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Palaeontology

Romundina and the evolutionary origin
of teeth

Martin Rücklin1,2 and Philip C. J. Donoghue2

1Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, The Netherlands
2School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK

Theories on the origin of vertebrate teeth have long focused on chondrich-

thyans as reflecting a primitive condition—but this is better informed by

the extinct placoderms, which constitute a sister clade or grade to the living

gnathostomes. Here, we show that ‘supragnathal’ toothplates from the

acanthothoracid placoderm Romundina stellina comprise multi-cuspid teeth,

each composed of an enameloid cap and core of dentine. These were added

sequentially, approximately circumferentially, about a pioneer tooth. Teeth

are bound to a bony plate that grew with the addition of marginal teeth.

Homologous toothplates in arthrodire placoderms exhibit a more ordered

arrangement of teeth that lack enameloid, but their organization into a

gnathal, bound by layers of cellular bone associated with the addition

of each successional tooth, is the same. The presence of enameloid in the

teeth of Romundina suggests that it has been lost in other placoderms. Its

covariation in the teeth and dermal skeleton of placoderms suggests a lack

of independence early in the evolution of jawed vertebrates. It also

appears that the dentition—manifest as discrete gnathal ossifications—was

developmentally discrete from the jaws during this formative episode of

vertebrate evolution.

1. Introduction
Theories on the evolutionary origin of teeth have long been rooted in the con-

dition manifest by chondrichthyans, as the most distant living outgroup to

humans and because they exhibit a comparatively simple pattern of tooth

replacement. However, their apparent simplicity is secondary given that the

extinct placoderms, which constitute the sister lineage(s) to all other jawed ver-

tebrates, exhibit a greater diversity and complexity of dentitions that better

inform the nature of an ancestral gnathostome dentition. Dental development

is best known in the arthrodiran placoderms, where teeth aggregrate to

comprise gnathals ossified to the bony shaft of the lower jaw and the palatoqua-

drate [1]. This dentition is statodont; teeth were added successionally, replacing

teeth that were not shed, bound together by an ossification associated with tooth

addition [1]. However, arthrodires are derived regardless of whether placoderms

are considered a clade or a grade [2,3] and the existence and nature of the dentition

in other placoderm lineages are poorly known. Here, we describe the structure and

growth of the supragnathal of Romundina stellina, a member of the acanthothoracid

placoderms—considered an outgroup to a monophyletic Placodermi [4], or else an

early branching lineage of paraphyletic ‘placoderms’ [5]. As such, in comparison to

other placoderms and crown-gnathostomes, Romundina might better inform the

plesiomorphic nature of gnathostome dentitions. We used synchrotron radiation

X-ray tomographic microscopy (SRXTM) to obtain a high-resolution volumetric

characterization of gnathals from Romundina and, for comparison, the arthrodire

Compagopiscis croucheri. We subjected these datasets to computed tomographic
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analysis to elucidate the structure and infer the development of

these skeletal structures.

2. Material and methods
The supragnathal and associated skeletal elements are from

acid-insoluble residues associated with the holotype of R. stellina,

from the Early Devonian (Lochkovian) of Prince of Wales

Island, Canada [6], housed in the Naturhistoriska Riksmuseet,

Stockholm (NRM-PZ). For comparison, we studied posterior

supragnathals of C. croucheri from the Upper Devonian, Frasnian,

Gogo Formation of Australia, reposited at the Natural History

Museum London (NHMUK PV). Volumetric characterization

of the specimens was achieved using SRXTM [7] at the TOMCAT

(X02DA) beamline of the Swiss Light Source, Paul Scherrer

Institut, Switzerland (voxel dimensions 0.74 and 1.85 mm) and a

SkyScan 1172 XTM at the University of Bristol (voxel dimensions

10 mm); the raw slice data are available at http://dx.doi.org/10.

5523/bris.7h9gynbsui4u1hap471inrlua and as movie files in the

electronic supplementary material. These data were analysed

using AVIZO 8.01 (www.fei.com).

