substitution,	morphological	models	have	

not	enjoyed	much	development,	with	only	a	handful	proposed	to	date	and	even	fewer	actually	

implemented	in	popular	software	packages	[38-43].	The	Mk	model	of	discrete	character	evolution	

has	been	utilised	in	all	published	tip-calibrated	analyses	to	date	[44].	The	Mk	model	is	a	k	states	

generalisation	of	the	JC69	model	of	molecular	substitution	and,	inevitably,	it	possesses	many	

simplifying	assumptions	that	may	not	hold	true	for	morphology	[45].	Independent	evolution	of	sites	

and	equal	equilibrium	frequencies	are	two	factors	that	are	particularly	difficult	to	justify	for	

morphological	evolution.	Alternative	models	utilising	continuous	characters	[46]	or	the	threshold	

model	[47,	48]	are	appealing	alternatives	but	they	have	yet	to	be	implemented.	

	

The	inherently	incomplete	nature	of	fossil	phenotypic	data,	in	comparison	to	living	species,	is	

undoubtedly	a	challenge	to	tip-calibrated	divergence	time	analyses.	The	impact	of	missing	sequence	

data	on	Bayesian	phylogenetic	topology	estimation	has	been	investigated,	with	the	majority	of	



studies	indicating	that	it	is	unlikely	to	have	a	strong	negative	impact	[49-53],	except	where	there	is	a	

comparatively	small	number	(not	proportion)	of	non-missing	sites	[50].	This	is	clearly	a	problem	for	

topology	estimation	based	on	phenotype	where	datasets	are	generally	very	small	in	comparison	to	

molecular	sequence	alignments.	This	issue	is	exacerbated	by	the	decidedly	non-random	nature	of	

missing	phenotype	data	in	fossil	species	[54,	55].	Fossil	data	are	invariably	biased	towards	the	

preservation	of	phenotypic	characters	that	are	manifest	in	or	as	mineralised	skeletal	structures.	Even	

where	soft	tissue	characters	are	exceptionally	preserved,	some	groups	exhibit	a	phenomenon	coined	

“stem-ward	slippage”	in	which	features	are	lost	to	decay	in	reverse	phylogenetic	order	making	their	

fossils	appear	artefactually	to	belong	to	more	primitive	evolutionary	grades	[54,	55].	While	the	

impact	of	these	factors	on	topology	estimation	has	been	considered,	it	has	not	been	investigated	

explicitly	in	the	context	of	time	and	rate	estimation	[54].		

	

For	tip-calibrated	divergence	time	analyses,	the	likely	impact	is	two-fold:	calibrating	fossil	species	will	

be	assigned	to	erroneously	early-branching	positions	with	the	phylogeny,	and	the	branch	lengths	will	

be	underestimated,	both	due	to	their	lack	of	shared-derived	and	autapomorphic	soft	tissue	

characters,	missing	artefactually	as	a	consequence	of	non-random	decay	patterns.	Both	of	these	

phenomena	will	influence	rate	estimates	and,	therefore,	divergence	time	estimates.	To	minimise	the	

negative	influence	of	missing	data,	sub-sampling	approaches	have	been	proposed,	allowing	the	use	

of	only	the	most	completely	coded	taxa	or	characters.	While	it	has	been	argued	that	such	approaches	

have	minimal	impact	on	topology	and	age	estimation	[19,	20],	this	is	unlikely	to	hold	true	for	non-

random	missing	data.	Alternatively,	a	model	of	fossilisation	could	be	employed	that	accounts	for	the	

directed	loss	of	characters	during	preservation,	but	modelling	this	process	may	be	entirely	unrealistic	

given	that	fossilization	potential	varies	with	environment	and	taxonomic	group.		

	

Dating	tips	and	calibration	strategies	

Almost	all	total-evidence	dating	studies	conducted	so	far	have	employed	point	age-estimates	for	the	

fossil	species	used	as	tip-calibrations,	assuming	implicitly	that	the	age	of	the	fossil	is	known	without	

error.	This	has	been	done	on	the	sometimes	explicit	justification	that	the	errors	associated	with	the	

dating	of	fossils	are	negligible	[20,	34].	This	approach	is	reminiscent	of	the	point	age	estimates	for	

node	calibrations,	employed	when	divergence	time	estimation	was	in	its	infancy,	and	none	of	the	

lessons	learned	from	the	development	of	node-calibration	strategies	[11,	12,	56]	have	been	

transferred	to	studies	that	employ	fossil	tip-calibration.	It	is	well	established	that	the	age	of	a	fossil	

can	rarely,	if	ever,	be	known	without	error	and	this	uncertainty	must	be	accommodated	regardless	of	

whether	the	fossil	is	used	in	the	construction	of	a	node	or	tip-calibration.	The	age	of	any	fossil	



occurrence	can	be	constrained	only	to	within	an	envelope	of	minimum-maximum	bounds,	the	span	

of	which	varies	depending	on	the	attendant	evidential	context.	Node-calibrations	are	based	

principally	on	the	earliest	secure	fossil	record	of	a	clade	[Box	1]	and,	thus,	it	is	necessary	to	

determine	only	the	minimum	age	interpretation	of	the	calibrating	fossil	[56,	57].	At	the	least,	the	age	

of	a	tip-calibrating	fossil	requires	establishing	both	its	minimum	and	maximum	age	interpretations.		

For	both	the	minimum	and	maximum	age	interpretations,	this	invariably	entails	a	tortuous	daisy-

chain	of	litho-,	bio-,	chemo-,	cyclo,	and	/or	magneto-	stratigraphic	correlations	between	the	site	of	

the	fossil	occurrence	and	another	in	which	a	geochronological	absolute	date	has	been	established,	at	

each	step	taking	the	minimum	or	maximum	relative	age	interpretation,	as	appropriate,	leading	to	

iteratively	increasing	age	uncertainty;	see	Box	2	for	a	worked	example.	It	is	likely	that	in	many	

instances,	this	uncertainty	will	exceed	that	associated	with	local	node-calibrations,	though	tip	

calibrations	may	prove	more	palatable	since	they	rely	on	fewer	assumptions.		

	

Borrowing	from	practice	in	establishing	node-calibrations,	the	age	uncertainty	associated	with	a	

fossil	species	can	be	modelled	as	a	uniform	distribution	if	there	is	equal	probability	of	the	age	of	the	

fossil,	per	unit	time,	between	minimum-maximum	age	interpretations.	Or	else,	the	variety	of	

parametric	distributions	already	implemented	for	node	calibrations	may	be	redeployed	in	instances	

where	there	is	justification	for	focussing	uncertainty	closer	to	the	minimum,	maximum	or	mid	range	

between	age	bounds.	The	range	of	available	distributions	and	instances	in	which	they	may	be	

deployed,	are	discussed	in	Box	3.		

	

Tip-calibrations	present	further	peculiarities	that	should	also	be	considered	in	attempting	to	

integrate	uncertainty	associated	with	their	age.	For	example,	many	fossil	species	employed	in	the	

node-calibration	of	divergence	time	analyses	are	not	single	occurrences	but,	rather,	occur	through	a	

stratigraphic	age	range.	This	is	of	little	relevance	to	node-calibration	used	to	establish	a	clade	age	

minimum,	however,	in	establishing	a	tip-calibration,	this	is	much	more	germane.	Given	that,	by	

definition,	such	species	will	exhibit	little	or	no	morphological	variation,	it	seems	appropriate	that	this	

age	range	should	be	incorporated	into	the	age	uncertainty	associated	with	the	fossil	(Box	4	expands	

upon	this	idea).	Ultimately,	it	may	prove	useful	to	integrate	this	information,	in	the	form	of	effective	

stasis	in	the	set	of	traits	analysed,	into	the	inference	of	rate	variation	across	the	tree.	

	

Since	tip-calibration	and	total	evidence	have	been	presented	as	a	means	of	achieving	greater	

precision	in	divergence	time	estimation	[20],	it	is	pertinent	to	consider	whether	this	can	be	sustained	

while	integrating	the	uncertainty	associated	with	the	age	of	fossil	tips.	To	this	end,	we	reanalysed	the	



dataset	from	the	seminal	total-evidence	study	[20],	in	which	tip-calibrations	were	utilised	to	estimate	

divergence	times	for	Hymenoptera.	Ronquist	and	colleagues	were	focussed	on	the	theoretical	and	

practical	introduction	of	the	method	and	they	made	no	account	of	the	uncertainty	associated	with	

the	fossils	used	in	tip-calibration.	We	reproduced	the	calibrations	for	each	fossil	tip,	accommodating	

uncertainty	in	the	age	of	each	fossil	species	using	probabilistic	distributions	(see	Box	2.	for	an	

example	of	this	process).	In	contrast	to	previous	assertions,	that	the	uncertainties	associated	with	tip	

ages	would	be	negligible	[20,	34],	our	attempts	to	capture	a	realistic	estimate	of	the	associated	

uncertainty	results	in	tip-calibrations	that	span	tens	of	millions	of	years	–	in	contrast	to	the	errorless	

estimates	of	age	estimates	used	by	the	original	authors.	To	determine	the	performance	of	node-

versus	tip-calibration,	we	also	constructed	node-calibrations	following	established	best	practise	[12]	

(see	S2	for	details).	On	average,	recalibrated	node	priors	were	23	Myr	wider	than	the	original	

calibrations.	In	both	tip-	and	node-calibrations,	uncertainty	was	modelled	as	a	uniform	distribution.	

Analyses	were	performed	in	MrBayes	3.2.2	[42]	in	broadly	the	same	manner	as	the	original	article	

(See	supplementary	materials	S1	for	details).	Precision	was	measured	as	the	width	of	the	95%	

confidence	interval	(CI)	for	posterior	estimates	of	node	age	for	fourteen	key	in-group	clades	that	

could	be	resolved.	

	

Our	analyses	show	that	when	fossil	age	uncertainty	is	properly	accounted	for,	tip-calibrated	analyses	

do	not	necessarily	yield	divergence	time	estimates	that	are	more	precise	than	those	derived	using	

node-calibration.	Furthermore,	for	27%	of	fossil	taxa,	the	95%	HPD	posterior	estimates	of	fossil	tip	

age	did	not	encompass	the	original	fixed	tip-calibration,	demonstrating	the	importance	of	

appropriate	prior	construction.	Divergence	time	estimates	based	on	node-calibration	are	the	most	

precise	in	all	but	four	of	the	component	clades	(Figure	1.).	In	line	with	almost	all	previous	total-

evidence	studies,	tip-calibration	yields	clade	ages	that	are	older,	in	general,	than	like-for-like	

estimates	based	on	node-calibration;	the	only	exceptions	being	divergences	outside	Hymenoptera.	

These	deeper	divergence	times	are	most	prominent	in	Vespina,	where	it	appears	that	relaxing	the	

constraint	on	the	age	of	Mesorussus,	(which	was	assigned	to	Vespina	in	both	our	analysis	and	the	

original	analysis	[20])	from	94	Ma	to	93.7-140.3	Ma	leads	to	the	older	age	estimates.		

	

While	we	were	able	to	repeat	the	results	of	the	original	analysis	using	the	original	calibrations,	we	

were	unable	to	reproduce	the	topological	resolution	and/or	monophyly	of	Xyelidae,	Pamphilioidea,	

and	the	placement	of	fossil	taxa	Palaeathalia,	Cleistogaster,	and	Prosyntexis	when	employing	our	

revised	tip-calibrations.	Since	the	only	variable	between	our	analyses	is	the	method	of	calibration	

construction,	it	appears	that	the	more	realistic	age-uncertainty	associated	with	the	fossils	in	our	



revised	tip-calibrations	has	impacted	on	topology	estimation	as	part	of	the	co-estimation	of	topology	

and	time.	Thus,	by	implication,	accommodating	the	realistic	age	uncertainty	associated	with	fossil	

tip-calibrations	also	impacts	rate	and	clade	age	estimates	indirectly	by	contributing	to	topology	

estimation.		

	

Claims	of	the	superiority	of	tip-calibration	over	node-calibration	appear	unfounded	when	fossil	age	

uncertainty	is	accommodated	equally.	Furthermore,	it	is	not	entirely	clear	that	node	calibrations	are	

redundant	in	tip-calibration	studies	since,	logically,	they	can	still	serve	their	purpose	of	constraining	

node	age	estimates	and	rate	variation.	One	way	to	assess	whether	they	are	still	useful	in	this	role	is	

in	comparing	traditional	node	calibrations	and	the	posterior	node-age	estimates	based	on	analyses	

employing	tip-calibrations.		We	did	this	for	the	nine	nodes	for	which	we	have	constructed	

calibrations.	The	results	(Figure	2)	show	that	while	all	of	the	node	age	estimates	derived	from	tip-

calibration	are	old	relative	to	the	node	calibrations,	four	fall	fully	outside	these	node	age	constraints.	

It	could	be	argued	that	this	demonstrates	the	fallacy	of	fossil-based	maximum	age	constraint,	

however,	two	of	the	node	age	estimates	include	age	ranges	that	are	younger	than	the	minimum	age	

constraints	based	on	the	empirical	palaeontologial	evidence.	Evidently,	there	remains	a	role	for	node	

age	constraints,	even	in	tip	calibration	divergence	time	analyses.		

	

Total	Evidence	Dating	-	less	than	the	sum	of	its	parts?	