3. Results
Only the upper dental plates (supragnathals) are known

for Romundina, described from the palatal surface of an endo-

cranium as ‘a pair of symmetrical flat plates with a specific

ornament combining radiating and concentric rows with a

centrifugal growth’ [4, p. 114]. The upper dental plates are

flat and oval-shaped with an ornament of multi-cuspid tuber-

cles (figure 1a). The new material is identified as a gnathal

plate of Romundina on grounds of equivalent size and similar

shape, and its derivation in association with the holotype of

R. stellina [6]. The gnathal has a prominent central tubercle

with a central cusp from which six radial ridges extend,

each bearing a series of aligned cusps. This is surrounded

by smaller tubercles, each exhibiting the same basic arrange-

ment of cusps, though one or more of the radial ridges may

not be developed. Thus, marginal tubercles exhibit elongate

ridges aligned with the circumference of the gnathal plate

(figures 1a,d and 2a).

Tomographic sections reveal that the gnathal plate com-

prises three layers: a superficial layer composed of tubercles, a

medial vascular layer and a basal lamellar layer (figure 2b–d).

(d )

( f )

(b)

(c)

(e)

(g)

(h)

(a)

Figure 1. Acanthothoracid placoderm (same specimen as in [4]) and surface renderings (gold) of Romundina stellina and Compagopiscis croucheri. Upper dental
plates (anterior supragnathals, ASG) in occlusal view (a). Right ASG of R. stellina (NRM-PZ P.15956) based on SRXTM data (b – e). (b) Distal, (c) proximal, (d ) occlusal
and (e) dorsal views. Left posterior supragnathal (PSG) of C. croucheri (NHMUK PV P.50943), based on MicroCT data ( f – h). ( f ) Occlusal, (g) dorsal and (h) distal
views. Scale bar represents 1.68 mm in (a), 178 mm in (b – e) and 206 mm in ( f – h).
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The tubercles generally lack a coherent vascular cavity, but they

comprise dentine with odontoblast lacunae, characteristic of

semidentine, that converge on local chambers associated with

the middle vascular layer. The dentine exhibits an irregular

boundary with an outer hypermineralized capping layer of

enameloid that is continuous between component cusps of

each tubercle and permeated by the odontoblast canaliculi

(figure 2b–d). Inner areas of dentine tissues with canaliculi

and cell lacunae are characteristic for semidentine (figure 2d).

The vascular middle layer is dominated by canals that extend

through the basal and the superficial layers, opening between

tubercles. The basal layer consists of lamellar bone that is

generally organized into a plywood-like structure characteris-

tic of isopedin, though it comprises fibre bundles that are

(a)

(c)

(d )

( f )

(g)
(e)

(b)

Figure 2. Segmentation and virtual sections of SRXTM characterizations of a Romundina stellina supragnathal (NRM-PZ P.15956), dermal scale (NRM-PZ P.15952)
and Compagopiscis croucheri supragnathal (NHMUK PV P.57629). (a – d) Right ASG of R. stellina. (a) Segmented sclerochronology of the dental plate following lines
of arrested growth. Colour scheme (from gold to purple) represents the sequence of tooth addition. (b) Transverse and (c) longitudinal virtual sections showing
addition of teeth and basal layer. (d ) Detail of (c) showing enameloid/semidentine border and Sharpey’s fibres. (e) Detailed virtual section of the right PSG of
C. croucheri. ( f ) Virtual section and (g) dorsal view of the dermal scale of R. stellina. Scale bar represents 180 mm in (a), 97 mm in (b), 86 mm in (c), 50 mm in (d),
157 mm in (e), 96 mm in ( f ) and 224 mm in (g).
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approximately circular in cross-section, akin to the osteostracan

and galeaspid dermal skeletons, rather than the sheet-like

organization seen in actinopterygians [8]. This structure is

permeated by Sharpey’s fibres centrally (figure 2b–d) and disin-

tegrates locally into spheritic mineralization characteristic of

rapid growth or the absence of a coherent collagen matrix [9].

The tomographic data also reveal clearly that the tubercles

were added episodically to the margins of the gnathal plate,

evidenced by growth arrest lines that occur between tubercles

that developed on the margins of older, earlier formed, tuber-

cles (figure 2b–d). These growth lines can be traced continuing

through the middle and basal layers, demonstrating that

the bony plate grew in width and thickness in association

with the addition of tubercles at the margins. Tracing these

growth lines digitally revealed that the tubercles were added

marginally in concert (figure 2b–d). Thus, the tubercles were

added radially in respect of the pioneer, but restricted by the

distal limit of the oral cavity where the gnathal plates abutted

the premedian plate, as may be inferred in comparison to

supragnathal plates in situ (figure 1a).