While	total	evidence	dating	has	been	presented	as	an	alternative	approach	to	conventional	node-

calibrated	molecular	clocks,	this	is	a	false	dichotomy.	Total-Evidence	Dating	is	a	particular	

combination	of	approaches	that	are	neither	inextricably	linked,	nor	mutually	exclusive	from	node-

calibrated	molecular	clock	analysis.	These	include:	(i)	the	relaxed	morphological	clock,	(ii)	tip-

calibration,	and	(iii)	co-estimation	of	time	and	topology.	In	practise,	these	methods	can	and	have	

been	deployed	in	isolation	in	augmenting	conventional	molecular	clock	analyses.	For	example,	

Schrago	and	colleagues	[23]	divergence	time	study	of	New	World	primates	followed	a	two-step	

protocol,	using	the	posterior	age	estimates	from	a	conventional	molecular	clock	analysis	of	living	

species	as	time-priors	on	node	ages	in	a	morphological	clock	analysis	including	both	living	and	fossil	

species.	At	the	least,	this	approach	obviates	the	problematic	assumption	that	molecular	and	

morphological	data	co-vary,	following	a	single	rate	model.	Lee	et	al.	[58]	co-estimated	time	and	

topology	using	dated	tips	and	a	morphological	clock,	eschewing	molecular	data	altogether,	in	their	

analysis	of	body	size	evolution	through	the	dinosaur-bird	evolutionary	transition.	This	approach	will	

surely	be	adopted	widely	as	palaeontologists	seek	to	obtain	clade	ages,	rather	than	minimum	ages,	

for	entirely	extinct	clades.	However,	this	enthusiasm	may	be	short	lived	given	that	tip-calibration	



approaches	have	consistently	yielded	older	clade	age	estimates	than	conventional	molecular	clock	

studies	–	against	which,	palaeontologists	have	a	long	tradition	of	objecting	violently	[59].		Combining	

ancient	DNA	and	morphological	data	is	another	possibility	afforded	by	tip-calibration,	as	has	been	

applied	to	studying	Pantherhine	phylogeny	[24].	This	combination	of	ancient	morphology	and	DNA	

may	facilitate	more	accurate	estimates	of	evolutionary	rate.	

	

While	there	has	been	enthusiasm	in	the	application	of	the	total	evidence	approach,	not	least	since	it	

provides	a	platform	for	the	integration	of	so	many	disparate	sources	of	uncertainty,	it	is	arguable	

that	in	so	doing	this	approach	serves	as	a	black	box	that	disengages	the	user	from	the	assumptions	

underpinning	the	analysis,	many	of	which	are	very	difficult	to	justify.	One	of	the	most	problematic,	

potentially,	is	the	co-estimation	of	time	and	topology,	which,	as	we	have	demonstrated,	allows	fossil	

ages	to	constrain	their	phylogenetic	position	and,	therefore,	impact	the	estimation	of	rates	and	

dates.	This	follows	the	common	sense	expectation	that	the	age	of	a	fossil	species	must	reflect	their	

phylogenetic	position.	Indeed,	phylogeny	estimation	integrating	the	relative	stratigraphic	age	of	

fossil	species	has	a	long	tradition	in	palaeontology,	but	it	has	been	much	debated	[60-64]	and	

generally	abandoned	in	favour	of	phylogenetics	based	on	phenotype,	perhaps	refined	by	

stratigraphy,	except	in	groups	with	exceptionally	rich	fossil	records	that	are	rarely	if	ever	the	focus	of	

divergence	time	studies	[65].	Though	there	is	a	broad	correlation	between	clade	age	and	

phylogenetic	branching	order	[66]	this	relationship	breaks	down	as	fossil	taxon	sampling	decreases	

[67].	It	is	complicated	further	by	secular	biases	in	the	rock	record	which	serve	to	telescope	

temporally	distinct	fossil	species	originations	and	extinctions	[68]	and	in	the	differential	preservation	

of	fossil	groups	and	the	environments	in	which	they	lived	[69].	Thus,	there	appears	little	justification	

for	the	co-estimation	of	time	and	topology	where	fossil	ages	contribute	to	their	phylogenetic	

position.	We	strongly	advocate	the	prior	analysis	of	topology	before	divergence	time	estimation.	It	is	

unfortunate	that	this	approach	precludes	the	integration	of	phylogenetic	uncertainty	into	divergence	

time	estimation,	but	resolving	phylogenetic	uncertainty	using	tip	age	is	not	viable	using	current	

methods.		

	

The	majority	of	TED	analyses	model	branch	rates	as	linked	across	morphological	and	molecular	

partitions	(i.e.	the	application	of	rate	multipliers	to	describe	inter-partition	rate	heterogeneity	[70-

72]).	The	suitability	of	this	assumption	for	partitioned	molecular	data	alone	has	been	investigated,	

and	partition-specific	clocks	developed	for	when	this	assumption	is	not	met	[70,	73].	However,	the	

effect	of	morphological	and	molecular	partition-specific	clocks	has	barely	been	considered	[19,	70,	

74],	and	most	studies	employ	a	single,	partition-linked	clock	despite	the	fact	that	a	strong	co-varying	



relationship	between	molecular	and	morphological	rates	has	never	been	demonstrated	[75-77].	

Morphological	rate	heterogeneity	has	long	been	considered	likely	to	significantly	dwarf	its	molecular	

counterpart,	suggesting	that	the	assumption	of	phenotypic	and	molecular	rate	correlation	is	

unjustified	[78,	79].	Molecular	rates	are	interpreted	as	genome-wide	measures	of	the	number	of	

substitutions	accumulated	per	time	unit,	while	morphological	rates	reflect	only	those	aspects	of	the	

genome	that	specify	the	phenotypic	traits	analysed,	further	diminishing	any	expectation	of	

covariance	between	molecular	and	morphological	evolutionary	rates	[75,	80].	In	this	light,	it	is	

perhaps	unsurprising	that	unlinked	partition-specific	clocks	have	been	found	to	be	better-fitting	than	

a	single	linked	clock	for	mixed	data	analyses	[81].	

	

While	node	and	tip-based	calibration	have	been	presented	as	competing	approaches,	they	are	not	

mutually	exclusive.		Indeed,	some	temporal	constraints	on	clade	age	are	better	suited	to	being	

implemented	as	node-calibrations.	This	is	particularly	true	of	biogeographic	calibrations	where,	

based	on	the	modern	and	ancient	biogeographic	distributions	of	evolutionary	lineages,	it	is	

acceptable	to	assume	that	a	dateable	vicariance	event,	such	as	continental	fragmentation,	is	causal	

to	lineage	divergence.	Similarly,	some	fossil-evidence	is	better	reflected	as	node-age	calibrations,	

rather	than	through	including	component	fossil	species	as	tip-calibrations.	Node	and	tip-calibrations	

have	already	been	employed	together	to	calibrate	interior	nodes	of	the	out-group,	while	allowing	for	

an	unconstrained	in-group	topology,	or	as	part	of	a	highly	constrained	topology	in	which	fossil	taxa	

are	assigned	to	predetermined	clades	[20,	82].	However,	this	must	be	extended	to	allow	node-

calibrations	throughout	the	tree.	This	approach	requires	a	fixed	topology	(or	at	least	backbone	

constraints	compatible	with	calibrated	nodes)	and,	thus,	precludes	the	possibility	to	co-estimating	

time	and	topology	but,	as	we	have	argued,	this	may	not	be	a	material	loss.		Node	calibrations	may	

serve	to	mitigate	against	the	propensity	for	tip-calibration-based	studies	to	yield	unacceptably	

ancient	divergence	dates,	since	it	places	additional	constraints	on	the	age	of	internal	nodes	of	the	

tree,	providing	local	checks	on	branch	length	and	rate	variation.	

	

Finally,	it	is	likely	that	the	mismatch	between	divergence	time	estimates	based	on	node	and	tip-

calibration	strategies	is	based	at	least	in	part	in	the	shortcomings	of	the	Mk	model	in	explaining	the	

phenotypic	data	commonly	used	in	tip-calibration	studies.	The	Mk	model	fails	to	account	for	

expected	characteristics	of	cladistic	data,	including	the	covariation	of	characters	that	are	biologically	

linked,	and	logically	linked	through	character	design.	Doubtless,	the	excitement	surrounding	the	

combined	use	of	morphological	and	molecular	data	for	divergence	time	analysis	will	lead	to	the	

development	of	this	and	other	models	of	evolution.	However,	it	may	also	be	appropriate	to	consider	



different	approaches	to	characterising	phenotype,	such	as	through	the	kinds	of	continuous	variable	

characters	obtained	through	morphometry	of	features	such	as	skull	suture	patterns,	tooth	shape,	or	

the	dimensions	of	limb	bones.	The	stochastic	variation	of	such	data	is	more	similar	to	the	variation	

seen	in	molecular	sequence	alignments	and,	as	such,	may	be	more	readily	modelled	and	better	

suited	to	combined	data	divergence	time	analysis.	

	

Conclusions	

The	advances	inherent	in	Total	Evidence	Dating	provide	an	excellent	platform	for	the	further	

development	of	methods	for	divergence	time	analysis.	However,	many	aspects	of	the	principal	

evolutionary	model	for	phenotypic	data	currently	employed	are	violated	by	the	evolutionary	process	

it	attempts	to	encapsulate.	The	extent	of	these	problems	is	so	great	that	divergence	time	estimates	

derived	using	tip-calibration	cannot	enjoy	the	same	confidence	as	conventional	node-calibrated	

molecular	clock	studies.	However,	with	the	development	of	evolutionary	models,	protocols	for	dating	

fossil	species	and	dealing	with	missing	data,	Total	Evidence	Dating	encompasses	a	variety	of	powerful	

tools,	the	combination	of	which	can	be	chosen	to	best	test	the	hypothesis	at	hand.	It	also	provides	a	

viable	framework	for	the	best	and	greatest	use	of	palaeontological	data	that	may	serve	as	a	nexus	of	

the	unification	of	palaeontological	and	molecular	approaches	to	establishing	evolutionary	timescales.		

	

	

Figure	1:	A	dated	phylogeny	of	Hymenoptera	produced	using	node-calibrations.	Node	bars	represent	

95%	highest	posterior	density	(HPD)	for	node	ages	estimated	with	either	node-calibration	or	total-

evidence	dating	(blue	and	red	respectively).	The	dotted	lines	join	HPD	bars	to	the	node	for	which	

they	represent	age	estimate	confidence	and	do	not	represent	an	extension	of	the	confidence	

interval.	

	

Figure	2:	Comparison	between	marginal	posterior	distributions	on	9	node	ages	estimated	with	TED	

(blue),	and	prior	clade-age	constraints	employed	for	node-calibrated	analysis	of	the	same	data	(red).	

The	calibrations	for	node-calibrated	analysis	encapsulate	the	fossil	evidence	for	the	possible	age	of	

each	clade.	A	lack	of	overlap	at	any	node	implies	that	there	is	discordance	between	the	TED	induced	

prior	on	that	node	and	the	fossil	record.	Discordance	between	these	two	distributions	demonstrates	

that	TED	may	lead	to	empirically	unsupportable	clade	age	estimates.	

	

	

BOX	1:	Node	Calibration	



	

The	development	of	Total	Evidence	Dating	has	been	shaped	by	a	desire	to	overcome	perceived	

shortcomings	in	node-calibration,	the	traditional	means	by	which	molecular	clock	analyses	have	been	

calibrated	to	absolute	time.	Node	calibrations	are	established	based	on	the	oldest	evidence	for	the	

existence	of	a	clade	and,	most	commonly,	this	is	evidenced	by	the	oldest	fossil	record	of	the	clade.	

Thus,	node	calibrations	require	a	prior	phylogenetic	hypothesis.	This	establishes	a	minimum	age	for	

the	clades,	but	this	must	be	complemented	by	a	maximum	age	constraint.	Deriving	a	maximum	

bound	is	more	difficult	to	justify	since	it	must,	by	necessity,	rely	on	negative	evidence.	There	are	

many	methods	for	establishing	maxima,	including	birth-death	models	[17],	and	statistical	analysis	of	

the	stratigraphic	distribution	of	fossils	[83].	However,	most	commonly,	maxima	are	established	using	

taphonomic	controls	from	the	existence	of	outgroup	taxa	to	interpret	evidence	of	absence	of	ingroup	

taxa	[84].	It	is	also	necessary	to	establish	the	prior	probability	of	the	time	of	divergence	between	

(and,	using	soft	bounds	[8],	beyond)	the	minimum	and	maximum	age	constraints.	The	resulting	

probability	density	functions	for	each	node	calibration	are	ultimately	combined	with	a	stochastic	

branching	model	to	derive	effective	priors	on	non-calibrated	nodes	in	the	tree,	facilitating	divergence	

time	estimates	for	all	nodes.	

	

Node	calibrations	have	been	considered	unsatisfactory	because	they	require	a	prior	phylogenetic	

hypothesis	and	they	fail	to	integrate	uncertainty	in	the	phylogenetic	affinity	of	the	calibrating	fossils.	

This	is	problematic	since	the	earliest	fossil	occurrences	are	often	fragmentary	and,	therefore,	of	

uncertain	affinity,	and	so	they	are	ignored	in	favour	of	younger,	better	known	and,	therefore,	

phylogenetically	secure	species.	However,	this	leads	to	less	certain	and	less	informative	calibrations	–	

and	dismisses	an	effectively	infinite	amount	of	other	rate-informative	fossil	evidence.	Some	consider	

maximum	age	constraints	based	on	fossil	evidence	or,	rather,	its	absence,	as	unjustifiable,	and	

establishing	the	nature	of	a	probability	density	function	spanning	minimum	and	maximum	

constraints	has	little	justification	beyond	gut-feeling.	Unfortunately,	arbitrary	choices	between	

competing	parameters	have	an	almost	overwhelming	impact	on	divergence	time	estimates	[85,	86].	

Finally,	the	node	calibrations	specified	by	users	are	invariably	transformed	in	the	establishment	of	

the	joint	time	prior,	to	the	extent	that	they	sometimes	bear	little	relation	to	the	original	fossil	

evidence	[7,	85-87].	

	

	

BOX	2:	The	Construction	of	a	Tip	Calibration	



Palaeathalia	laiangensis	was	recovered	from	the	Laiyang	Formation	in	Liaoning,	China,	which	can	be	

divided	into	four	members,	the	third	of	which	has	yielded	most	fossils.	Although	the	Laiyang	

Formation	contains	no	directly	dateable	elements,	correlation	with	the	base	of	the	Yixian	Formation,	

also	of	China,	allows	the	use	of	radiometric	dates	for	the	base	of	this	formation	to	inform	the	age	of	

the	Laiyang	Formation.	Similarly,	the	unit	overlying	the	Laiyang	Formation,	the	Houkuang	Formation,	

contains	dateable	elements,	allowing	an	age	for	the	base	of	this	formation	to	constrain	the	age	of	the	

top	of	the	Laiyang	Formation.	As	we	consider	the	age	of	the	fossil	species	P.	laiangensis	to	lie	within	

the	chronological	interval	between	the	top	and	base	of	the	unit	of	its	provenance,	and	without	

further	information	to	constrain	the	limits	and	distribution	of	probability,	we	can	use	the	ages	of	

these	limits	to	determine	the	bounds	of	our	calibration.	Correlation	with	the	Yixian	Formation	can	be	

made	based	on	numerous	palynological	and	faunal	similarities,	mostly	with	the	lowermost	member	

of	the	Yixian	Formation,	the	Lujiutun	Bed.	While	these	sources	may	not	individually	be	considered	

conclusive,	numerous	biostratigraphic	similarities	strongly	support	this	correlation	[88-92].	

Radiometric	dates	of	128.4	±	0.2	Ma	have	been	acquired	from	the	base	of	the	Lujitan	Bed,	which	can	

be	used	to	determine	the	age	of	the	base	of	the	Laiyang	Formation	on	the	basis	of	the	correlation	

between	these	units	[92-94].		

	

The	Laiyang	Formation	is	succeeded	by	the	Qingshan	Group,	of	which	the	Houkuang	Formation	is	the	

lowermost	member.	As	the	Laiyang	Formation	can	be	no	younger	than	the	overlying	unit	an	age	for	

the	base	of	the	Houkuang	Formation	can	provide	a	minimum	age	for	the	Laiyang	Formation.	U-Pb	

dating	of	zircons	from	the	base	of	the	Houkuang	Formation	has	yielded	dates	of	106	Ma	±	2	Myr,	

which	can	be	used	to	constrain	the	minimum	age	of	the	Laiyang	Formation	[95].	As	no	dates	are	

available	to	further	constrain	the	limits	of	this	formation,	and	without	any	further	information	

regarding	the	manner	in	which	the	probability	of	the	age	of	P.	laiangensis	should	be	distributed,	a	

uniform	distribution	spanning	the	full	range	of	uncertainty	in	radiometric	dates	across	the	interval	

(128.6	–	104	Ma).	This	tip	age	can	be	contrasted	with	that	utilised	by	Ronquist	et	al.	[20]	of	a	fixed	

age	of	140	Ma,	which	falls	significantly	outside	the	bounds	of	this	calibration.	

	

Box	2,	Figure	1:	Construction	of	a	tip-calibration	for	P.	laiangensis	based	on	stratigraphic	correlation	

between	the	unit	of	provenance,	The	Laiyang	Formation,	and	the	Yixian	Formation	of	China.	

	

	

BOX	3:	Density	Distributions	for	Fossil	Tip	Calibration	



The	wide	range	and	flexibility	of	probability	distributions	has	allowed	for	the	accurate	incorporation	

of	uncertainty	into	fossil	calibrations.	Unfortunately,	encapsulating	prior	knowledge	of	fossil	age	as	a	

density	distribution	is	not	a	straightforward	task,	and	the	application	of	density	distributions	with	

arbitrarily	assigned	parameters	can	have	profound	effects	on	age	estimates	[86].	Though	

computational	methods	exist	for	the	integration	of	fossil	stratigraphic	range	and	geochronological	

age	data	[96],	they	are	rarely	implemented	in	evolutionary	studies	and	in	their	place	it	is	important	

that	the	construction	of	density	distributions	is	justified	explicitly.	For	tip-calibration,	a	number	of	

distributions	are	applicable,	dependent	on	the	context	in	which	uncertainty	manifests	itself.	Six	

distributions	are	presented	here	using	the	calibration	of	the	Hymenopteran	fossil	Eoxyela	(minimum	

=	141	Mya,	maximum	=168	Mya)	as	an	example.		

	

1) Exponential	Distribution	(i)	–	Exponential	distributions	introduce	diminishing	probability	over	

time.	These	calibrations	are	particularly	useful	when	the	weight	of	evidence	suggests	that	

the	true	age	of	a	tip	is	close	to	the	minimum	bound	but	that	a	much	more	ancient	age	cannot	

be	ruled	out.	The	rate	parameter	determines	how	far	back	the	distribution	extends	to	(λ),	

with	its	reciprocal	equal	to	the	mean.	Here	two	parameterisations	reflect	separate	

assumptions	of	how	ancient	the	clade	may	be.	

	

2) Gamma	Distribution	(ii)	–	The	gamma	distribution	has	two	parameters,	shape	(α)	and	rate	(β)	

and	is	relatively	flexible	when	compared	to	other	available	distributions.	For	example,	when	

α	<	1,	the	distribution	is	L-shaped	with	the	mode	at	zero	and	with	a	long	tail.	When	α	=1	the	

distribution	reduces	to	the	exponential	distribution.	Finally,	when	α	>1	the	distribution	has	a	

mode	away	from	zero.	As	the	value	of	α	increases,	the	gamma	converges	to	the	normal	

distribution	with	mean	α	/	β	and	variance	α	/	β	2.	An	offset	is	required	to	express	the	

distribution	relative	to	the	minimum	age;	here	an	offset	of	141	Myr	is	used.		

	

3) Normal	Distribution	(iii)	–	The	normal	distribution	has	seen	limited	use	for	node	calibrations,	

but	it	may	prove	more	useful	in	a	tip-dating	context.	Normal	distributions	place	equal	

diminishing	probability	(determined	by	the	variance	σ2)	either	side	of	the	mean	(μ),	and	may	

be	useful	when	a	species	is	known	from	the	middle	of	a	unit	only.	Here	the	upper	and	lower	

bounds	of	the	species	chronological	distribution	are	set	at	2	standard	deviations	from	the	

mean	allowing	for	age	estimates	that	violate	the	bounds.			

	



4) Point	Calibrations	(iv)	–	Assume	that	the	provided	age	is	absolutely	correct,	disregarding	any	

meaningful	interpretation	of	the	fossil	record;	therefore	erroneously	inflated	confidence	in	

posterior	age	estimates	is	introduced	due	to	increased	specificity	in	the	prior	distribution	

[97].	Here	the	assumed	tip	age	is	at	the	mid	point	of	the	chronological	distribution	of	the	

taxon.		

	

5) Uniform	Distributions	(v)	–	Uniform	distributions	place	equal	probability	across	the	interval	

(a,b).	This	distribution	is	applicable	when	a	fossil	is	known	from	a	single	unit	in	which	dates	

can	be	derived	for	the	base	and	top	but	no	additional	constraints	on	the	distribution	of	age	

can	be	demonstrated.		

	

6) Lognormal	Distribution	(vi)	–	Lognormal	distributions	allow	for	the	assignment	of	diminishing	

probability	that	the	first	appearance	of	a	species	is	actually	described	by	the	age	of	the	fossil	

specimen	itself.	The	distribution	has	two	parameters,	the	log-mean	(μ)	and	log-standard	

deviation	(σ).	σ	determines	the	shape	of	the	distribution,	when	it	is	close	to	zero,	the	

distribution	is	symmetrical,	and	when	it	is	large,	the	distribution	becomes	very	assymmetrical	

with	a	long	tail	and	with	the	mode	of	the	distribution	moving	towards	zero.	

	
Box	3,	Fig.	1:	Six	alternative	probability	density	functions	commonly	used	to	encapsulate	prior	

knowledge	of	the	chronological	distribution	of	a	fossil	tip.	Here	the	calibration	of	the	fossil	taxon	

Eoxyela	is	used	to	demonstrate	the	characteristics	of	the	different	distributions.	

	

	

BOX	4:	Tip	calibrations	and	apparent	morphological	stasis	

The	very	definition	of	what	a	fossil	tip	represents	has	not	yet	been	defined	explicitly,	as	it	is	currently	

not	clear	whether	calibrations	should	be	constructed	based	on	the	age	of	an	individual	fossil,	or	to	

reflect	the	minimum	age	of	the	fossil	species	to	which	it	is	assigned,	or	the	total	known	temporal	

range	of	that	species.	For	a	species	with	only	one	known	fossil	the	situation	is	simple:	the	tip	

represents	the	evolutionary	path	to	the	first	appearance	of	the	suite	of	characters	it	possesses	and	it	

is	therefore	justifiable	to	assign	a	calibration	based	on	the	provenance	of	that	individual	fossil.		It	is	

less	clear	how	a	fossil	species	known	from	a	number	of	temporal	intervals	should	be	represented	in	

terms	of	the	tip-age.	For	example,	consider	the	scenario	outlined	in	Figure	1.	A	fossil	species	(†)	with	

a	chronological	distribution	of	10	Myr	is	recovered	from	2	serial	units	(A	and	B),	each	of	5	Myr	in	

length,	with	no	overlap.	The	suite	of	characters	at	the	start	of	the	first	deposit	and	at	the	end	of	the	

last	deposit	is	the	same;	there	is	effective	morphological	stasis.	In	this	scenario,	morphological	and	



molecular	rates	are	certainly	unlinked	since,	despite	the	perceived	evolutionary	stasis,	there	will	be	

molecular	evolutionary	change.	The	choice	of	calibration	bounds	in	this	situation	can	readily	lead	to	

the	over-	or	under-estimation	of	rates	on	surrounding	branches,	by	compressing	or	stretching	the	

length	of	the	branch	subtending	the	fossil	species.	If	the	tip	age	is	constrained	based	on	the	limits	of	

the	oldest	occurrence,	apparent	morphological	stasis	is	not	accommodated;	constraining	tip	age	

based	on	the	combined	time	span	of	both	temporal	occurrences	is	likely	to	inference	of	lower	rates	

on	other	branches	[98].	An	alternative	calibration	strategy	might	be	to	assign	point	estimates	based	

on	the	statistically	derived	95%	CI	for	the	lower	limit	of	the	true	stratigraphic	range	of	such	fossil	

species,	ignoring	the	protracted	stasis	but	explicitly	calibrating	the	origin	of	the	suite	of	fossilised	

characters	[99].	Is	this	morphological	stasis	a	derived	state	that	should	not	be	extrapolated	across	

the	tree,	or	it	is	inherited	from	earlier	members	of	the	lineage	and	should	therefore	be	used	to	

inform	rates	elsewhere?	Morphological	stasis	is	hypothesised	to	be	driven	largely	by	either	stabilising	

selection	[100]	or	developmental	constraints	[101],	yet	a	consensus	as	to	which	is	the	controlling	

factor	has	still	to	be	reached	[102].		If	the	latter	obtains,	it	is	likely	that	calibrations	need	to	

incorporate	stasis	as	it	is	an	inherited	trait.		

	

Box	3,	Fig.	1:		Potential	branch	lengths	(dotted	lines)	when	fossil	tip	age	is	calibrated	based	on	

different	stratigraphic	limits	when	a	fossil	taxon	(†)	is	recovered	from	multiple	units.		Calibrations	

constructed	from	the	full	stratigraphic	range	of	the	fossil	taxon	will	incorporate	stasis	into	the	model,	

but	may	induce	lower	rates	on	nearby	branches	(ii).	Calibrations	constructed	from	the	first	

appearance	on	the	fossil	taxon	ignore	the	protracted	stasis	and	may	induce	inflated	rates	on	

surrounding	branches	(i).	
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Highlights	
	

• Total	evidence	dating	constitutes	a	significant	advanced	in	divergence	
time	estimation.	It		overcomes	problems	with	calibration	by	including	
fossil	species	on	par	with	their	living	relatives,	using	molecular	sequence	
data	from	living	species	supplemented	by	morphological	data	from	both	
living	and	fossil	species	

• The	method	relies	on	the	controversial	hypothesis	of	a	morphological	
clock	and	suffers	from	the	lack	of	development	of	realistic	models	of	
morphological	evolution	

• Most	studies	have	failed	to	accommodate	fossil	age	uncertainty.	We	
present	a	protocol	for	characterizing	and	implementing	this	uncertainty	
and	demonstrate	its	impact	on	divergence	time	estimation	

• We	argue	that	total	evidence	dating	is	a	suite	of	methods	that	can	be	used	
in	bespoke	combinations	chosen	to	best	suit	the	nature	of	specific	
divergence	time	estimation	studies	



Outstanding	Questions	BOX:	

	

- How	adequate	is	the	Mk	model	of	morphological	evolution	for	estimating	

divergence	times?	There	has	been	little	development	of	this	model	in	the	past	15	

years.	Its	suitability	for	morphology	based	divergence	time	estimation	remains	

unclear.	