The supragnathal plates of the brachythoracid arthro-

dire C. croucheri occur bilaterally as separate anterior and

posterior elements; either the anterior element is

homologous to the single bilateral supragnathal plates in

Romundina or else they are perhaps collectively equivalent.

They each have a central cusp, from which branch three

rows, only two of which comprise more than a few cusps

(figure 1f–h). Tomographic sections reveal that each cusp

has a distinct and voluminous pulp cavity (figure 2e).

Growth arrest lines indicate that the cusps were added in suc-

cession, to the margin of the next oldest cusp within the row,

and relative age of the cusps is also reflected in the degree to

which the pulp cavities are centripetally infilled by dentine.

The addition of each cusp is continuous with the bone

added to the basal plate uniting the component cusps.

The growth lines become indistinct where remodelling of

the vasculature has occurred (figure 2e).

4. Discussion
The surface morphology of the tubercles comprising the

supragnathal in Romundina is quite distinct from the mor-

phology of the dermal tubercles, though they have a common

composition. Given their statodont pattern of replacement,

with new tubercles added at the margins of the oral surface,

their toothlike composition, and the homology of the gnathals

to the supragnathals of arthrodires such as Compagopiscis,
which have already been interpreted as teeth [1], we interpret

the supragnathals of Romundina as comprising teeth. Neverthe-

less, the structure and composition of the supragnathal

toothplate in Romundina is surprising given what has been

known previously concerning the structure of placoderm

dental elements. The simple radial organization of the tubercles

is similar to the compound oral denticles in the jawless thelo-

dont Loganellia [10], but it is quite distinct from the strictly

ordered arrangement of the tubercles comprising the gnathals

of arthrodire placoderms, including the supragnathals

described here from Compagopiscis, where the tubercles are

monocuspid and arranged along discrete vectors [1]. Conver-

sely, the multicuspid gnathal tubercles in Romundina are

considerably more complex. These differences are perhaps

reflected in the differing degrees of gnathal occlusion, where

the supra- and infra-gnathals of Compagopiscis should be

envisaged to occlude with precision, whereas it is difficult to

conceive any meaningful degree of occlusion in Romundina,
perhaps because it would be precluded by the complex interdi-

gitating, space-filling morphology of the tubercles comprising

the functional surface of the gnathals. Thus, these differences

may as equally reflect poorer constraint of jaw articulation, as

of dental development, in the earliest jawed vertebrates.

The presence of an enameloid capping layer to the teeth of

Romundina is not unusual in comparison to the composition of

osteichthyan and chondrichthyan teeth; however, it contrasts

with the structure of teeth in arthrodires, which have been

shown to lack enameloid [1]. Enameloid is also present in the

external dermal tubercles of Romundina (figure 2f,g), which is

a primitive feature for ostracoderms [9], but it is unusual for

most placoderms where enameloid is absent through loss

[11]. This suggests that the absence of enameloid from the

teeth of arthrodires [1] is also a consequence of loss and

that the teeth of the earliest jawed vertebrates included a

hypermineralized capping layer of enameloid.

Indeed, the coordinated presence versus absence of enam-

eloid associated with the dermal and oral odontodes may be

more illuminating, suggestive of the non-independence of

these skeletal systems in the earliest jawed vertebrates. This

view is entirely compatible with the view that teeth evolved

through the extension of odontogenic competence from exter-

nal to internal epithelia, but incompatible with the view that

internal and external odontodes evolved independently from

a non-skeletal antecedent organ system [12].

In either instance, the organization of teeth into gnathals

that occur distinct from other aspects of the dermal and

endoskeletal systems appears to be widespread among placo-

derms, including acanthothoracids and arthrodires. As such,

this may reflect a primitive condition for jawed vertebrates,

and the intimate association of teeth and jaws may be an

entirely derived feature of osteichthyans.

5. Conclusion
The gnathals of Romundina may reflect a primitive condition for

placoderms and, indeed, jawed vertebrates more generally: dis-

crete developmental units that comprise teeth composed of

dentine and capped with enameloid. As such, the search for

the origin of teeth must be extended deeper into gnathostome

phylogeny. However, the organization of teeth and their intimate

developmental association with jaws appear to be derived

phenomena that evolved later in jawed vertebrate phylogeny.
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