- What	is	the	best	method	for	modelling	the	relationship	between	molecular	and	

morphological	evolutionary	rate?	Many	analyses	model	these	rates	as	correlated	

variables,	but	it	is	unclear	how	well	this	approach	encapsulates	their	true	

relationship.				

- How	congruent	with	the	fossil	record	are	tip-calibration	node-age	priors?	Exploring	

the	induced	time	prior	is	a	non-trivial	task	for	TED	analyses	due	to	the	co-estimation	

of	time	and	topology.	Without	knowledge	of	the	time	prior	it	is	not	possible	to	

determine	whether	zero	probability	is	being	assigned	to	age	estimates	that	violate	

minima	derived	from	the	empirical	evidence	contained	within	the	fossil	record.	

- Is	morphological	data	best	characterised	as	categorical	or	continuous	variable	data	

for	the	purposes	of	divergence	time	estimation?		

	



Trends	BOX:	

	

- Total	evidence	dating	constitutes	a	significant	advanced	in	divergence	time	

estimation.	It	overcomes	problems	with	calibration	by	including	fossil	species	on	par	

with	their	living	relatives,	using	molecular	sequence	data	from	living	species	

supplemented	by	morphological	data	from	both	living	and	fossil	species	

- The	method	relies	on	the	controversial	hypothesis	of	a	morphological	clock	and	

suffers	from	the	lack	of	development	of	realistic	models	of	morphological	evolution	

- Most	studies	have	failed	to	accommodate	fossil	age	uncertainty.	We	present	a	

protocol	for	characterizing	and	implementing	this	uncertainty	and	demonstrate	its	

impact	on	divergence	time	estimation	

- We	argue	that	total	evidence	dating	encompasses	a	suite	of	methods	that	can	be	

used	in	bespoke	combinations	chosen	to	best	suit	the	nature	of	specific	divergence	

time	estimation	studies	

	



Supplementary Material 
 
Dating tips for divergence time estimation 
 
Joseph O’Reilly1, Mario dos Reis2, and Philip C. J. Donoghue1 

1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, 
Bristol BS8 1TQ, UK 
2Department of Genetics, Evolution and Environment, University College London, London, 
WC1E 6BT, 
UK. 
 
S1 - Methods 
 
Node Calibrated Analysis  
Node calibrated analysis was performed in broadly the same manner as that of the original 
authors [1]. The only difference between our analysis and that of the original is the 
replacement of all original calibrations with reconstructed node calibrations. These 
reconstructed node calibrations were derived using established node-calibration 
construction methodology [2]. An IGR clock was utilised, with the clock rate prior assumed 
to have the same lognormal distribution as applied by the original authors. Similarly, the 
prior on the IGR variance was set to the same distribution as employed by the original 
authors. These clock priors were utilised in all subsequent analyses, whether node or tip 
calibrated. 9 topological constraints were applied, the same 9 as in the original article, and 
each constraint was utilised as a calibrated node. The root was calibrated with an offset 
exponential distribution, whereas all other calibrations were applied as uniform distributions.   
 
The analysis was performed in MrBayes 3.2.2 [3] for 20,000,000 generations and 
convergence was assessed in Tracer and through the use of MrBayes’ inbuilt statistics. Four 
independent runs were performed and combined. A burn-in of 25% was applied; visualisation 
of the trace demonstrated that at this value the stationary distribution was already being 
sampled. Convergence was considered achieved when all parameters possessed ESS scores 
>150 and when the split frequency statistic was <0.05. Further assessment of convergence 
was performed with the comparison of posterior distributions of parameter estimates from 
different runs in Tracer [4].   
 
Tip Calibrated Analysis  
Tip-calibrated analyses were also performed in the same manner as that of the original 
authors [1]. With clock model priors set the same as in the node-calibrated analysis. Two 
topology constraints were employed, the same two utilised by the original authors 
(Hymenoptera and Holometabola), and all other internal calibrations and constraints were 
discarded in favour of the application of fossil-tip calibrations. These two constraints were 
calibrated with the calibrations employed by the original authors (not the reconstructed 
calibrations utilised in the preceding node-calibrated analysis) so that the only parameter 
changed from the original authors analysis was the uncertainty incorporated in tip-
calibrations. This allows for a test of the effect on age-estimate precision when uncertainty 
in fossil-tip age is properly accommodated. The point tip-calibrations of the original authors 
were replaced by reconstructed tip-calibrations, which were described as uniform 
distributions.  The analysis was performed in MrBayes 3.2.2 [3] for 4 combined runs of 
40,000,000 generations with the same assessments of convergence as employed in the node-
calibrated analysis. The heating coefficient of the chains was dropped to 0.025 for tip-
calibrated analyses as this was found to help achieve convergence. A burn-in of 25% was 
used again; with visualisation of the trace files demonstrating that this was an acceptable 
value.  
 
 



S2 – Reconstructed Node Calibration Justifications 
 
Node A – Neoptera  
The calibration of Node A is constructed using the oldest possible first appearance of 
Insects and the latest possible first appearance of Neoptera. Currently Rhyniognatha, found 
in the Rhynie Formation of Scotland, is considered to be the oldest fossil evidence of Insects, 
and Ctenopilus elongatus, from the Commentry Basin, Allier, France, is considered to be the 
oldest Neopteran fossil species currently known; differing from the choice of Ronquist [3], 
who considered Katerinka to be representative of the earliest appearance of Neoptera. 
 
The shale and sandstone deposits of the Rhynie Formation contain spores that were used by 
Rice et al. [5] to acquire a date for this Formation, which built on previous palynologicaly 
derived ages for the Formation. Richardson [6] retrieved spores of the genera 
Retusotriletes, Apiculiretusispora and Emphanisporites, which could be attributed to the 
Devonian, from the Chert deposits of Rhynie, this allowed for the comparison of Rhynie to 
the Devonian Ousdale deposits of England due to similar palynological assemblages. Rice et 
al. [5] were able to further refine this date to the Pragian due to the presence of species 
including: Ambitisporites sp;, Apiculatisporites sp. cf. A. microconus, Apiculiretusispora 
arenorugosa, A. brandtii, Calamospora spp., Cirratriradites sp., Cyclogranisporites sp., 
Emphanisporites micrornatus, E. neglectus, E. rotatus, E. zavallatus, Retusotriletes maculatus, 
and R. rotundu, all of which are found in Pragian deposits [7]. Wellman et al. [8] consider 
the spore assemblage of the Rhynie to be comparable to the polygonalis–emsiensis Spore 
Assemblage Biozone [7] and the PoW Oppel Zone [9]. This relationship allows for an early 
Pragian–earliest Emsian age to be assigned to this Formation, adding further support for a 
Pragian age for the base of this Formation. Despite this, Wellman et al. (2006) point out that 
the base of this Formation can be considered early Pragian, but not earliest Pragian based on 
the age of these related assemblages, as the PoW Oppel Zone and polygonalis–emsiensis do 
not reach the base of the Pragian [10].   
 
Rice et al. [5] also utilised Ar40-Ar39 radiometric dating to confirm an Early Devonian 
(Pragian-Emsian) age (396 ± 12 Ma) for the Rhynie Formation. This radiometric date can be 
utilised as a maximum constraint on the age of the Rhynie Formation, providing a date of 
408 Ma which conforms to the early, but not earliest, Pragian age suggested by the Rhynie 
spore assemblage.  
 
C.elongatus is found in the Stephanian B-C deposits of the Commentry Basin, France. The 
top of the Stephanian C is equivalent to the base of the Pavlovoposadian from the Russian 
Platform [10]. The Pavlovoposadian has been radiometrically dated as 301.29 ± 0.07 Ma [11]; 
allowing a minimum constraint on the first appearance of Neoptera to be placed at 301.22 
Ma. 
 
Min – 301.22 Ma 
Max- 408 Ma 
 
 
Node B – Insect Gall (Oldest Holometabola)  
The oldest evidence for Holometabola are instances of Holometabolan larval gall from the 
Mattoon Formation of Illinois, The United States of America [12]. As there is no radiometric 
dating for this Formation it is necessary to utilise biostratigraphic sources to form 
correlations between units. A number of Conodont species have been recovered from the 
Mattoon Formation [13] and provide a robust biostratigraphic marker for this calibration.  
 
The Little Vermillion member of the upper Mattoon Formation contains numerous 
Conodont species, two of which are present in the Conodont zonation of the 
Carboniferous outlined by Gradstein et al. [10]. These species are Streptognathodus 



cancellosus and Streptognathodus simulator from the Kasimovian and Gzhelian respectively. 
The presence of these two species in the Mattoon Formation can be used to infer an age for 
this Formation of 304.83 Ma ± 0.36 (base of S. cancellosus zone) to 303.1 Ma ± 0.36 (top of 
S. simulator zone). 
 
Min – 302.74 Ma 
Max - 408 
 
 
Node C – Hymenoptera 
The Hymenopteran node calibration is based on the first appearance of Hymenoptera, 
assumed to be Triassoxyela and Asioxyela from the Madygen Formation of Kyrgyzstan.  
The floral assemblage of The Madygen Formation of Kyrgystan, located to the south of the 
Fergana Valley [14], can be correlated with the Scytophyllum flora of the upper Keuper 
lithographic unit on the basis of the presence of key plant fossils of Scytophyllum and 
Neocalamites in the Madygen Formation, indicative of the Ladinian-Carnian Scytophyllum 
flora [15, 16]. Dobruskina [15, 16] proposed that the Madygen Flora was most similar to the 
middle Triassic Floras of Eurasia as no Early/Late Triassic floral assemblage contained enough 
common taxonomic groups to support a correlation. The most similar flora to that of 
Madygen are: Priuralye, Nikolayevka and Garazhovka (Donetsk Basin) and Bogoslovsk, all of 
which are Ladinian to Carnian in age [15, 16]. 
 
Correlation with the Priuraly flora is based on the appearance of the following groups in 
both locations: Filicophyta; Chiropteris; Lepidopteris; Scytophyllum; Vittaephylum; 
Glossophyllum. Correlation to the Nikolayevka and Garazhovka flora of the Donetsk Basin 
is based on the shared appearance of: Neocalamites; Chiropteris; Lepidopteris; 
Scytophyllum; Vittaephyllum; Glossophyllum [15]. Correlation with the Carnian Svalbard 
flora is based on the shared appearance of the Glossophyllacea Family [15]. 
 
The Scytophyllum Flora is correlated with the Cortaderitian Stage of Gondwana due to 
similarities in floral assemblages, particularly the abundance of Scytophyllum [17]. The 
Cortaderitian Stage is divided into 3 Biozones; a 40Ar/39Ar radiometric date for the middle 
biozone of the Cortaderitian Stage of 228.5 ± 0.3 Ma was measured by Rogers et al. [18], 
supporting the Ladinian – Carnian age for the Scytophyllum flora and the Madygen 
Formation. Further support for the Ladinian - Carnian age of the Madygen Formation can 
also be derived from the Gondwanian floral stages; the Puesto Viejo Formation, part of the 
Barrealian Stage underlying the Cortaderitian Stage (and therefore the Scytophyllum Flora), 
has been radiometrically dated to 232± 4 Ma [19], this would suggest that the Cortaderitian 
Stage can be no older than 236 Ma, and therefore the Scytophyllum flora and Madygen 
Formation can be no older than this age either.  
 
A minimum constraint on the age of the Madygen Formation can be inferred from the strong 
support for a Ladinian – Carnian age for this Formation, allowing for the end of the Carnian 
(216.5 ± 2 Ma) to be utilised as the minimum age for the Madygen Formation.  
 
The top of the unit in which the first evidence for Holometabola has been found provides 
the maximum constraint for this calibration. This is the Mattoon Formation of The United 
States of America, the minimum age of which has been outlined in the construction of the 
calibration for Holometabola (Node B).  
 
Min – 214.5 Ma 
Max – 302.74 Ma 
 
 
Node D – Xyelidae  



The oldest representative of Xyelidae in this analysis is considered to be Eoxyela, found at 
Novospasskoye, Ichetuy Formation in Transbaikalia, Siberia, Russia. As the first appearance 
of Hymenoptera, provided by fossils from the Madygen Formation, is used to determine the 
oldest possible age for this node we are only concerned in deriving a minimum age for the 
Novospasskoye Formation. 
 
The Ichetuy Formation is thought to be of an Early-Middle Jurassic age on the basis of the 
biostratigraphic composition of the Formation [20-22], although radiometric dating of 
volcanogenic material suggests a younger age than this [23]. The basalt covers at the top of 
the Ichetuy Formation have been dated to 145 ± 4 Ma through the use of K-Ar dating [24], 
this date can be utilised as a minimum constraint on the age of the Ichetuy Formation as the 
date is measured from material overlying the formation. Other dates measured for the 
volcanogenic material of the Ichetuy Formation are 158 ± 8 (Rb-Sr wr; [25]), 150 ± 5 (K-Ar; 
[24]), 158 ± 4 (Rb-Sr wr; [26]), 156 ± 4 – 146 ±3 (K-Ar; [24]), 150 ± 4 – 140 ±4 (K-Ar; 
[24]), and 159.1 ±2.7 (Rb-Sr wr; [27]). These dates range from 162 Ma to 136 Ma, suggesting 
that the Ichetuy Formation is of Callovian – Berriasian age [10]. The latest of these 
radiometric dates is 136 Ma and can be utilised as a minimum constraint for this calibration.  
 
Min - 136 
Max - 214.5 
 
 
Node E – Pamphilioidea  
The calibration of Node E is based on the first appearance of two fossil species, Aulidontes 
mandibulatus and Pamphiliidae undescribed. Ronquitst et al. [1] considered the Formations 
that these two species are found in (Karatau, Karabastau locality, Kazakhstan and Daohugou, 
China, respectively) to be of the same age and therefore treated them as equally likely 
candidates for the first appearance of Pamphilioidea. Karatau and Daohugou are widely 
considered to be comparable in age, yet when all sources in the literature are taken into 
account it can be shown that whilst they are of a comparable age, with both Formations 
starting at the same time, the Karatau Beds have a more recent age attributed to their upper 
members.  
 
The Karatau locality consists of a group of deposits situated in the Jambul Province, 
Kazakhstan. The most notable sites are Aulie (also known as Mikhailovka), Karabastau, and 
Uspenovka (formerly Galkino), located within the Kulbastau Mountain Range. The floral 
composition of the Karatau mountain range is well documented and specific floral 
assemblages have been identified [28]. The Karabastausky floral assemblage was initially 
identified at the Karabastau site and the comparison of floral assemblages at Galinko allowed 
this site to be assigned to the Karabastausky assemblage [28]. One of the characteristics of 
the Karabastausky flora is an abundance of Classopolis pollen (95-100%)[28]. Vakhrameev 
[29] analysed the fluctuations in Classopolis abundance across Eastern Europe and Asia and 
compared them with major Geological events; this analysis showed that Classopolis in 
Kazakhstan, Middle Asia, Ukraine and Crimea only reached abundances of +95% during the 
Oxfordian and Kimmeridgian, before decreasing rapidly during the Late Kimerridgian – 
Tithonian. The Karabastausky Assemblage is positioned above the Borolsaisky Assemblage 
but it is unknown what length of time separates these two assemblages [28]; Despite this, 
the Karabaustsky Assemblage must be no older than the Borolosaisky, so the age of the top 
of this assemblage can still constrain the age of the base of the Karabustsky Assemblage. The 
upper parts of the Borolosaisky Assemblage are considered to be of a Lower to Middle 
Callovian age as they contain around 50% Classopolis. Doludenko and Orlovskaya [28] and 
Sakulina [30] has shown that this level of abundance is indicative of an Early Middle Callovian 
age, whereas higher abundances are indicative of Upper Callovian- Tithonian ages; The 
Borolosaisky Assemblage reaches a peak Classopolis abundance of 50% before dropping 
back down to 10%, supporting an Early – Middle Callovian age, meaning that a the age of the 



base of the Callovian (166.1 ± 1.2 Ma) [10] can be assigned to the base of the Karabaustsky 
Assemblage. If we consider the 95% abundance of Classopolis in the Karabastau Assemblage 
as indicative of a pre Late Kimmeridgian reduction in Classopolis abundance then we can 
assign the age of the base of the Tithonian (152.1 ±0.9 Ma) [10] as the age of the top of the 
Karabastausky Assemblage.  
 
Min – 151.2  
Max – 214.5 
 
 
Node F – Siricoidea  
The earliest representatives of Siricoidea in this analysis are considered to be Aulisca, 
Anaxyela, Syntexyela, Kulbastavia and Brachysyntexis, all of which are from the Karatau 
Locality, Kazakhstan, the minimum age of which will provide the minimum constraint on the 
age of this particular calibration. The maximum age of Holometabola, provided by the age of 
the Madygen Formation, will be used as the maximum constraint; therefore we are only 
concerned with deriving the minimum age of the Karatau Locality.  
 
The Karatau locality consists of a group of deposits situated in the Jambul Province, 
Kazakhstan. The most notable sites are Aulie (also known as Mikhailovka), Karabastau, and 
Uspenovka (formerly Galkino), located within the Kulbastau Mountain Range. The floral 
composition of the Karatau mountain range is well documented and specific floral 
assemblages have been identified [28]. The Karabastausky floral assemblage was initially 
identified at the Karabastau site and the comparison of floral assemblages at Galinko allowed 
this site to be assigned to the Karabastausky assemblage (Dorludenko and Orlovskaya 1976). 
One of the characteristics of the Karabastausky flora is an abundance of Classopolis pollen 
(95-100%)[28]. Vakhrameev [29] analysed the fluctuations in Classopolis abundance across 
Eastern Europe and Asia and compared them with major Geological events; this analysis 
showed that Classopolis in Kazakhstan, Middle Asia, Ukraine and Crimea only reached 
abundances of +95% during the Oxfordian and Kimmeridgian, before decreasing rapidly 
during the Late Kimerridgian – Tithonian. The Karabastausky Assemblage is positioned 
above the Borolsaisky Assemblage but it is unknown what length of time separates these 
two assemblages [28]; Despite this, the Karabaustsky Assemblage must be no older than the 
Borolosaisky, so the age of the top of this assemblage can still constrain the age of the base 
of the Karabustsky Assemblage. The upper parts of the Borolosaisky Assemblage are 
considered to be of a Lower to Middle Callovian age as they contain around 50% 
Classopolis. Doludenko and Orlovskaya. [28] and Sakulina [30]has shown that this level of 
abundance is indicative of an Early Middle Callovian age, whereas higher abundances are 
indicative of Upper Callovian- Tithonian ages; The Borolosaisky Assemblage reaches a peak 
Classopolis abundance of 50% before dropping back down to 10%, supporting an Early – 
Middle Callovian age, meaning that a the age of the base of the Callovian (166.1 ± 1.2 Ma) 
[10] can be assigned to the base of the Karabaustsky Assemblage. If we consider the 95% 
abundance of Classopolis in the Karabastau Assemblage as indicative of a pre Late 
Kimmeridgian reduction in Classopolis abundance then we can assign the age of the base of 
the Tithonian (152.1 ±0.9 Ma) [10] as the age of the top of the Karabastausky Assemblage.  
 
Min – 151.2 
Max - 214.5 
 
 
Node G – Vespina  
The oldest representative of Vespina used by Ronquist et al. [1] is the species Brigittepteris 
brauckmanni, found in the Dobbertin Locality of Germany. The age of this locality can 
inform the minimum constraint on the calibration of the Vespina node with the earliest 
possible appearance of Hymenoptera, seen in the Madygen Formation, providing the 



maximum constraint. As we are only concerned with the latest possible appearance of 
Vespina we only need to determine a minimum age for the Dobbertin locality.  
 
The Dobbertin locality of Mecklenburg-Vorpommern, Northern Germany, is widely 
considered to be lower Toarcian in age. Insect finds from this locality are assigned to the 
Harpoceras falciferum ammonoid zone [31-33]. The presence of a biostratigraphic marker as 
strong as the ammonite H.falciferum means that a strongly supported age can be inferred for 
this locality.  
 
The falciferum ammonoid zone is the second earliest of the Toarcian. The end of the 
falciferum ammonoid zone, which has been established to be 182.0 +3.3/-1.8 Ma [34], can be 
utilized as a minimum constraint on the age of the Dobbertin locality.  
 
Min – 180.2 
Max - 214.5 
 
 
Node H - Apocrita 
The First appearance of Apocrita can be inferred from the age of the fossil species belonging 
to Mesoserphidae. This group contains the oldest representatives of Proctotupoidea, whose 
divergence from Chalcidoidea represents the formation of the crown group Apocrita [35]. 
As the maximum age of this node is provided by the first appearance of Holometabola, from 
the Madygen Formation, we are only concerned with the youngest possible age for the 
appearance of this species and therefore the youngest possible age for this Formation.  
 
Early members of Mesoserphidae are found in the Daohugou Beds in China [36]. The 
Daohugou Beds have been radiometrically dated, allowing for a robust minimum for the 
Apocrita calibration. 40Ar/39Ar radiometric dating provides the most accurate representation 
of the minimum age of the Jiulongshau Formation of the Daohugou Beds. Chang et al. [37] 
used this method on two tuffs to date the very bottom of the Lanqui Formation, which lies 
just above the Haifanggou Formation. The Lanqui and Haiffangou formations are situated in 
Liaoning Province, the same formation is referred to as the Jiulongshan Formation in Hebei 
province and therefore Haiffangou is equivalent to Jiulongshan. This relationship means that 
the oldest possible age for the Lanqui Formation can be used as a minimum constraint on 
the age of the Jiulongshan Formation. The youngest tuff measured by Chang et al. [37] was 
dated as 158 Ma ± 0.6; this gives a minimum constraint of 157.4 Ma for the Jiulongshan 
Formation. 
 
Min – 157.4 
Max – 214.5 
 
 
Node I – Tenthredinoidea 
The calibration for the Tenthredinoidea clade can be derived from the age of the formation 
in which the oldest fossil of this species, Palaeathalia laiangensis, is found in. P.laiangensis is 
found in the Laiyang Formation of China; as the maximum constraint for this calibration is 
provided by the first appearance of Holometabola, from the Madygen Formation, we are 
only concerned with the youngest possible first appearance of P.laiangensis and therefore 
the minimum possible age for the top of the Laiyang Formation.  
 
An estimate of the minimum age of the Laiyang Formation can be derived from the oldest 
known age of the formation know to be positioned above it stratigraphically. The Qingshan 
Group is positioned above the Laiyang Formation [38] and therefore a date for the bottom 
of the Qingshan Formation can be utilised as a minimum constraint on the age of the Laiyang 
Formation. The use of Zircon U-Pb dating on a number of samples from the lowest part of 



the Houkuang Formation, part of the Qingshan Group were measured as 106 Ma ± 2 [38]; 
this therefore places a minimum constraint on the Laiyang Formation of 104 Ma. 
 
Min – 104 
Max – 214.5 
 
 
S3 – Revised Tip Calibrations 
 
Madygen Formation 
The floral assemblage of the Madygen Formation of Kyrgystan, located to the south of the 
Fergana Valley [14], has been correlated with the Scytophyllum flora of the Upper Keuper 
lithographic unit on the presence of Scytophyllum and Neocalamites remains in the Madygen 
Formation [15, 16]. The Scytophyllum flora ranges in age from the start of the Ladinian to 
the end of the Carnian [39]. Dobruskina [15, 16] proposed that the Madygen Flora was most 
similar to the Middle Triassic floras of Eurasia as no Early/Late Triassic floral assemblages 
contained enough common taxa to support a correlation. The most similar flora to that of 
Madygen are the Priuralye, Nikolayevka and Garazhovka (Donetsk Basin) and Bogoslovsk, all 
of which are Ladinian to Carnian in age [15, 16]. 
 
Correlation with the Priuraly flora has been based on the presence of remains of Filicophyta, 
Chiropteris, Lepidopteris, Scytophyllum, Vittaephylum, and Glossophyllum in both locations. 
Correlation to the Nikolayevka and Garazhovka flora of the Donetsk Basin is based on the 
shared presence of Neocalamites, Chiropteris, Lepidopteris, Scytophyllum, Vittaephyllum, 
and Glossophyllum [15]. Correlation with the Carnian Svalbard flora is based on the shared 
presence of remains attributable to Glossophyllacea [15]. 
 
The Scytophyllum Flora has been attributed to the Cortaderitian Stage of Gondwana due to 
similarities in floral assemblages, particularly the abundance of Scytophyllum [17]. The 
Cortaderitian Stage is divided into 3 biozones, the middle one of which was dated 228.5 Ma 
± 0.3 Myr by Rogers et al. [18], supporting the Ladinian–Carnian age for the Scytophyllum 
flora and, therefore, the Madygen Formation. A maximum constraint on the age of the 
Madygen Formation can also be derived from Gondwanan floral stages. Specifically, the 
Puesto Viejo Formation, part of the Barrealian Stage underlying the Cortaderitian Stage (and 
therefore the Scytophyllum Flora), has been dated radiometrically to 232 Ma ± 4 Myr [19] . 
This would suggest that the Cortaderitian Stage, Scytophyllum flora and Madygen Formation 
can be no older than 236 Ma.  
 
Given the evidence for a Ladinian – Carnian age for the Madygen Formation, a minimum 
constraint on the age of Hymenoptera can be established on the minimum age interpretation 
for the Carnian-Norian Boundary, 228.4 Ma ± 2 Myr [40; though there remains uncertainty 
over the definition of this boundary], thus, 226.4 Ma. 
 
Minimum – 226.4 Ma 
Maximum – 236 Ma 
Ronquist et al. 2012 – 235 Ma 
 
Turga Formation 
The age of the Turga Formation of Transbaikalia, Siberia, is not known with any great degree 
of accuracy given an absence of reliable stratigraphic markers [41] . Thus, any calibration 
based on fossil taxa from this deposit must rely heavily upon the weak biostratigraphic 
correlations available to better-dated formations located elsewhere. The Turga Formation 
has been estimated loosely as early Cretaceous but there is the possibility of a late Jurassic 
age for the lower part of the Formation [29].  
 



Rasnitsyn and Quicke [21] quote unpublished radiometric dates of 134 Ma ± 2 Myr and 131 
Ma ± 5 Myr for the Turga Formation using Kr-Ar and Rb-Sr methods respectively. However, 
these have not been substantiated and so they must be discounted. Otherwise, the Turga 
Formation has been correlated with the Baissa Formation on the basis of a similar faunal 
(Ephemeropsis abundance [42]) and floral (shared presence of Asteropollis; [43]; [44]) 
assemblage. Thus, the age of the Baissa Formation has been estimated loosely as ranging 
from Late Jurassic (145 Ma ± 4 Myr; [45]) to Barremian (130 Ma ± 1.5 Myr to 125 Ma ± 1 
Myr), though the evidence substantiating this is weak.  
 
The Baissa Formation has in turn correlated with the Purbeck Formation of England [21, 42, 
46] on the basis of the presence of the hymenopteran subfamily Bassinae in both deposits. 
The giant Mayfly Ephemeropsis, [43, 46] Tremathorax baissensis and three other members 
of the Tremathorax genus [47, 48] are common to both deposits, and have been exploited 
in establishing a biostratigraphic correlation. The Tithonian-Berriasian (140.2 Ma ± 3 Myr) 
boundary is thought to lie to the base of the Purbeck Formation [49], although 
magnetostratigraphy has suggested that the true location of this boundary may lay between 
the Purbeck Formation and ostracod-rich freestone that is positioned below [50]. However, 
Hymenopterea are poor biostratigraphic markers and correlations based upon them are 
unlikely to have fidelity over such vast paleogeographic distances. 
 
A more reliable biostratigraphic correlation can be drawn from the presence of the early 
angiosperm Asteropollis in the Baissa and Turga formations [44], which has a well-
characterised global distribution [51]. Asteropollis asteroides is a broadly defined species of 
Asteropollis and, as a result, its age range may be no better constrained than that of the 
genus. The oldest instances of Asteropollis pollen [52] occur in Portuguese coastal sections, 
most notably associated with a female flower likely related to the extant genus Hedyosmum, 
which possesses pollen extremely similar to that of Asteropollis [53]. Asteropollis has also 
been found in a number of contemporaneous (considered so due to high biostratigraphic 
similarities; [53]) formations in Portugal and is dated to the Barremian or Aptian based on 
the biostratigraphic observations of Friis et al. [53].   
 
A more precise assessment of the age of these formations can be derived from palynological 
observations made by Heimhofer et al. [54] of a number of chronologically diagnostic 
dinoflagellate species in deposits from the Lusitanian basin (Cresmina section, to which the 
floral sites investigated by Friis et al. [53] are attributed). The first occurence of the 
dinoflagellate species Cerbia tabulata is at the base of the Cresmina section, C. tabulata is 
indicative of the Early-Late Barremian boundary [55], and is usually found just below this 
point in time, suggesting a mid-Barremian age for the base of this Formation. Thus, a 
maximum age constraint on the first appearance of Asteropollis can be established on the 
base of the Barremian, 130.8 Ma ± 0.5 Myr [56], thus, 131.3 Ma. 
 
Asteropollis does not appear in the fossil record after the Early Campanian, with the latest 
instance observed in sections in Antarctica [52, 57]. This last occurrence of Asteropollis co-
occurs with the Ammonite species Submortoniceras chicoense which is indicative of the 
Lower Campanian [58] and the dinoflagellate Xenikoon australis [57], which is indicative of 
the X.australis biozone, which is dated to the Campanian [59]. Thus, a minimum age 
constraint on the last appearance of Asteropollis pollen can be established from the age of 
the end of the Campanian, 72.1Ma ± 0.2 [56], thus, 71.9 Ma. 
 
Minimum – 71.9 Ma 
Maximum – 131.3 Ma 
Ronquist et al. 2012– 130 Ma 
 
 
Baissa / Zaza Formation 



The Zaza Formation of Baissa, Transbaikalia, Siberia, can be correlated with the Turga 
Formation, also of Transbaikalia, based on the shared presence of key components of each 
formations respective floral assemblage. The most notable similarity between these floral 
assemblages is the shared presence of Asteropollis asteroids, Dicotylophyllum pusilum, Baisa 
hirsuita, Podozamites, Schizolepis, Pseudolarix, Phoenicopsis, Czekanowskia rigida and 
Sphenobaiera [29, 43, 44, 60]. The age of the Turga flora and Formation has been discussed 
previously and is based on the chronological distribution of Asteropollis type pollen, but 
correlation with the Yixian Formation of China is also supported strongly [43], allowing for 
refinement of the Asteropollis-derived ages. Correlation between Turga and Yixian is based 
on similarities in the floral assemblages of these two formations, with the shared presence of 
the species Baisa hirsuita, Botrychites reheensis, Neozamites verchojanensis, Pityolepis 
pseudotsugaoides, Brachyphyllum longispicum, Scarbugia hilii, Ephedrites chenii, Carpolithus 
multiseminalis, Carpolithus pachythelis, Schizolepis, Baiera, Coniopteris, Ginkoites, 
Pityocladus , Pityospermum and Elatocladus [43, 60, 61].  
 
The overlap in the floral assemblages is due to the fact that all of these formations are 
members of the Jehol Biota and therefore are closely related in composition and age [43]. 
To derive a maximum and minimum constraint for the Zaza Formation of Transbaikalia it is 
necessary to incorporate evidence of the age of all correlated formations. The shared 
presence of Asteropollis asteroides in Turga and Zaza allows for the use of this 
palynomorphs chronological range to determine a maximum and minimum age for Zaza. 
Asteropollis first appears in the fossil record in coastal Portugal and is dated to roughly 
127.8 Ma [52, 53], the last appearance of Asteropollis is in Antarctica [57] and is dated to 
the end-Campanian at the latest 72.1Ma ± 0.2 [56]; in-depth discussion on the subject of the 
chronological range of Asteropollis is presented in the calibration justification for the Turga 
Formation.  
 
Incorporation of data related to the chronological range of the Yixian Formation measured 
with radiometric methods allows for the refinement of the age suggested by the 
palynological composition of Zaza. A brief outline of the dating of the Yixian Formation is 
presented here; a more in-depth discussion is presented in the calibration justification for 
the Laiyang Formation. The base of the Yixian Formation, the Lujitan Bed, has been dated 
through the use of the 40Ar/39Ar radiometric method, providing a maximum constraint on 
the age of this Formation of 128.6 Ma [62-64]. This age is consistent with the first 
appearance of Asteropollis [52, 53].  
 
The Yixian Formation is correlated with the Laiyang Formation of Lianoning, China through 
the components of both insect and floral assembalges (see Laiyang Formation calibration for 
details).  Therefore, the age of the base of the Formation which overlies the Laiyang 
Formation, the Houkang Formation of the Qingshan Group, can be utilized as a minimum 
constraint on the age of the Yixian Formation and therefore the Zaza Formation. U-Pb 
zircon dating from the Houkang Formation has yielded an age of 106 ± 2 Ma [38],  providing 
a minimum constraint of 104 Ma for the Zaza Formation. 
 
Minimum – 104 Ma 
Maximum –128.6 Ma 
Ronquist et al 2012 – 140 Ma  
 
 
Daohugou Bed / Jiulongshan Formation 
The Daohugou bed has produced a rich selection of fossil insects [36], plants and 
vertebrates [65] and there have been numerous attempts to date this stratum and its 
surrounding strata .. The formation that the Daohugou bed belongs to has been the subject 
of considerable debate. It is currently thought that the Daohugou Bed belongs to the Middle 
Jurassic Jiulongshan Formation [66], but other researchers believe that it belongs to the 



Tiaojishan Formation [67] or the Early Cretaceous Yixian Formation  [65]. Complex 
stratigraphy caused by possible overturning of the sequence [68] and instances of 
unconformities [66] make it difficult to constrain from among these possibilities.  
 
Shen et al. [69] noted that the conchostracans found in the Daohugou Bed belong to the 
Bajocian-Bathonian Euestheria ziliujingensis fauna and that the conchostracan species E. 
luanpingensis is found in both the Daohugou Bed and the Jiulongshan Formation, suggesting 
that the Daouhugou Bed belongs to the Jiulongshan Formation. However, the conchostracan 
species found in Daohugou are notably different from species of the Eosestheria fauna of the 
Yixian Formation suggesting that Daohugou does not belong to this Formation [69]. The 
Bajocian - Bathonian age range for the Eustheria ziliujingensis fauna is concordant with 
radiometric dates established for Daohugou [67](discussed below).  
 
Ren et al. [70] demonstrated similarities between the Jiulongshan Formation and Dahougou 
Bed insect assemblages and noted that, based on biostratigraphic inference, the age of the 
Daohugou Bed was not Early Cretaceous and could not, therefore, be assigned to the Yixian 
Formation. The presence of Ephemeropsis in the Daohugou Bed was used previously to 
support an Early Cretaceous age, but it was shown that this was actually misidentified 
Mesoneta [70], which is known from the Bathonian in Mongolia [71]. 
 
The Daohugou Bed contains none of the most indicative early Cretaceous hymenopterans, 
suggesting that it should not be assigned to the Early Cretaceous Yixian Formation, as 
proposed by Wang et al. [65]. Instead, Rasnitsyn and Zhang [36] argue that the Daohugou 
Bed should be assigned a Middle to Late Jurassic age due to an overlap in hymenopteran 
assemblages with the Karatau locality. The genera Xyelidae, Siricidae, Xyelydidae, 
Anaxyelidae, Mesoserphidae, Megalyridae, Praeaulacidae are found in both locations and are 
also among the most abundant [36]. 
 
SHRIMP U-Pb Zircon dating on a number of samples from the Daohugou Biota and the 
strata lying both above and below showed that samples positioned above the famous fossil 
salamander bearing layers at Reshuitang (which are overlain by the bottom of the Daohugou 
Bed) could be dated to 164 Ma ± 4 Myr, and the youngest possible date for strata overlaying 
the Daouhugou Bed was observed in the Xiaoxigou-Xiaoliangqian section, at the bottom of 
the layer overlying the Daohugou Bed which has been dated to 152 Ma ± 2.3 Myr [67].  
 
Alternately, Chang et al. [37] used 40Ar/39Ar dating on two tuffs to date the very bottom of 
the Lanqui Formation, which lies just above the Haifanggou Formation. The Lanqui and 
Haiffangou formations are situated in Liaoning Province, the same formation is referred to as 
the Jiulongshan Formation in Hebei province and therefore Haiffangou is equivalent to 
Jiulongshan. This relationship means that the oldest possible age for the Lanqui Formation 
can be used as a minimum constraint on the age of the Jiulongshan Formation. The youngest 
tuff measured by Chang et al. [37] was dated to 158 Ma ± 0.6 Myr, yielding a minimum 
constraint of 157.4 Ma for the age of the Jiulongshan Formation. 
 
Minimum – 157.4 Ma 
Maximum – 168 Ma 
Ronquist et al. 2012 – 161 Ma 
 
 
Karatau Locality (Kulbastau/Galkino Provenance) 
The Karatau Formation consists of a group of deposits located in Jambul Province, 
Kazakhstan. The most notable sites are Aulie (also known as Mikhailovka), Karabastau, and 
Uspenovka (formerly Galkino), located within the Kulbastau Mountain Range. The floral 
composition of the strata comprising the Karatau Mountain Range is well documented and 
specific floral assemblages have been identified [28]. The Karabastausky floral assemblage 



was identified initially at the Karabastau site and the comparison of floral assemblages at 
Galinko allowed this site also to be assigned to the Karabastausky assemblage [28]. One of 
the characteristics of the Karabastausky flora is an abundance (95-100% of the floral 
assemblage) of Classopollis pollen [28].  Vakhrameev [29] analysed the fluctuations in 
Classopollis abundance across Eastern Europe and Asia and compared them with major 
geological events. This analysis showed that Classopollis in Kazakhstan, Middle Asia, Ukraine 
and Crimea only reached abundances of +95% during the Oxfordian and Kimmeridgian, 
before decreasing rapidly during the Late Kimerridgian – Tithonian. The Karabastausky 
Assemblage is positioned above the Borolsaisky Assemblage but it is unknown what length 
of time separates these two assemblages [28]. Despite this, the Karabaustsky Assemblage 
must be no older than the Borolosaisky and so the minimum age of this assemblage can still 
be used to constrain the age of the base of the Karabustsky Assemblage. The upper parts of 
the Borolosaisky Assemblage are considered to be of a Lower to Middle Callovian age as 
they contain around 50% Classopollis. Doludenko and Orlovskaya [28] and Sakulina  [30] 
has shown that this level of abundance is indicative of an Early Middle Callovian age, whereas 
higher abundances are indicative of Upper Callovian- Tithonian ages. The Borolosaisky 
Assemblage reaches a peak Classopollis abundance of 50% before dropping back down to 
10%, supporting an Early – Middle Callovian age.  
 
Thus, the minimum age of the Karabaustsky Assemblage can be established on 95% 
abundance of Classipollis at the top of the Karatau Formation, which must predate the pre-
Late Kimmeridgian reduction in Classopollis abundance, which can be dated arbitrarily but 
objectively on the base of the Tithonian, viz. 152.1 Ma ± 0.9 Myr [56] and, thus, 151.2 Ma 
A correlation, supported by numerous biostratigraphic similarities, between the Karabastau 
locality and the Daohugou bed in China has been proposed [36, 72, 73]. Kovalevisargid flies 
described by Zhang [73] were noted as having strong similarities to kovalevisargid flies 
observed in Daohugou deposits. The rarity of these flies coupled with their lack of diversity 
in the fossil record substantiates the correlation between these localities [73]. Furthermore, 
Pterosagus found in the Daohugou Biota has similar wing venation to Nagotomukha karabas 
from the Karabastau locality [72]. Representatives of Archisargidae, such as Archirhagio, 
Archisargus, Mesosolva and Calosargus, have been retrieved from both the Karabastau and 
Daohugou localities [72]. Further evidence for a correlation between Karatau and Daohugou 
is the presence of Protoscelinae leaf beetles, known only only from these two localities [74]. 
It has been suggested that Protoscelinae existed only for a relatively short time and over a 
small geographic range [75], providing further evidence for a correlation between Daohugou 
and Karatau.   
 
The correlation between these two sites allows the radiometrically derived age for the 
strata occuring below the Daohugou Biota to be utilised to infer maximum dates on the 
Karatau Formation and to further refine the age range suggested by Vakhrameev [76]. Liu et 
al. [67] used SHRIMP U-Pb zircon dating on a number of samples from the Daohugou Biota 
and the strata lying both above and below. They showed that samples positioned above the 
salamander bearing layers at Reshuitang (which are overlain by the Daohugou Biota) could 
be dated to 164 ± 4 Ma. This date would suggest a maximum age of 168 Ma for this 
Formation. 
 
Minimum – 151.2 Ma  
Maximum – 168 Ma 
Ronquist et al. 2012 -161 Ma 
 
 
Laiyang Formation 
On the basis of the shared content of their respective fossil insect assemblages, the Laiyang 
Formation of Liaoning, China, can be correlated with the Yixian Formation, also of China 
and the Zaza Formation, Transbaikalia [77, 78]. Nine species of Pelecinidae wasps are found 



in both the Laiyang, Zaza, and Yixian formations (Iscopinus baissicus, Sinopelecinus 
delicatus, S. epigaeus, S. magicus, S. viriosus, Eopelecinus vicinus, E. shanyuanensis, E. 
similaris, and Scorpiopelecinus versatilis; [77]). Zhang and Rasnitsyn [77] consider that any 
difference in the assemblages at Yixian and Laiyang are due to taphonomic processes as 
opposed to chronological differences.  
 
The Yixian and Laiyang formations can also be correlated by their shared floral assembalges; 
both formations contain members of the genera Brachyphyllum, Cupressinocladus and 
Schizolepis [79, 80]. The Yixian and Laiyang formations both contain Classopollis parvus and 
Solenites murrayama, in addition to members of the genera Cedripites and 
Cicatricosisporites  [79, 80]. These floral and palynological remains are found in the lower 
beds of the Yixian Formation, the Jianshangou beds [80], providing support for the 
correlation of the base of the Yixian Formation with the base of the Laiyang Formation. 
Choncostracans attributed to Yanjiestheria are found in both the Yixian (Lujiatun Bed) and 
Laiyang formations [80, 81].  The ostracod genus Cypridea is found in both the Yixian and 
Laiyang formations [80, 81], as is the bivalve species Sphaerium anderssoni and members of 
the gastropod genus Probaicalia [80, 81]. The fish Lycoptera sinensis is found in both the 
Laiyang Formation [81] and also in the Jianshangou Bed [64, 80]. This species provides a 
comparatively strong correlation and its presence at the base of the Yixian Formation 
demonstrates the chronological relationship between the Yixian and Laiyang formations, 
allowing the Lujiatun Bed (which is the lowermost part of the Jianshangou Bed [80]) to be 
used to derive a date for the base of the Laiyang Formation. The wide range of 
biostratigraphic sources available to correlate the Yixian and Laiyang formations includes 
insect, floral, palynological and vertebrate assemblages. While the utility of any single 
biostratigraphic marker could be called into question, the number and range of sources 
available for this correlation provides overwhelming support.  
 
The use of 40Ar/39Ar radiometric dating on the bottom of the Lujiatun Bed at the very base 
of the Yixian Formation yields a date of 128.4 ± 0.2 Ma [62, 64, 82]. This date can be used to 
give a maximum constraint on the Laiyang Formation of 128.6 Ma. Other attempts to date 
the base of the Yixian Formation  the 40Ar/39Ar system [83] have yielded dates around 20 
Myr older than those estimated by Wang et al. [82]. These older dates have been 
considered unreliable as the samples may have contained trapped Argon that may have 
distorted results [64, 84]. 
 
The minimum age for the Laiyang Formation is best established from the perspective of the 
overlying Qingshan Group, the lowest unit within which is the Houkuang Formation, U-Pb 
dating of zircons within which has yielded a date of 106 Ma ± 2 Myr [38]. Thus, we establish 
a minimum constraint on the age of the Laiyang Formation at 104 Ma. 
 
Minimum – 104 Ma 
Maximum – 128.6 Ma 
Ronquist et al. 2012 – 140 Ma 
 
 
Bon Tsagan / Khurulit Rock Unit 
The Bon Tsagan locality of Central Mongolia can be divided into a number of formations: the 
Undur-Ukhin Formation is the lowermost unit and is comparable to the Tsagen Tsab 
Formation of Eastern Mongolia, the middle unit is the Anda-Khuduk Formation and is 
comparable with the Shin Khuduk Formation in Eastern Mongolia, the uppermost unit is the 
Khulsyn-Gol Formation. The Khurilt rock unit is assigned to the Anda Khuduk Formation 
[85].  
 
Correlation with the Zaza and Yixian Formations of Transbaikalia and China, respectively, is 
possible based on shared flora. Shared elements of the Yixian and Bon-Tsagan flora are 



Schizolepis, Pseudolarix, Baiera, Sphenobaiera, Phoenicopsis, Ginkgoites, Pityocladus, 
Pityospermum, Brachyphyllum, Erenia stenoptera and Leptostrobus [80, 85, 86]. Krassilov 
[85] assigned the Anda Khuduk and Shin Khuduk formations to the Baierella hastate 
phytostratigraphic unit, which was thought to be Aptian in age. The palynological assemblage 
at Shin Khuduk is dominated by Pinaceae pollen [85]; Pinaceae plants are also found in the 
Yixian Formation, [87] further supporting a correlation between these two localities. Shared 
flora between Yixian and Bon Tsagan are distributed between all three subformations of the 
Bon Tsagan unit (and their related formations in Eastern Mongolia) [85], allowing the age of 
the Yixian Formation to inform the age of the strata at the Bon Tsagan locality. With respect 
to shared components of the insect assemblages of these formations, the Caloblattinidae 
genus Nuurcala is of particular note. Nuurcala obesa, found in the Yixian Formation is 
considered closely related to Nuurcala popovi [88] found in the Anda Khuduk of the Khurilt 
Unit at Bon Tsagan  [89], further suggesting correlation between these locations.  
 
The use of 40Ar/39Ar radiometric dating on the bottom of the Lujiatun Bed at the very base 
of the Yixian Formation yields a date of 128.4 ± 0.2 Ma [62, 64, 82]. This date can be used to 
provide a maximum constraint on the Bon Tsagan locality of 128.6 Ma. Other attempts to 
date the base of the Yixian Formation with the 40Ar/39Ar method have yielded dates around 
20 Ma older [83] than those measured by Wang et al. [82], though these older dates are 
considered to be unreliable, as the samples measured may have contained trapped Argon, 
which can distort results [64, 84]. 
 
The Yixian Formation is succeeded by the Jiufontang Formation [68], and, therefore, the 
oldest possible date for the Jiufontang Formation can be utilised as a minimum constraint on 
the age of the Yixian Formation and therefore the Bon Tsagan Locality.  The use of 40Ar/39Ar 
dating on a number of samples from the Jiufontang Formation allowed an age of 120.3 ± 0.7 
Ma to be assigned to volcanic tuffs present in the Formation [68]. Whilst these tuffs do not 
exist at the very bottom of the Jiufontang Formation, they may still be used to derive a 
minimum constraint on the Yixian Formation as it must be no younger than 119.6 Ma, which 
is concordant with the Aptian age for the flora of the Baierella hastate unit. 
 
In the petrified Suihent Forrest of South Eastern Mongolia, the lower Tsagen Tsaab 
Formation (also called Tsagen Tsaav), whose comparison to Undur-Ukhin has previously 
been discussed, is dated to 156 ± 0.76 Ma (Late Jurassic) through the dating of volcanic tuffs 
using the 40Ar/39Ar method [90] . This estimate pushes the constraint on the age of the base 
of the Bon Tsagan unit back to 156.76 Ma, although the vast majority of the Formation is 
much younger than this and likely Cretaceous in age [91]. 
 
Minimum - 119.6 Ma 
Maximum - 156.76 Ma 
Ronquist et al. 2012 – 121 Ma 
 
Dolgan Formation / Agapa  
The Dolgan (also referred to as Dolganskaya Formation) of the Nizhnyaya Agapa river 
locality in Northwest Siberia has yielded numerous biostratigraphic markers that allow the 
age of this Formation to be identified as early Upper Cretaceous.  The Dorozhkov Member 
overlies the Dolgan Member; both of these deposits contain Inoceramuae species that 
strongly support the Cenomanian – Turonian boundary as the maximum constraint on the 
age of the Dolgan Member. Inoceramus pictus is found in the Dolgan Member, and the first 
appearance of I. pictus corresponds with the top of the Acanthoceras jukesbrowni zone 
[92], which suggests a middle to upper Cenomanian age [93]. The Dorozhkov Member 
contains the lower Turonian species Inoceramus labiatus. The boundary between the I.pictus 
and I.labiatus zones is recognised as the Cenomanian – Turonian boundary in Siberia [94-96], 
which lends strong support to the use of the Cenomanian – Turonian boundary as the 
minimum constraint on the age of the Dolgan member. I.labiatus is a member of the 



subgenus Mytiloides [95], which is a common find after the first appearance of the lower 
Turonian ammonite species Watinoceras devonense [95, 97] adding further support to the 
use of the Cenomanian – Turonian boundary. The Cenomanian – Turonian boundary is 
dated to 93.9 Ma ± 0.2 [56]. 
 
The palynological evidence to place the Dolgan Member in the Cenomanian stage is also 
strong. The species Balmeisporites glenelgensis is found in both the very base of the Dolgan 
Member and also the Upper Cretaceous deposits of Victoria, Australia  
[98](Lebedev and Zverev. 2003). Balmeisporites glenelgensis is also found in the middle to 
late Cenomanian deposits of the Peace River of North Western Alberta, Canada [99] and 
the Sargeant Bluff and Stone Park lignite of Iowa and Nebraska [99]. Balmeisporites 
glenelgensis is found in the Raritan Formation of New Jersey, the age of this Formation is 
disputed but the majority of researchers consider it to be Cenomanian in age due to the 
presence of numerous biostratigraphic markers indicative of a lower late Cretaceous age 
[100]; notably Arcellites, which is found in the Cenomanian deposits of Disko Island, 
Greenland [101] and Grill Coal, Iowa [102].  
 
The presence of the microspore Schizosporis sp. (Lebedev and Zverev. 2003) can also be 
used to infer the age of the Dolgan Formation as Schizosporis has been found in boreholes 
from Cenomian deposits in Australia [103]. Similarly, the presence of moss spores 
Stereisporites (spp.) (Lebedev and Zverev. 2003) further support a Cenomanian age for the 
Dolgan Formation. Stereisporites occurs alongside the dinocyst species Epelidosphaeridia 
spinosa in 4 boreholes in the Bohemian Cretaceous Basin [104]. E. spinosa is considered to 
be Cenomanian in age, and it has been found in deposits of early, middle and late 
Cenomanian ages [104]. E. spinosa was found in the lower and middle Cenomanian of 
Northern Europe (Mantelliceras dixoni and Acanthoceras rhotomagense zones respectively) 
[104-106].  
 
The presence of Taxodiaceaepollenites hiatus pollen at Dolgan (Lebedev and Zverev. 2003) 
suggests a much older age than The Cenomanian due to the appearance of this species in the 
Dicheiropollis-Classopollis-Cicatricosisporites assemblage of the Suowa of the Qinghai-
Xizang Plateau of China [107]. The presence in this assemblage of Dicheiropollis suggests an 
Early Cretaceous age [108]. Li and Batten [107] suggested a Valanginian – Berremian age for 
this assemblage based on the presence of Dicheiropollis and Cicatricosisporites, 
Concavissimisporites, Impardecispora, Lygodioisporites, and Pilosisporites.   
 
By considering the zonation of palynological assembalges of the Pacific coast of Russia, a 
similar pre-Cenomanian age can be suggested for the Dolgan Formation based on the 
presence of Taxodiaceaepollenites hiatus. Taxodiaceaepollenites hiatus is assigned to the 
Gleicheniidites carinatus - Pilosisporites echinaceus palynozone [109] which is considered to 
be Valanginian in age, confirmed by similarities to Valanginian floras which have their date 
confirmed by the presence of fossil molluscs [109].  This support for a Valanginian age for 
elements of the palynological assemblage of Dolgan allow the use of the Beriasian – 
Valanginian boundary as a maximum constraint on the age of the Dolgan Formation, which 
has been dates to 139.4 Ma ± 0.7 Myr. 
 
Minimum – 93.7 Ma 
Maximum – 140.3 Ma 
Ronquist et al. 2012 – 94 Ma 
 
 
Novospasskoye/Ichetuy  
The Novospasskoye (also referred to as Novospasskoe) locality of the volcanogenic Ichetuy 
(Ichetui) Formation is located outside the town of Novospasskoye in the Tugny (Tugni) 
Depression, Transbaikalia, Russia [110]. It has proven difficult to determine an exact age for 



this Formation, as demonstrated by the disparity in age estimates formed from 
interpretations of the insect assemblage and estimates derived from the radiometric dating 
of the volcanic sediment [23]. The accuracy of any age based purely on the structure of the 
insect assemblage must be treated with caution, as it has been demonstrated that the 
assemblage contains chronological anomalies, including the find of a probable early 
Cretaceous Coptoclavid beetle Bolbonectes alongside the Jurassic beetle species 
Stygeonectes jurassicus [22]. Therefore, a less subjective method of dating this formation is 
preferred; the volcanogenic nature of this sediment allows for the use of radiometric dates 
acquired from dating volcanic events in this locality. ��The Ichetuy Formation is thought to be 
of an Early-Middle Jurassic age on the basis of the biostratigraphic composition of the 
Formation [20-22], although radiometric dating of volcanogenic material suggests a younger 
age than this [23]. A K-Ar date of 145 Ma ± 4 Myr derived from a basalt overlying the 
Ichetuy Formation [24] provides for an effective minimum constraint on its age, thus 141 Ma. 
The oldest date obtained from the measurement of volcanogenic material at the Ichetuy 
Formation is 162 ± 6 Ma [26, 111] and was measured using the Rb-Sr whole rock method. 
This pushes the oldest possible age for the Ichetuy Formation back to 168 Ma.  
 
Minimum – 141 Ma 
Maximum – 168 Ma 
Ronquist et al. 2012 – 176 Ma 
 
Ola Formation 
The Ola Formation of the Arman’ and Ola rivers interfluve, North Eastern Russia, can be 
correlated with the Barykov Formation of the Amaam Lagoon, North Eastern Russia, on the 
basis of shared floral assemblages. Both of these formations contain the angiosperm species 
Macclintockia beringiana, [112] which is considered to be indicative of the Barykovsk floral 
assemblage [29, 113]. This floral assemblage is dated based on the presence of fossil bivalves 
in the Barykova Formation at Ugolnaya Harbour, which is assigned to the Barykovsk floral 
assemblage. At Ugolnaya bay the Barykova Formation can be split into four sections, the 
uppermost of which is terrestrial with the three underlying sections considered to be 
marine [112]. The date of the uppermost marine section can be utilised as a maximum 
constraint on the age of the Barykov Formation, as all preceeding deposits are marine and 
the hymenopteran species of Ronquist et al. [1] are lacustrine.  A date for the uppermost 
marine section can be inferred from the presence of the bivalve species Inoceramus 
Patootensis [29, 112], which is considered to be indicative of middle Santonian to base 
Campanian age [114] and so we can derive a maximum age on the bae of the Santonian 86.3 
Ma ± 0.5 Myr [115]. The terrestrial section of the Barykov Formation can be further divided 
into three more sections consisting of two coal containing beds positioned above and below 
a bed lacking coal deposits; the contents of the coal containing beds are made of elements of 
the Barykov floral assemblage, and are the location of fossilised Macclintockia [112].  
 
The Koryak Formation overlies the Barykov Formation [112], and therefore its oldest 
possible age can be utilised as a constraint on the minimum age of the Barykov Formation. 
The middle section of the Koryak Formation contains the bivalve species Inoceramus 
pilvoensis and Patagiosites alaskensis, which suggest an base Maastrichtian age 72.1 Ma ± 0.2 
Myr [56] for the middle of the Koryak Formation [116], which can be utilised as a minimum 
constraint on the age of the Barykov Formation and therefore the Ola Formation. 
 
Minimum – 71.9 Ma  
Maximum – 86.8 Ma 
Ronquist et al. 2012 – 140 Ma 
 
 
Unda / Glushkovo Formation 
The age of the Glushkovo Formation is considered to be either Late Jurassic or Early 



Cretaceous on the basis of the composition of its insect assemblage [21, 22]. The stoneflies 
found within the Glushkovo Formation would suggest an Early Cretaceous age due to the 
presence of species, including Dimoula dimi [117], not found in Jurassic strata. Furthermore, 
numerous modern sandfly species not found in Jurassic deposits are found in Glushkovo, 
supporting a Cretaceous age for this Formation [117].  
 
Ignatov et al. [118]correlate the Glushkovo Formation with the Baigul locality of 
Transbaikalia on the basis of the shared presence of the insect species Proameletus caudatus, 
members of the taxonomic group Isophlebiidae, and the Equisetaceae plant species 
Equisetum undense, in addition to the crustacean species Prolepidurus schewija and 
Сhirocephalus rasnitsyni. The strata at the Baigul locality can, in turn, be correlated with the 
Ulugey (Ulugei) Formation of Mongolia due to the shared presence of the moss genera 
Bryokhutuliinia [119], which is one of only five known taxonomic groups of Jurassic mosses 
[118]. There is a paucity of literature regarding the precise age of the Ulugey Formation, 
with most estimates of its age listed as Late Jurassic – Early Cretaceous [120-123]. 
Pityospermum sp. was also found in Baigul [118] but the lack of a species level classification 
of this specimen makes it a poor quality biostratigraphic marker as the genus Pityospermum 
is known from the Permian to the Late Cretaceous [124, 125]. 
 
Members of the coleopteran Genus Gobicar are found at Khutuliyn-Khira locality of the 
Ulugey Formation and also in the Montsec Fauna of Spain [121], allowing for a correlation 
between these sites for the purpose of this calibration. The Montsec locality has been dated 
as late Berriasian at the earliest and Aptian at the very latest [126, 127]. The presence of the 
freshwater Ostracods (Cypridea .sp) in Montsec suggests a Berriasian – Valenginain age as 
similar Cypridea is also known from the Berriasian – Valenginain boundary of Aquitaine, 
France [127-129]. This age range supports the fossil insect evidence that suggests an early 
Cretaceous age for Glushkovo. Despite this, Peybernès and Oertli [127] offer no solid 
reason to assume that the Cypridea present in Montsec is of the same species as that found 
in Aquitaine. If the uncertainty in the classification of the species of Cypridea found at 
Montsec is taken into account then this find can only be confidently considered indicative of 
an age within the full temporal distribution of Cypridea. This ostracod genus has a constant 
presence from the Middle Jurassic to Late Cretaceous and is seen from the Bathonian [130] 
until the Maastrichtian [131], allowing for the end of the Masstrichtian (66 ± 0.05 Ma [10] ) 
to be utilized as a minimum constraint on the age of this Formation . If the lack of insect 
fossils from the Jurassic in Glushkovo is assumed to indicate that this Formation is of a 
Cretaceous age only then the maximum constraint on the age of this Formation can be 
placed at the base of the Cretaceous 145.0 Ma ± 0.8 Myr [56], as it is known that Cypridea 
extends well into the Jurassic. 
 
Minimum – 65.9 Ma � 
Maximum – 145.8 Ma 
Ronquist et al. 2012 – 146 Ma 
 
 
Sogul Formation / Sagul  
The Sogul Formation is located in the Osh Region of Kyrgyzstan, a handful of sites belonging 
to this Formation with similar geology are referred to as the Say-Saigul (also known as Sai-
Sagul, Shurab 3, or Svodovoe Ruslo) locality.   
 
The age of this locality has not firmly been established due to the endemic nature of the 
faunal assemblage present [132] and a relative lack of literature related to the floral 
assemblage; despite this, the insect assemblage has been used to infer a late Early Jurassic to 
early Middle Jurassic age for Sagul [133]. The presence of the wood morphogenus 
Xenoxylon can be used to infer a rough age range for the Sagul locality. The species X. 
barberi, X. hopeiense, X. latiporosum, and X. suljuctense are all found in the Sogul 



Formation [134]. X. barberi is also found in the Aalenian–Bajocian (Thies 1989) of Germany 
and Toarcian of France (serpentinium zone, equivalent to falciferum zone (180.2 – 183 Ma, 
discussed in Toarcian calibrations)), X. hopeiense is found in the Middle Jurassic (Aalenian–
Bajocian [135]) of the Angren Formation of Uzbekistan. X. latiprosum covers a large 
chronological range, from the Late Triassic to the Early Cretaceous, but a number of 
examples of this species have been found in Early and Middle Jurassic deposits, X. suljuctense 
is only known from the Sogul Formation [134].   
 
The presence of the species Shurabia angustata at Sagul can be used to make a loose 
correlation with the Ust’-Balei locality of Transbaikalia, where this species is also found, and 
allows the age of this Formation to influence the calibration of fossils found in Sagul.  
 
The floral assemblage of Ust’-Balei can be correlated with the Tolyinsk suite found to the 
West of Lake Baikal due to the shared presence of Sphenobaiera longifolia [29, 136]. There 
is no consensus on the age of this suite as it is thought to be either Bathonian – Callovian or 
Lower Oxfordian in age; the suite can be no younger than Upper Oxfordian though, as the 
top of this suite contains Upper Oxfordian marine sediments [29].  If we assume that this 
suite must exist within this range of ages we can derive a Bathonian to Oxfordian – 
Kimmeridgian age for Sagul based purely on the floral assemblage.  
 
If both fossil insect and fossil floral evidence is considered then the Sogul Formation can be 
assumed to have occurred during the period from the base of the Toarcian (which is better 
dated than the very slightly younger falciferum zone (c. 182.7 Ma ± 0.7 Myr), to the end of 
the Oxfordian (157.3 Ma ± 1.0) � [137]. 
 
Minimum – 156.3 Ma 
Maximum – 183.4 Ma  
Ronquist et al. 2012 – 176 Ma 
 
 
Bascharage  
The Bascharage locality of Luxembourg is thought to be Toarcian in age as fossil insects 
retrieved from these deposits co-occur with the ammonite species Harpoceras falciferum 
[138]. H. falciferum is a strong biostratigraphic marker and can be utilised to infer a strongly 
supported age for these deposits.  
 
The falciferum Boreal ammonoid zone is the second earliest of the Toarcian, time-equivalent 
to the Tethyan serpentinum ammonoid zone, the base of which has been dated to 181.7 Ma 
[115]. Both the falciferum and serpentinum zones are succeeded by the bifrons ammonoid 
zone, the base of which has been dated to 180.36 [115], both of which have attendant 
errors of 0.7 Myr. This affords an age range of 182.4-179.66 Ma for the strata the 
Bascharage Locality.  
 
Minimum – 179.66 Ma 
Maximum – 182.4 Ma 
Ronquist et al. 2012 – 180 Ma  
 
 
Dobbertin �� 
The Dobbertin locality of Mecklenburg-Vorpommern, Northern Germany, is widely 
considered to be lower of lower Toarcian age. Insect finds from this locality are assigned to 
the Harpoceras falciferum ammonoid zone [31-33]. The presence of a biostratigraphic 
marker as strong as the ammonite H.falciferum means that a strongly supported age can be 
inferred for this locality. �� 
 



The falciferum Boreal ammonoid zone is the second earliest of the Toarcian, time-equivalent 
to the Tethyan serpentinum ammonoid zone, the base of which has been dated to 181.7 Ma 
[115]. Both the falciferum and serpentinum zones are succeeded by the bifrons ammonoid 
zone, the base of which has been dated to 180.36 [115], both of which have attendant 
errors of 0.7 Myr. This affords an age range of 182.4-179.66 Ma for the strata the 
Bascharage Locality.  
 
Minimum – 179.66 Ma 
Maximum – 182.4 Ma 
Ronquist et al. 2012 – 180 Ma  
 
 
Grimmen 
The Grimmen Deposit located in Germany is thought to be Toarcian in age. Strong support 
for this age can be drawn from the presence of Ammonites, indicative of particular zones, 
within this locality. Notably, Harpoceras falciferum is found in the insect bearing layers of 
this deposit [139]. The presence of this strong biostratigraphic marker means that a well-
supported age range for this deposit can be derived.  
 
The falciferum Boreal ammonoid zone is the second earliest of the Toarcian, time-equivalent 
to the Tethyan serpentinum ammonoid zone, the base of which has been dated to 181.7 Ma 
[115]. Both the falciferum and serpentinum zones are succeeded by the bifrons ammonoid 
zone, the base of which has been dated to 180.36 [115], both of which have attendant 
errors of 0.7 Myr. This affords an age range of 182.4-179.66 Ma for the strata the 
Bascharage Locality.  
 
Minimum – 179.66 Ma 
Maximum – 182.4 Ma 
Ronquist et al. 2012 – 180 Ma 
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